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1
Introduction

1.1 Motivation

Assume Alice and Bob play chess with each other. Since they live in different countries, they play
over the phone—every evening Alice calls Bob and they communicate the next move. Now assume
the phone line is noisy. While Bob declares his next move “B2 to B4”, Alice hears “D2 to D4”.
Many days later, when Bob declares a victory, Alice rejects his claims: on her board Bob is not
even close to being victorious.

This situation—where two parties interact with each other over a noisy communication
channel—is the topic of this manuscript. As opposed to the standard error-correction setting in
which one side has some information to convey to the other side, here both sides need to convey
information to each other. One could let the parties simply use standard error-correcting codes to
send all their information to the other side in a noise-robust way. Such a naïve approach would
cause the conversation to be very long: the possibility of interacting is crucial for having efficient
conversations. Consider, for instance, the preceding chess game. We can think of each player as hav-
ing a fixed playing strategy that defines, for every position of the board, the next move that should
be played. Compared to the (approximately) one hundred moves an average chess game takes [21],
a description of a player’s complete strategy may be extremely long as it needs to describe its move
for all the (more than) 1040 different board positions [54].

A second naïve approach would be to employ error-correcting codes independently to each
round of the conversation. Such an approach would result in poor performance—it could tolerate
only a very small amount of noise, namely, the noise it takes to corrupt a single message. The ideal
solution is one that tolerates a large amount of noise (e.g., a coding that works even if a constant
fraction of the messages are corrupted), and yet does not increase the communication by too much
(e.g., it multiplies the communication by at most a constant).
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Figure 1.1: An alternating interactive protocol π of length |π| = n rounds between Alice that holds the input x,
and Bob that holds y, where the communication takes place over a noisy channel.

1.2 The setting

In the standard interactive communication setting [83], two parties (Alice and Bob) compute a
function f(x, y) by holding a conversation. Alice is given the input x, Bob is given y, and they
aim to compute f(x, y) by exchanging as few bits as possible. Kushilevitz and Nisan’s book [60]
gives an excellent description of the communication complexity of computing functions within
the interactive setting. In the setting of coding for interactive communication, the channel that
connects the parties may be noisy. The parties’ goal is now to succeed, with high probability, in
computing f(x, y) despite the channel’s noise, while sending as few bits as possible.

An interactive computation is performed via a protocol π, which is a pair of algorithms π =
(πA, πB) run by Alice and Bob, respectively. Each round, the protocol defines the next message to
send, as a function of the party’s input, the round number, and the symbols that party has received
so far (the transcript). For example, in the first round Alice sends πA(x, 1, ∅) ∈ Σ and Bob sends
πB(y, 1, ∅) ∈ Σ, where Σ is the channel’s alphabet. It is possible that only a single party speaks
at each round—for example, Alice at odd rounds and Bob at even rounds. In this case we assume
πA(x, i, ·) = ∅ for even i’s, and πB(x, i, ·) = ∅ for odd i’s.

After a fixed number n of rounds the protocol concludes and outputs a value. Alice’s output is
given by πA(x, n+ 1, transA), and Bob’s, by πB(x, n+ 1, transB), where trans is the transcript seen
by that party. Recall that due to the noisy channel, the parties may receive different symbols than
the ones sent to them.

Let X,Y, Z be some finite sets. We say that π computes f : X×Y → Z if for any inputs (x, y) ∈
X×Y , both parties output f(x, y). We define the length of the protocol to be its round complexity
and denote it by |π| = n. At each round, the parties send a symbol out of the channels’ alphabet Σ.
The communication complexity of a protocol, CC(π), is the number of bits communicated by both
parties; specifically, assuming one symbol is sent at each round, we have CC(π) = n log |Σ|.1

When evaluating a noise-resilient protocol π for some function f , it is convenient to compare
it to the noiseless protocol π0 of the same function. In this manuscript, we will care about coding
schemes that, given a noiseless protocol π0 construct a resilient version π that outputs a valid
transcript of π0 (and, thus, computes f). Our noiseless protocol π0 is always defined over a binary

1Throughout this manuscript, all logarithms are taken to base two.
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alphabet and takes |π0| = n0 rounds. Unless otherwise stated, Alice and Bob talk in π0 in alternating
rounds: Alice sends one bit in odd rounds and Bob sends one bit in even rounds, so that the total
communication complexity of the noiseless protocol is CC(π0) = n0. Note that any protocol can be
converted into a binary alternating form at the cost of increasing the communication by at most
2 log |Σ|. Hence, the preceding format of the noiseless protocol π0 can be considered without loss
of generality as its communication complexity differs by a factor of 2 log |Σ| (this difference does
affect the generality when considering communication-optimized coding schemes). Due to technical
reasons, we will sometimes need π0 to be defined for rounds greater than n0. In this case we can
assume that after round n0, π0 sends zeros indefinitely.

