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In this paper we propose a new unsupervised dimensionality reduction algorithm that looks for a projec-
tion that optimally preserves the clustering data structure of the original space. Formally we attempt to
find a projection that maximizes the mutual information between data points and clusters in the pro-
jected space. In order to compute the mutual information, we neither assume the data are given in terms
of distributions nor impose any parametric model on the within-cluster distribution. Instead, we utilize a
non-parametric estimation of the average cluster entropies and search for a linear projection and a clus-
tering that maximizes the estimated mutual information between the projected data points and the clus-
ters. The improved performance is demonstrated on both synthetic and real world examples.
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1. Introduction

A general task of unsupervised learning is to reveal the hidden
structure of unlabeled data sets. The induction of a structure is
roughly equivalent to the reduction of the intrinsic complexity of
the data set. One common approach to lowering data set complex-
ity is to perform a dimensionality reduction step that produces a
low dimensional representation of the data. Such a representation
is often easier both for human perception (e.g. visualization by
reduction to a two dimensional subspace) and for automatic infer-
ence, since a computationally intensive technique may be tractable
only for low dimensional data. In addition, usually not all the fea-
tures are relevant and projecting to a lower dimensional space can
be viewed as extracting the most relevant features. Finally, dimen-
sionality reduction can save storage and time when dealing with
datasets with huge number of features.

Data projection methods transform data from the original D-
dimensional feature space into a new d-dimensional (d < D) feature
space. Principal component analysis (PCA) is one of the most pop-
ular methods for feature transformation. The PCA algorithm
implicitly assumes that the data are sampled from a Gaussian dis-
tribution and projects the data onto the subspace with the maxi-
mum norm covariance matrix. PCA is limited, however, since it
assumes that the data distribution is unimodal and does not take
into account the cluster structure properties of the data. In addi-
tion the variance may not be a proper criterion for optimization
when dealing with substantially non-Gaussian data. Non-linear
manifold learning algorithms such as multidimensional scaling
ll rights reserved.
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(MDS), Isomap (Tenenbaum et al., 2000), t-SNE (van der Maaten
and Hinton, 2008) and locally linear embedding (LLE) (Roweis
and Saul, 2000) map the input data into a single global coordinate
system of lower dimensionality that preserves local relations be-
tween neighboring points. Like PCA these methods also do not
aim to preserve the existing clustering structure in the original
space.

The task of dimensionality reduction becomes easier if the
data are labeled. In this case in addition to coordinates in RD each
data point is given a label c 2 {1, . . . ,m}. It can be assumed that data
points with the same labels are similar and are expected to be close
in the projected space. Supervised method such as LDA, NCA (Gold-
berger et al., 2004) and many others explicitly exploit the known
organization of the data into separate classes to obtain low-rank rep-
resentations that are found to be much better than current unsuper-
vised methods. The goal of supervised dimensionality reduction is to
reduce the dimensionality of the input space while preserving the
information about the output values. Thus, supervised dimensional-
ity reduction benefits from knowing the data labels that enable to
apply powerful optimization criteria. However for the unsupervised
methods the exact labels are unavailable. The goal of this paper is to
utilize estimated labels for dimensionality reduction to partially
benefit from the advantages of a supervised setup even in an unsu-
pervised framework. Such estimated labels are obtained by cluster-
ing the projected data. Naturally, the data points assigned to the
same cluster are given the same label and vice versa. Both dimen-
sionality reduction and clustering are optimally based on maximiz-
ing mutual information.

In addition to low-rank representation, an important way to
structure unlabeled data is clustering, which may be considered
as a cardinality reduction of the dataset. The clustering step divides
all data points into many fewer number of groups. The rationale is
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that within each group the data points possess nearly the same
properties. As a consequence, subsequent calculations may be per-
formed by treating each such group or its representative as a new
generalized data point, that again alleviates human and automatic
perception. The class of methods that cluster vectors in Rd includes
the spectral clustering algorithms (Ng et al., 2002) that have at-
tracted much attention in recent years. Another class of clustering
algorithms also admits input in the form of vectors in Rd but in addi-
tion implicitly or explicitly assumes certain types of intra-cluster
distributions (e.g. applying the EM algorithm to learn a Gaussian
mixture density). The key example of such algorithms is k-means
(Lloyd, 1982). When the data are arranged in non-convex sets (e.g.
concentric circles) these algorithms tend to fail. These problems
have now been solved in the recently introduced nonparametric
information theoretic clustering algorithm (NIC) (Faivishevsky
and Goldberger, 2010). NIC is a clustering algorithm based on max-
imizing the mutual information between data points and clusters.
Unlike previous methods, NIC neither assumes the data are given
in terms of distributions nor imposes any parametric model on
the within-cluster distribution. Instead, the algorithm utilizes a
non-parametric estimation of the average cluster entropies and
searches for a clustering that maximizes the estimated mutual
information between data points and clusters.