Remark 1.1. In the following we will use the Landau notations to describe how a coding scheme π
behaves with respect to the noiseless protocol π0. In particular, we write O(),Ω(), and so on, to
denote the asymptotic behavior of quantities as n0 →∞.

1.3 Parameters that we care about

We can evaluate the performance of an interactive coding scheme according to several parameters.

• Maximal Noise Rate: The maximal noise rate that the resilient protocol can tolerate.
Usually, the noise rate ε ∈ [0, 1] is measured as the fraction of corrupted symbols out of all the
symbols that were communicated during the protocol. We will be mostly interested in coding
schemes that tolerate a constant fraction of noise (i.e., when ε = O(1)). We also consider the
case where the noise is stochastic (i.e., where each symbol is corrupted independently with
probability ε; see §1.4).

• Code Rate: The rate of the coding scheme π with respect to the noiseless π0, defined by

r = CC(π0)
CC(π) .

The rate indicates how much redundancy was added in order to make the computation noise
resilient. We will be mostly interested in resilient schemes that have a constant rate (positive
rate), in which the communication complexity of the resilient scheme is at most a constant
times more than the complexity of the noiseless computation, CC(π) = O(CC(π0)) = O(n0).
If a scheme does not have a constant rate, that is, when limn0→∞ r = 0, we say the coding
scheme has a vanishing rate.

• Success Probability The probability that both parties output the correct value. The prob-
ability is over the randomness of the protocol (if randomized) and the noise (if randomized).
We aim to obtain coding schemes that succeed with exponentially high probability in the
length of the noiseless protocol, 1− 2−Ω(n0).

• Efficiency: The computational efficiency of the protocol. We aim for protocols for which the
next symbol can be computed in at most polynomial time in n0 (assuming a black-box access
to π0, as the noiseless protocol by itself may be inefficient).
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1.4 Parameters that make a difference

When defining the setting, several variables come into play. Many times, these seemingly meaning-
less tweaks make a substantial difference in the capabilities of coding schemes.

• The Channel. We assume a channel Ch over alphabet Σ is a causal function Ch : Σ → Σ,
where each instantiation of the function may (implicitly) depend on all previous channel
instantiations. The channel is characterized by the following parameters:

– Alphabet size. While the channel is always assumed to have a fixed-size alphabet (which
is independent of the function we compute), the specific size of the alphabet may affect
the noise resilience of the coding scheme. It is common that the alphabet in use is
determined as a function of the noise resilience, and as the resilience approaches the
limit, the alphabet size increases. The most difficult setting is thus when the alphabet
is set to be of size 2, that is, a binary channel.

– Noise (type). In the standard noisy channel, the noise may substitute an input symbol
σ ∈ Σ into any other symbol σ′ ∈ Σ. A different type of noisy channel is the erasure
channel, Ch : Σ → Σ ∪ {⊥}, in which the input symbol is either delivered without any
disturbance or turns into a special erasure mark ⊥ /∈ Σ. In the more general channel
with insertions and deletions, the channel Ch : (Σ∪∅)→ (Σ∪∅) is allowed to completely
remove transmitted symbols (so that the receiver will not be aware a symbol was sent
to it) or inject new symbols (so that a symbol arrives at the receiver without the sender
sending it).

– Noise (power). The power of the noise can be classified into three main categories:
(i) adversarial noise, where the adversarial channel is considered to be all powerful, and
the only restriction on the noise is the total amount of corruptions the channel is allowed
to make. As mentioned before, the corruption budget is usually given as a fraction of
the total communication. That is, an adversarial noise rate of ε means that at most
εn symbols can be corrupted.
(ii) computationally efficient noise, where the adversarial channel is considered to be
computationally limited, in addition to being restricted to corrupting an ε-fraction of
the transmissions.
(iii) random noise, where each symbol is disturbed with some fixed probability, indepen-
dently of previous transmissions, that is, a memoryless channel. The prominent example
is the binary symmetric channel with flipping probability ε < 1/2, denoted BSCε, where
each bit goes through undisturbed with probability 1 − ε or gets flipped with proba-
bility ε, independently per transmission. Note that random noise is a special type of
a computationally bounded noise (yet, there is no limit on the fraction of corrupted
transmissions).

– Feedback. In the case of channels with feedback, we assume the sender instantly learns the
symbol received at the other side via a separate noiseless feedback channel. The feedback
channel is not counted towards the communication complexity nor the corruption budget.
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• Order of Speaking. The order of speaking, both in the noiseless protocol π0 and in the
simulation π, may have a great effect on the properties of the coding scheme—specifically, its
rate and noise resilience. We distinguish the case of fixed order of speaking in which the party
that sends a symbol at the i-th round is predetermined and independent of the inputs of the
protocol and the observed noise, and the case of adaptive order of speaking, where each party
independently determines whether to send a symbol at the next round according to its input
and received transcript.

• Shared Randomness. Whether or not the parties begin the computation with a random
string unknown to the adversarial channel may have an effect either on the maximal obtainable
rate of the coding scheme or on its noise resilience. In a sense, having a shared randomness
has a certain effect of converting adversarial noise into a random one [64]. Practically, the
parties can use shared randomness to better detect corruptions, reducing bit flips into erasure
marks (with high probability).

• Number of Parties. The above interactive setting can be augmented to include the multi-
party case, where m parties {pi} hold a private input {xi}, respectively, and wish to compute
some function f(x1, . . . , xm) while communicating over a noisy network. The network’s topol-
ogy has an important effect on the coding scheme’s properties.

1.5 Organization

We begin in Section 2 by discussing coding for interactive communication in the presence of
adversarial noise. We discuss the maximal noise that can be tolerated and show a scheme with an
optimal resilience. To that end we discuss two main techniques for coding (tree codes and rewind-
if-error) that will be used throughout the manuscript. In Section 3 we discuss (computationally)
efficient constructions of coding schemes. We begin with the random noise setting and show several
relaxations to tree codes that yield an efficient coding scheme. We then turn to the adversarial
noise setting and show that optimal noise resilience can be achieved by an efficient coding scheme,
using list-decoding techniques.

An advanced family of coding schemes adaptively change their structure (i.e., their length and
the order in which the parties speak) according to the observed noise. In Section 4 we discuss two
models for adaptive protocols and show that a better noise resilience can be achieved in each of these
more general models. The rate of coding schemes is discussed in Section 5. In particular, we show
coding schemes in the random noise setting, whose rate approaches one as the noise probability
approaches zero. We also discuss the maximal possible rate, that is, the capacity of interactive
communication over memoryless noisy channels.

Section 6 explores other types of noisy channels. In particular, we survey coding schemes for
channels that allow a noiseless feedback, erasure channels, channels with insertions and deletions,
and quantum channels. In Section 7 we extend the discussion to the multiparty case and discuss
how to code distributed protocols performed over a noisy network, both in the random and the
adversarial noise settings. When more than two parties perform a distributed computation, it is
important to define whether messages pass in a synchronous or an asynchronous way. We survey
coding schemes in both message-passing models and compare their properties. Applications of
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coding for interactive communications, and related topics that build on the techniques of interactive
coding are presented in Section 8.

Finally, in Appendix B we provide several tables that summarize the coding schemes discussed
in this manuscript and compare their properties.
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2
Noise Resilience

In this chapter we discuss the noise resilience of interactive coding schemes. We describe two
simulation paradigms. The first, used, for example, in [76, 14, 19, 15, 17], relies on a special type of
online coding known as a tree code [75, 76]. The second paradigm, rewind-if-error [74, 59, 51, 38, 27],
is based on performing the original noiseless protocol until an error is detected and then rewinding
to an earlier point, hopefully removing the incorrect simulation suffix.

2.1 The tree codes paradigm

Recall the chess game described in §1.1. When the noise level is large enough to corrupt even a
single message (“B2 to B4” becoming “D2 to D4”), the entire simulation fails, since the parties’
view becomes inconsistent. However, assume we have a machinery that allows the parties eventually
to correctly decode any message that was sent to them. That is, as time goes by, earlier messages
become more and more likely to be decoded correctly. In this case, earlier errors will eventually be
detected, and subsequently the course of the simulation can be corrected.

Several properties are needed from such a machinery:

1. Being online: The encoding of each transmission can depend only on previous transmissions
(but not on future ones).

2. Distance: The encodings of two different sequences of transmissions need to have a large
distance (as a function of the sequence length), regardless of previous transmissions, location
in the protocol, and so on.

The first property is critical for allowing the parties to use the code in an interactive setting: unlike
the standard model, here the parties generate one transmission at a time, and need to communicate
a transmission before generating the next one. The second property allows a party to eventually
decode a transmission correctly, as long as the noise is low enough: the encodings of the correct
sequence (sent by the other side) and the sequence the receiving side decodes are either the same, or
they have a large distance from each other. Eventually, as time goes by, so does their distance, and
if the noise is not too high, then the receiving side will be able to overcome it and correctly decode

7



p2p1 `

Figure 2.1: The labels of two diverging paths of the same length in a tree code satisfy ∆(label(p1), label(p2)) ≥ α`.

a prefix of the sequence. At a given time, it may be that the noise at the suffix of the sequence is
too high to decode the entire sequence correctly, but again, as time goes by, the same reasoning
applies, and a longer correct prefix can be decoded.

Achieving the above properties is done via a tree code.