This paper introduces a novel approach that combines these
two forms of the complexity reduction. The proposed algorithm
performs dimensionality reduction that takes into account the pos-
sible clustering of the data. In particular, we search for the reduced
complexity representation of the data in terms of both dimension-
ality and cardinality simultaneously, which maximizes the mutual
information between the projected data and the cluster structure.
The output of the algorithm is comprised of both a low-dimen-
sional representation of the data and a clustering of points into
groups, though each of them may be further used separately and
independently. Here we do not assume any parametric assump-
tions either about the data points themselves or about their
arrangements (e.g. distributions) into clusters, though the method
may naturally incorporate such additional information. The rest of
the paper is organized as follows. Section 2 introduces the pro-
posed method. Section 3 describes numerical experiments.
2. The projection algorithm

Suppose a dataset X is composed of n data points x1, . . . ,xn 2 RD.
In many cases the cluster structure is the most important feature of
the dataset and our goal is to find a lower dimensionality represen-
tation of the data (d < D) that maximally preserves the cluster
structure that exists in the original data. We restrict here the dis-
cussion to the simple case of a projection obtained by a linear
transformation A : RD ? Rd. In addition to the projection matrix
we are also looking for an optimal clustering function C :
AX ? {1, . . . ,m} of the projected data. Denote the cluster of Axi by
ci. Note that the pair {A,C} actually defines a reduced complexity
representation of the original dataset X, where A accounts for the
dimensionality reduction and C for the cardinality reduction
(clustering).

We aim to obtain a maximally information preserving represen-
tation of the original data. Therefore we want to find the pair {A,C}
that achieves the maximal mutual information between the pro-
jected data and its cluster structure:

ðbA; bCÞ ¼ arg max
A

max
C

IðAX; CÞ

where A goes over all the linear transformation from RD ? Rd and C
goes over all the clusterings of the set AX into (at most) m clusters.
Using well known information-theoretic identities (Cover and
Thomas, 1991) the mutual information (MI) score function takes
the form:

IðAX; CÞ ¼ HðAXÞ � HðAXjCÞ ¼ HðAXÞ �
Xm

j¼1

nj

n
HðAXjC ¼ jÞ ð1Þ

where nj is the number of data points that are assigned by C to the
cluster j. To utilize the MI score function (1) we have to tackle the
technical issue of computing the within-cluster entropy terms
H(AXjC = j) and also the global entropy H(AX). A simple assumption
we can impose is that the conditional density f(AxjC = j) is Gaussian.
Since there is a closed-form expression for the entropy of a Gaussian
distribution we can compute the cluster score I(AX;C) given the
within-cluster Gaussian assumption. In the general case, however,
we do not have any prior knowledge on the within-cluster distribu-
tion. Assuming that the intra-cluster distribution is Gaussian is not
always a good choice since by utilizing a Gaussian distribution to
describe the density we implicitly assume a unimodal blob type
shape which is not always the case.

In the MI criterion I(AX;C) the relevant term is not the within-
cluster distribution but the within-cluster entropy. The key point
is that by using a mutual information criterion (1) we do not need
to have an explicit representation of the intra-cluster distribution.
We only need to compute the cluster entropy. In what follows we
utilize a nonparametric estimation of intra-cluster entropy in order
to benefit from the MI score function (1).

Classical methods for estimating the mutual information
I(AX;C) require the estimation of the joint probability density func-
tion of (AX,C). This estimation must be carried out on the given
dataset. Histogram- and Kernel-based (Parzen windows) pdf esti-
mations are among the most commonly used methods (Torkkola,
2003). Their use is usually restricted to one- or two-dimensional
probability density functions (i.e. pdf of one or two variables).
However, for high-dimensional variables histogram- and Kernel-
based estimators suffer dramatically from the curse of dimension-
ality; in other words, the number of samples needed to estimate
the pdf grows exponentially with the number of variables. An addi-
tional difficulty in Kernel based estimation lies in the choice of Ker-
nel width.