2.1.1 Tree codes: Definiton

Before describing the notion of tree codes, let us fix some notations. Let T be a rooted d-ary tree.
Each node has d children ordered in a fixed way. Let [d] denote the set {1, 2, . . . , d}. We identify a
node, with the rooted path leading to it, in an inductive manner. The root is identified with the
empty path. The path (e1, . . . , en), where ei ∈ [d], is identified with the en-th child of the node at
the end of the rooted path (e1, . . . , en−1).

Definition 2.1 (tree code). A d-ary tree code over an alphabet Σ with distance parameter α is an
infinite rooted d-ary tree in which each edge e is marked with a label we ∈ Σ; for any two rooted
paths p1 = (e1, . . . , en) and p2 = (e′1, . . . , e′n) of the same length, that differ starting from the j-th
level (i.e., ei = e′i for all i < j, but ej 6= e′j), it holds that

∆ (label(p1), label(p2)) ≥ α(n− j + 1).

Here, label(p) denotes the concatenation of the labels along the path p, and ∆(x, y) is the Hamming
distance between strings x and y of the same length, that is, the number of indices i for which xi 6= yi.

The definition suggests that the labels of any two paths diverging from the same node have
a relative distance of at least α. That is, the Hamming distance of the labels of such paths is
proportional to their length beyond the divergence point. See Figure 2.1.

In the following §2.1.2 we formally define tree codes, prove their existence and some of their
properties. A reader that is mainly interested in an overview of coding scheme may consider skipping
the detailed proofs of the next subsection and continue with §2.1.3 where we describe interactive
coding schemes based on tree codes.

2.1.2 Properties of Tree Codes

In this section we extensively discuss the notion of tree codes: we show that tree codes (of unbounded
depth) exist, prove certain properties of tree codes, and show equivalent definitions for tree codes.

8



Tree codes: definition via suffix distance

An equivalent and very useful definition for tree codes states that a tree code is one for which the
labels of any two different paths have a large suffix distance.

Definition 2.2 (suffix distance). For any two strings x, y ∈ Σn, the relative suffix distance is defined
as

∆sfx(x, y) = nmax
i=1

∆(xi · · ·xn, yi · · · yn)
n− i+ 1 .

We show that the above two tree code definitions are equivalent.

Lemma 2.1. A tree T is a tree code with distance α if and only if for any two different rooted
paths p1, p2 of the same length in T , ∆sfx(label(p1), label(p2)) ≥ α.

Proof. First, we assume that T is a tree code and show that the suffix distance condition holds.
Assume two paths that diverge at level 1 ≤ j ≤ n; that is, p1 = (e1, . . . , ej−1, ej , . . . , en) and
p2 = (e1, . . . , ej−1, e

′
j , . . . , e

′
n) with ej 6= e′j . Let label(p1) = l11 · · · l1n and label(p2) = l21 · · · l2n. Then,

∆sfx(label(p1), label(p2)) ≥ ∆sfx(l1j · · · l1n, l2j · · · l2n)

≥
∆(l1j · · · l1n, l2j · · · l2n)

n− j + 1
≥ α,

where the last transition follows from the definition of T as a tree code with distance α.
As for the other direction, now assume that the suffix distance condition holds for any two

different rooted paths in the tree. Let p1, p2 be rooted paths as before. We will show that
∆(label(p1), label(p2)) ≥ α(n− j + 1). For i ≥ 1, define

δi = ∆(l11 · · · l1j−1+i, l
2
1 · · · l2j−1+i) and si = ∆sfx(l11 · · · l1j−1+i, l

2
1 · · · l2j−1+i).

Additionally, define δ0 = 0.
We show, by induction on i, that δi ≥ αi, which will prove the claim. Note that the claim

trivially holds for i = 0. For i = 1, it is clear that δ1 = s1 ≥ α. For i > 1, assume that the
hypothesis δi′ ≥ αi′ holds for any 0 ≤ i′ < i. Let k ∈ [1, i] be the offset (beyond level j − 1) that
maximizes si, that is, for which ∆(l1j−1+k · · · l1j−1+i, l

2
j−1+k · · · l2j−1+i) ≥ α(i−k+ 1). We can use the

induction hypothesis on levels 1, . . . , j − 1 + (k− 1), i.e., with i′ = k− 1. The induction hypothesis
in this case implies that ∆(l11 · · · l1j−1+(k−1), l

2
1 · · · l2j−1+(k−1)) ≥ α(k − 1). It follows that

δi = ∆(l11 · · · l1j−1+(k−1), l
2
1 · · · l2j−1+(k−1)) + ∆(l1j−1+k · · · l1j−1+i, l

2
j−1+k · · · l2j−1+i)

≥ α(k − 1) + α(i− k + 1)
≥ α · i.

Tree codes: existence

Schulman [76] used a simple probabilistic argument to show that for any distance parameter α < 1,
and any fixed degree of the tree, one can find an infinite tree code over an alphabet whose size
depends on the degree of the tree and on α.
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Theorem 2.2 (existence of tree codes [75, 76]). For any α < 1 there exists a d-ary tree code of
infinite depth and distance α over alphabet of size |Σ| = (cd)1/(1−α), for some constant c < 6.