Other methods used to estimate the mutual information are
based on k-nearest neighbor statistics (see e.g. Victor, 2002; Wang
et al., 2009). A nice property of these estimators is that they can be
easily utilized for high dimensional random vectors and no param-
eters need to be predefined or separably tuned for each clustering
problem (other than determining the value of k). There are a num-
ber of non-parametric techniques for the (differential) entropy
estimation of random vectors in Rd which are all variants of the fol-
lowing estimator (Kozachenko and Leonenko, 1987):

Hk ¼
d
n

Xn

i¼1

log �ik þ constðkÞ ð2Þ

where �ik is the Euclidean distance from i-th vector to its k-th near-
est neighbor. The constant in Eq. (2) is:

wðnÞ � wðkÞ þ logðcdÞ

where w(x) is the digamma function (the logarithmic derivative of
the gamma function) and cd is the volume of the d-dimensional unit
ball. The Hk entropy estimator is consistent in the sense that both
the bias and the variance vanish as the sample sizes increase. The
consistency of the 1-NN estimator was proven in (Kozachenko
and Leonenko, 1987) and the consistency of the general k-NN ver-
sion was shown in (Goria et al., 2005).

In the task of dimensionality reduction we need to optimize
I(AX;C) as a function of matrix A. The non-parametric kNN estima-
tors (2) rely on order statistics. This would make the analytical cal-
culation of the gradient of I(AX;C) cumbersome and thus would
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complicate the optimization process. It also leads to a certain lack
of smoothness of the estimator value as a function of the sample
coordinates.

Here we utilize the MeanNN differential entropy estimator
(Faivishevsky and Goldberger, 2009) due to its smoothness with
respect to the coordinates of data points. Also, it was recently
shown (Faivishevsky and Goldberger, 2010) that the MeanNN is
more suitable for clustering than estimators that are based on
kNN. The MeanNN estimator exploits the fact that the kNN estima-
tion is valid for every k and therefore averaging estimators (2) for
all possible values of k itself leads to a new estimator of the differ-
ential entropy:

HmeanðXÞ ¼
1

n� 1

Xn�1

k¼1

HkðXÞ

¼ d
nðn� 1Þ

X
i–l

log kxi � xlk þ const ð3Þ

This estimator computes the entropy based on the pair-wise dis-
tances between all the given data points and thus eliminates the
calculation of nearest neighbors. Applying the estimator to the pro-
jected data yields:

HðAXÞ � HmeanðAXÞ ¼ d
nðn� 1Þ

X
i–l

log kAðxi � xlÞk ð4Þ

and applying this estimator to the intra-cluster entropy of the pro-
jected data yields:

HðAXjC ¼ jÞ � HmeanðAXjC ¼ jÞ

¼ d
njðnj � 1Þ

X
i–ljci¼cl¼j

log kAðxi � xlÞk ð5Þ

Plugging the Hmean estimations (4) and (5) into the MI score func-
tion (1) yields the following form of the quality measure:

SðA;CÞ ¼HmeanðAXÞ �
X

j

nj

n
HmeanðAXjC ¼ jÞ

¼ 1
nðn� 1Þ

X
i–l

logðkAðxi � xlÞk2Þ

�
X

j

1
nðnj � 1Þ

X
i–ljci¼cl¼j

logðkAðxi � xlÞk2Þ ð6Þ

The optimization of the score function (6) is performed iteratively
in an alternating way. Each iteration s includes two parts. First,
for a given dimensionality reduction matrix As�1 we find an optimal
clustering assignment Cs (e.g. applying the sequential greedy
Fig. 1. The cluster structure preservi
optimization NIC algorithm Faivishevsky and Goldberger, 2010) to
the unlabeled data As�1X. Next, we find the optimal dimensionality
reduction matrix As given the assignment Cs. Note that for a fixed
assignment of labels C the score function S(A,C) is a smooth function
of dimensionality reduction matrix A and the analytical expression
for gradient is readily computed.

@SðA;CÞ
@A

¼A
n

1
n�1

X
i–j

ðxi�xlÞðxi�xlÞ>

kAðxi�xlÞk2 �
X

j

1
nj�1

X
i–ljci¼cl¼j

ðxi�xlÞðxi�xlÞ>

kAðxi�xlÞk2

0@ 1A
ð7Þ

For each given clustering C the optimal dimensionality reduction
matrix A may be efficiently found, e.g. by the conjugate gradient
method (Faivishevsky and Goldberger, 2010). It is often computa-
tionally beneficial to put a restriction on a form of the matrix A.
For purposes of the dimensionality reduction we need to find an
optimal subspace. The subspace is characterized by an orthonormal
basis lying in it. Therefore the matrix A may be restricted to have d
orthonormal columns, i.e. to be a d ⁄ D submatrix of a D ⁄ D rotation
matrix W. We may parameterize the rotation matrix W by givens
rotations (see e.g. Peltonen and Kaski, 2005). In this parametrization
a rotation matrix W 2 RD�D is represented by a product of D(D � 1)/
2 plane rotations:

W ¼
YD�1

s¼1

YD

t¼sþ1

Gst ð8Þ

where Gst is a rotation matrix corresponding to a rotation in the st
plane by an angle kst. It is the identity matrix except that its ele-
ments (s,s), (s, t), (t,s), (t, t) form a two-dimensional rotation matrix
by

Gstðs; sÞ Gstðs; tÞ
Gstðt; sÞ Gstðt; tÞ

� �
¼

cosðkstÞ sinðkstÞ
� sinðkstÞ cosðkstÞ

� �
ð9Þ

This way the score function (6) takes the form S(A(k),C). The gradi-
ent of a single rotation matrix Gst with respect to kst is a zero matrix
except for elements (s,s), (s, t), (t,s), (t, t) for which

@

@kst

Gstðs; sÞ Gstðs; tÞ
Gstðt; sÞ Gstðt; tÞ

� �
¼
� sinðkstÞ cosðkstÞ
� cosðkstÞ � sinðkstÞ

� �
ð10Þ

We may then compute the gradient of the score function S(A(k),C)
as

@SðAðkÞ;CÞ
@kst

¼
X
q;r

@S
@A

� �
qr

YD�1

u¼1

YD

v¼uþ1

eGuv

" #
qr

ð11Þ

where eGuv ¼ @
@kuv

Guv if both u = s and v = t, and eGuv ¼ Guv otherwise.
ng projection algorithm (CSPP).
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Fig. 2. Example of applying dimensionality reduction algorithms on a 2D dataset.
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For a fixed clustering Cs the optimal rotation angles ks are found
by a conjugate gradient method. The algorithm, which we dub the
cluster structure preserving projection (CSPP), is summarized in
Fig. 1.
3. Experiments

In this section we concentrate on two types of experiments. First
we conducted experiments on synthetic data. The purpose of these
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Fig. 3. Example of dimensionality reduction of a 3D dataset.
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experiments is to emphasize the ideas behind the proposed method.
Then we proceed with experiments on real world datasets from the
UCI machine learning repository (Frank and Asuncion, 2010) in or-
der to compare the method to other approaches.
3.1. Synthetic data

We begin by a simple motivating example for the proposed CSPP
approach of simultaneous dimensionality reduction and clustering.
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Fig. 2a shows 2D Gaussians with most of the in-cluster variability in
axis y whereas the clusters are naturally separable in axis x. In such a
case the PCA method projects the data in one-dimensional subspace
in the direction of in-cluster variability that eliminates the intrinsic
structure of the original dataset and makes subsequent treatment
practically impossible, see Fig. 2b. Alternatively, we may first apply
clustering on the original data and use the obtained labels for super-
vised dimensionality reduction. Applying a 2-cluster k-means on
the original data shown in Fig. 2a yields a data splitting based on
the y-axis which is just a large variance noise that is uncorrelated
with the clustering structure. Hence, clustering the original data re-
sults in wrong labels that mislead the supervised dimensionality
reduction algorithm. The unsupervised non-linear manifold learn-
ing algorithm LLE also fails to project correctly the data because this
approach can not account for multi cluster structure of the dataset,
see Fig. 2c. The t-SNE algorithm (van der Maaten and Hinton, 2008)
for visualization of high-dimensional data also does not reveal the
correct structure of the data either, see Fig. 2d. On the other hand,
supervised dimensionality reduction methods such as NCA (Gold-
berger et al., 2004) projects the data into another one-dimensional
subspace preserving intrinsic structure, see Fig. 2e. Despite being
unsupervised, the proposed method is able to provide the correct
dimensionality reduction as a supervised method, see Fig. 2f.

The above example shows that the dimensionality reduction
stage based on a variance criterion leads to inferior results com-
pared to a mutual information based approach like CSPP. On the
other hand, one could use a variant of the proposed algorithm with
a variance based method like k-means in the clustering stage of the
algorithm instead of mutual information based NIC clustering.
However, this would lead to worse performance in the cases of
non-convex data arrangements, where the in-cluster data distribu-
tion is far from Gaussian. We generated a synthetic example for
such a case where the data are given as two concentric 3D cylin-
ders, see Fig. 3a. Here the vertical dimension of the data is of less
importance and therefore we perform a dimensionality reduction
from 3D to 2D. A variant of the PCA algorithm followed by a k-
means segmentation fails to identify and to eliminate the non-
informative dimension, see Fig. 3b. The unsupervised LLE method
does not reveal correctly the two cluster structure, Fig. 3c and
the unsupervised visualization technique t-SNE produces less intu-
itive results, Fig. 3d. However both a supervised method, based on
NCA, Fig. 3e and the proposed unsupervised algorithm CSPP, Fig. 3f
correctly perform the dimensionality reduction such that the
remaining 2D representation is easy to perceive as a two cluster
arrangement.