Proof. Assume a finite field F whose size we determine soon; F serves as the alphabet of the tree
code. Let g = g1g2g3 · · · be an infinite sequence with gi ∈ F. The string g is used to generate the
labels of the tree in the following way: the edge at the end of the path p = (e1, e2, . . . , en) is labeled
by the label wp given by

wp =
n∑
i=1

eign−i+1. (2.1)

Recall that ei ∈ [d] is the edge going to the ei-th child of the node at the end of the path
(e1, . . . , ei−1).

Next we pick g in a random way and show that there is positive probability of choosing g

so that the tree code conditions are satisfied indefinitely. Assume we pick each gi uniformly and
independently from F. Assume two different paths p1 = (e1, . . . , en) and p2 = (e′1, . . . , e′n) of the
same length that differ starting from the j-th level. Note that label(p1) and label(p2) are identical
until the (j− 1)-th index, and differ at the j-th index. After that point, these strings differ in their
k-th index, k ≥ j, if and only if

k∑
i=j

eigk−i+1 6=
k∑
i=j

e′igk−i+1,

or, alternatively, if
k∑
i=j

(ei − e′i)gk−i+1 6= 0. (2.2)

Let Xk be the indicator that obtains the value 1 when the k-th label of p1 differs from the k-th label
of p2. We know that Xk = 0 for all k < j. For k ≥ j, recall that we pick each gi uniformly from F.
Since ej 6= e′j , it is easy to see that E[Xk] = 1− 1/|F|, since by fixing g1, . . . , gk−j , there is exactly
one value of gk−j+1 that makes the right-hand side of Equation 2.2 equal to 0. This also shows
that Xi and Xi′ are independent for any i 6= i′ as long as both are at least j. Finally, observe that
Xj , . . . , Xn depend only on g1, . . . , gn−j+1, that is, only on the prefix of g whose length n− j + 1 is
the length of the divergent suffixes of p1 and p2 and on the difference of the labels of the suffixes,
that is, on (ej − e′j), . . . , (en − e′n) but not on the location of these parts within the tree nor on the
specific value of the labels.

A specific g is called bad for some (p1, p2) of length n that differ starting at their j-th edge if∑n
i=j Xi < α(n− j + 1). We can bound the probability for g to be bad for a specific (p1, p2) using

Chernoff’s bound by the following:

Pr[g is bad for (p1, p2)] ≤ Pr

 n∑
i=j

Xi ≤ α(n− j + 1)

 ≤ e−(n−j+1)D(α ‖ 1−1/|F|),

where D(x‖y) , x ln x
y +(1−x) ln 1−x

1−y and e is the base of the natural logarithm (not to be confused
with ei, which is the i-th edge).

Next, we union bound over all the different pairs of paths of depth n. As mentioned before, the
probability depends on the difference of the labels of the divergent suffixes (of length n− j + 1) of
p1 and p2, and there are at most dn−j+1 different values the sequence (ej − e′j), . . . , (en − e′n) can
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take. Thus the probability that some generator g is bad for some (p1, p2) of any depth, is bounded
by

∞∑
n−j=0

dn−j+1 · e−(n−j+1)D(α ‖ 1−1/|F|) ≤
∞∑

n−j=0
e

(n−j+1)
(
ln d−α ln α

1−1/|F|−(1−α) ln 1−α
1/|F|

)
which is strictly less than one, given that |F| > (ed)1/(1−α). Since the probability of g being bad is
strictly less than one, there is a strictly positive probability for a good (infinite) generator g, which
proves its existence. Since finite fields assume only sizes that are powers of primes, it is possible to
find a finite field of size at most (2ed)1/(1−α), which completes the proof.

Although we know tree codes exist, we don’t know any explicit construction for tree codes other
than exhaustive search; in particular, no efficient construction is known to date. Braverman [14]
showed, for any ε > 0, how to construct tree codes of depth n and distance up to approximately 1/10
in time 2O(nε). Moore and Schulman [66] gave an efficient construction of a code, that satisfies the
tree code condition if a certain exponential sum assumption holds. Pudlák [71] drew a connection
between certain types of linear tree codes and certain triangular matrices. Several relaxations of tree
codes can be constructed efficiently [77, 70, 14, 42]; we discuss these relaxations in §3.1 and §3.2.

Tree codes: encoding and decoding

A tree code T is used to encode messages, symbol by symbol, in an online fashion. A d-ary tree
code T implies an encoding

TCencT (m) = w1w2 · · ·wn
where wi is the i-th label along the rooted path defined by the message m = m1 · · ·mn, where
mi ∈ [d]. Note that the tree code encoding is online (i.e., the code is a prefix code): the encoding
of m1 · · ·mi depends only on m1 · · ·mi and is independent of any mj with j > i. Indeed, for any
message m and symbol σ ∈ [d], it holds that

TCencT (mσ) = TCencT (m) ◦ wσ,

where wσ is the label at the end of the rooted path mσ. This “online” property allows the usage of
tree codes in interactive communication: recall that during an interactive protocol, only at round i
does the party get the i-th symbol to communicate. By that time it has already communicated the
symbols TCenc(m1 · · ·mi−1), and in order to extend its message to m1 · · ·mi, the party needs to
communicate only a single additional symbol. When the tree code in use is clear from the context,
we will omit the subscript T .

Decoding a received codeword r ∈ Σn using the tree code T amounts to returning the message
m ∈ [d]n whose encoding minimizes the Hamming distance to the received string,

TCdecT (r) = argmin
m∈[d]n

∆(TCencT (m), r).

We now show that as long as the suffix distance between a received and sent words is below
half the distance of the tree, then the tree succeeds in decoding the entire sent word.

Lemma 2.3. Assume T is a tree code with distance α over alphabet Σ. For any r ∈ Σn, such that

∆sfx(r,TCencT (m)) < α

2 ,

it holds that TCdecT (r) = m.
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Proof. Assume toward contradiction that TCdecT (r) = m′ such that m′ differs from m starting
at the j-th index. Let w = TCencT (m) and w′ = TCencT (m′). By the definition of tree codes, we
know that

∆(wj · · ·wn, w′j · · ·w′n) ≥ α(n− j + 1). (2.3)

On the other hand, the lemma guarantees us that ∆sfx(r,TCencT (m)) < α/2; thus
∆(wj · · ·wn, rj · · · rn) < α(n − j + 1)/2. Yet TCdecT (r) = m′; thus w′ minimizes the hamming
distance to r, and since w and w′ are the same up to the j-th index, we have that

∆(w′j · · ·w′n, rj · · · rn) ≤ ∆(wj · · ·wn, rj · · · rn) < α(n− j + 1)
2 .

This, along with a triangle inequality, implies that ∆(wj · · ·wn, w′j · · ·w′n) < α(n − j + 1), contra-
dicting our assumption in Equation 2.3.

A simple converse follows immediately from the definition of tree codes,

Lemma 2.4. Assume T is a d-ary tree code with distance α, over alphabet Σ. Let m ∈ [d]n be
some message, and let s = TCencT (m) be its encoding using the tree code T . For any r ∈ Σn such
that TCdecT (r) differs from m starting at the j-th index, it holds that

∆(sj · · · sn, rj · · · rn) ≥ α(n− j + 1)
2 .

2.1.3 Interactive coding via tree codes

We now describe a coding scheme by Braverman and Rao [18] that has an optimal noise resilience
while maintaining a constant rate. Specifically, for any ε > 0, it correctly computes the transcript
of π0 as long as the fraction of errors is at most 1/4− ε. The scheme builds on a previous scheme
by Schulman [75, 76] that initially used tree codes (along with a rewind-if-error technique) in order
to perform interactive communication over noisy channels.

We assume π0 is an alternating binary protocol (recall that any protocol can be turned into
an alternating binary protocol by increasing its communication by a factor of at most 2). We
can visualize the noiseless protocol as the protocol tree T0—a binary tree in which Alice owns the
odd levels and Bob, the even levels. For any input x, the protocol π0 defines a set Ex of edges
that correspond to possible replies by Alice (and, respectively, Ey for edges owned by Bob, for
the input y). For any input (x, y), the edges of Ex ∪ Ey define a unique rooted path P0, which
corresponds to the correct transcript of π0(x, y). See Figure 2.2. The goal of the coding scheme
is to reconstruct P0 in the noisy setting. The task of finding P0 when Alice is given Ex and Bob
is given Ey is sometimes called the pointer chasing problem or the pointer jumping game. We
emphasize that a protocol that solves the pointer chasing game for any input assuming a noisy
communication is, in fact, a coding scheme that works for any π0; that is, the pointer chasing
problem is a complete problem for interactive coding.

The simulation goes as follows.1 At each round, both parties send one edge from Ex or Ey, that
corresponds to the next edge of P0 that they own and haven’t communicated in previous rounds.

1Here and throughout this manuscript, we always describe a coding scheme from Alice’s point of view. The protocol
for Bob is usually symmetric.
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Figure 2.2: A tree T0 illustrating the correct path P0 (bold edges) taken by Alice and Bob for the input (x, y). Edges
with arrows in odd levels belong to Ex, and edges with arrows at even levels belong to Ey.

However, the noise might prevent them from learning the edges sent by the other side, so they do
not learn the correct prefix of P0, and send some edge that lies on a different path.