3.2. Datasets from the UCI repository

Next we compared the proposed CSPP method with other tech-
niques on four real world datasets from the UCI machine learning
repository (Frank and Asuncion, 2010). We used the Iris, Segmen-
tation, Yeast and Abalone datasets.1 The Iris dataset contains 3 clas-
ses of 50 instances each, where each class refers to a type of iris
plant. Each instance is described by four features. The segmentation
dataset contains 7 classes with total 2310 instances. Each instance is
presented by 19 features, it corresponds to a 3 � 3 region of one of 7
outdoor images. The Yeast dataset contains 10 classes with total
1462 instances. Each instance is composed of 8 predictive attributes
and defines a localization site. Finally the Abalone dataset is com-
posed of 3 classes with total 4177 instances. Each instance is given
by 8 attributes and predicts the age of abalone from physical
measurements.

The proposed CSPP performs both dimensionality reduction and
clustering therefore a real world numerical experiment should de-
fine settings for both techniques. We reduced each dataset to a 2D
subspace and measured the quality of the resulting clustering. The
performance was measured in terms of the Rand score (Rand,
1971) which is a standard non-parametric measure of clustering
quality. Let C1 and C2 be two clusterings of the same set (not nec-
essarily with the same number of clusters). Then:

Rand ScoreðC1;C2Þ ¼
ndiff þ nsame

npairs

where ndiff is the number of pairs of points that belong to different
clusters in both C1 and C2, nsame is the number of pairs of points that
belong to the same cluster in both C1 and C2 and npairs is the total
number of data pairs. In our case we compute the Rand score be-
tween the clustering obtained by the algorithm and the true clus-
tering formed by the data labels.

We compared several methods for the intrinsic structure explo-
ration of these data sets. First we used PCA dimensionality reduc-
tion followed by the k-means method for the clustering (KM PCA).

http://archive.ics.uci.edu/ml


Table 1
Mean run time (in second), for each method appears in
Fig. 4, applied on the Iris dataset.

Method Run time

KM PCA 0.02
KM Full 0.02
MNN Full 1.13
KM NCA 1.94
KM t-SNE 21.16
NIC NCA 3.06
CSPP 0.23
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We also applied the k-means and NIC methods in the original space
(KM Full and MNN full respectively). In addition we used the
supervised dimensionality reduction by NCA (Goldberger et al.,
2004) followed by k-means and the NIC algorithm followed by
NCA. Finally we applied the t-SNE algorithm (van der Maaten
and Hinton, 2008) followed by k-means. In each run we randomly
chose 90% of original data points. To provide statistics we ran 10
repetitions per each dataset. The results are summarized in
Fig. 4. In all cases the proposed CSPP method resulted in perfor-
mance that was comparable to that of the methods running in
the full original space and t-SNE and the supervised method NCA
and better than that of the other algorithms running in the pro-
jected space. A comparative mean running time (in seconds) over
the Iris dataset is shown in Table 1. Algorithms that show better
performance than CSPP are either supervised (i.e. based on the data
labels) or the running time is much higher.
4. Conclusion

We proposed a new approach to unsupervised manifold learn-
ing that performs both dimensionality reduction and clustering
simultaneously. The method is based on revealing and preserving
the intrinsic structure of the unlabeled data which yields maximal
information about the whole high dimensional set. Improved
performance is demonstrated in clustering application for both
synthetic and real data sets. The strength of our approach is that,
unlike other methods, we assume no explicit structure and no
parametric probabilistic description of the clusters.
Future research may concentrate on nonlinear dimensionality
reduction extensions of the proposed approach. In addition, the
Kernel methods may be applicable for the proposed framework
of simultaneous dimensionality reduction and clustering. Another
possible research direction is modifying current manifold learning
algorithms such as LLE and Isomap such that in addition to learn-
ing the local manifold structure, they will also preserve the more
global cluster structure. In datasets that are organized in separate
clusters this can significantly improve the performance of those
learning algorithms.
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