More formally, at each round, Alice maintains a set SA of all the edges she has sent to Bob
so far. At each round Alice decodes all the incoming messages from Bob and generates a (partial)
guess S̃B of the set of edges SB Bob has sent so far. This guessed set may include (some of the) edges
of SB, and possibly other edges added by the noise. Whenever Ex ∪ S̃B contains a unique rooted
path, Alice communicates the (unique) edge of Ex on that path that wasn’t already communicated
in previous rounds. If there is no unique path or Alice has no new edge to send, she sends some
default symbol ⊥.

Alice and Bob do not send edges in the clear, but rather they encode them using a tree code.
Such an encoding allows them to (eventually) reconstruct the correct edges sent by the other side,
despite the noise. The key point here is that the parties never send incorrect information: even if
Alice guesses a wrong S̃B (due to noise), she always sends an edge that belongs to Ex. It can only
be that the edge Alice sends is not on P0 and thus it may be useless for Bob and for the simulation.
Yet, as time goes by, the tree code guarantees that Bob correctly decodes a longer and longer prefix
of the sequence of edges sent by Alice, and since this sequence always contains edges in Ex, then
Bob eventually will be able to decode the correct prefix of P0 and send his edge that continues that
prefix.

Note that the message of Alice is of length O(logn) bits. Indeed, to extend a path, Alice needs
to indicate only how to proceed from the deepest edge she owns in that path, that is, from the edge
in SA that appears at most two levels above the new edge to send. Since that edge was already
communicated, say in the i-th transmission, Alice can communicate the new edge by sending the
pointer i and a path of length at most 2 descending from her i-th transmitted edge. Therefore, to
support n rounds, we obtain the message spaceM = [n]×({0, 1}∪{0, 1}2) along with the symbol ⊥.
The length of each message is thus logarithmic in the length of the protocol, but with a simple
encoding it can become constant. The key idea is that most of the messages point to a very recent
edge, and only a few point to edges that were sent far away in the history. Then, if we encode each
message using a relative pointer (i.e., the message 1 denotes the previously sent edge, instead of
the first edge; the message i denotes the edge sent i transmissions ago rather than the i-th edge,
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etc.), then the expected value of the pointer is a constant. If we encode each message m ∈ M as
a delimited binary string (e.g., over the alphabet {0, 1, sep}), then most of the messages will be
very short, and only a few will be of logarithmic length. Over the entire protocol, the amortized
length of these strings is a constant. With the above encoding, each symbol comes from a ternary
alphabet {0, 1, sep}, and we can use a ternary tree code to encode each symbol.

Since converting the large-alphabet (with O(logn) bit symbols) into a constant size one costs
only a constant in the rate of the scheme, we continue the analysis using the large alphabet, and
show that for any noise rate 1/4− ε, running the simulation for n = Oε(n0) rounds guarantees the
successful simulation of the noiseless π0. This yields the following theorem.

Theorem 2.5 ([19]). For any ε > 0, there exists an interactive coding scheme that simulates any
protocol π0 in Oε(n0) rounds, uses a constant-size alphabet, and is resilient to a fraction 1/4 − ε
corrupted symbols.

The simulation protocol (using polynomial-size alphabet) is sketched in Algorithm 1. The de-
scription is given for Alice; Bob’s protocol is symmetric.

Algorithm 1 The Braverman-Rao simulation [18]
Input: a protocol π0 of length n0 = |π0| and an input x; a noise-resilience parameter 1/4− ε.
Let T be a d-ary tree code with distance α = 1− ε, depth n = n0/ε, and d = O(n).
Let Ex be the set of edges in T0 that correspond to Alice’s possible replies, assuming she holds the
input x.

1: recv← ∅; SA ← ∅
2: for i = 1 to n = n0/ε do
3: S̃B ← TCdecT (recv) . Interpret each symbol as an edge

. (discard invalid/inconsistent edges)
4: if Ex ∪ S̃B has a unique rooted path P then
5: ei ← the edge of Ex ∩ P with the lowest depth that is not in SA
6: SA ← ei
7: else
8: ei ← ⊥
9: send the last symbol of TCencT (e1 · · · ei)

10: receive a symbol r from Bob
11: recv← recv ◦ r
12: output the unique rooted path (of length n0) defined by Ex ∪ S̃B

Before analyzing Algorithm 1 we give the following technical lemma showing that if the noise is
bounded, there are many rounds in which the suffix distance between a sent and received codeword
is small. By Lemma 2.3 this implies that at each such round, the entire word that was sent up to
that round is correctly decoded. Formally, we have the following lemma.

Lemma 2.6. For any r, s ∈ Σn, if ∆(r, s) = βn, then there exists a set of indices I ⊆ [n] of size
|I| ≥ (1− β/α)n such that for any i ∈ I,

∆sfx(r1 · · · ri, s1 · · · si) < α.

Proof. Consider the following algorithm that constructs I. We begin with I = ∅ and set i = n. If
∆sfx(r1 · · · ri, s1 · · · si) < α, add i to I and set i ← i − 1. Otherwise, find the maximal j < i such
that ∆sfx(r1 · · · rj , s1 · · · sj) < α, set i← j. Recurse on inputs r1 · · · ri and s1 · · · si.
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Note that for each iteration in which we find j and disregard the indices [j + 1, i], it holds that
∆(rj+1 · · · ri, sj+1 · · · si) ≥ α(i − j). Yet the maximal distance is bounded; thus summing over all
the n− |I| indices we remove, their accumulated distance cannot surpass βn. Therefore,

α(n− |I|) ≤ βn,

which completes the proof.

Proof. (Theorem 2.5) Algorithm 1 succeeds due the following reasoning. Let sA, sB be the n-
symbols Alice and Bob, respectively, send during the protocol and let rA and rB be the n symbols
they receive. Also, let us denote the fraction of noise Alice sees by βA = ∆(sB ,rA)

n and, similarly,
denote the noise Bob sees by βB = ∆(sA,rB)

n .
Since the total noise is bounded by 1/4− ε, then

∆(sA, rB) + ∆(sB, rA)
2n = βA + βB

2 ≤ 1
4 − ε.

Recall that the users use a tree code with distance α = 1 − ε. Using Lemma 2.6, we know that
for Alice there will be |IA| ≥ (1− 2βA

1−ε )n iterations i in which ∆sfx(rA[1..i], sB[1..i]) < α/2, and for
Bob, |IB| ≥ (1− 2βB

1−ε )n iterations i’s in which ∆sfx(rB[1..i], sA[1..i]) < α/2. In each of these rounds,
Lemma 2.3 tells us that the parties correctly decode the entire message sent to him by that round.
It holds that |IA ∩ IB| ≥ εn:

|IA|+ |IB| =
(

2− 2βA + 2βB
1− ε

)
n

≥ 2n− 1− 4ε
1− ε n

≥ 2n− (1− 3ε)n
≥ n(1 + 3ε).

Now, note that as long as Alice correctly decodes a message that Bob sent, she can extend the
(correct!) joint path by another edge. Then, the next time Bob decodes the correct message from
Alice, he will be able to see that (correct!) path and extend it by another edge. Since |IA ∩ IB| >
εn = n0, at each such iteration the correct path is extended by at least one edge; thus we are
guaranteed that by round n, each of the parties has sent all its edges on the correct path.

The last part is to establish that the parties, at round n, decode long-enough prefixes of the sent
message to allow them to decode the correct path. We stress that as long as a prefix that contains
the entire path is decoded, all subsequent (possibly incorrect) edges will be discarded at line 3 of
the algorithm.

Let i be the first round for which sA[1..i]∪sB[1..i] contains the entire correct path. As mentioned
earlier, if at round n Alice decodes a word m such that m[1..i] = sB[1..i], then she outputs the
correct value. Due to the properties of the tree code (Lemma 2.4), in order for Alice to decode a
shorter prefix of sB, it must hold that ∆(rA[i..n], sB[i..n]) ≥ α(n− i+ 1)/2.

However, we note that in every round where the parties did not advance their path, there must
have been enough noise to prevent them from decoding the correct path so far. In other words, if i
is large, there must have been many errors before round i. Specifically, we have the following.
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Lemma 2.7. For i defined as above,

∆
(
sB[1..(i− 1)], rA[1..(i− 1)]

)
+ ∆

(
sA[1..(i− 1)], rB[1..(i− 1)]

)
>
α

2

(
i− 1− n0

2

)
.

Proof. Denote

β′A =
∆
(
sB[1..(i− 1)], rA[1..(i− 1)]

)
i− 1 , β′B =

∆
(
sA[1..(i− 1)], rB[1..(i− 1)]

)
i− 1

and assume without loss of generality that β′A ≥ β′B. By the definition of the quantity i, it holds
that up to round i − 1 there were less than n0/2 = εn/2 rounds where Alice extends the correct
path by one edge (due to our assumption, Alice is the party that stalls more). Lemma 2.6 now
suggests that (1− 2β′A

α )(i− 1) < εn/2, hence β′A > α
2 (1− εn

2(i−1)). This implies that the number of
corruptions that affect Alice’s transmissions is at least β′A(i− 1) > α

2 (i− 1− εn
2 ).

Therefore, the corruption budget left for rounds [i, n] is bounded by

2n
(1

4 − ε
)
− α

2

(
i− 1− εn

2

)
= n

(1− ε
2 − 3

2ε
)
− α

2 (i− 1) + αεn

4
<
αn

2 −
α

2 (i− 1)

= α(n− i+ 1)
2 ,

and is too small to prevent Alice from correctly decoding a prefix of length i of sB. Hence, Alice
outputs the correct value. A similar argument holds for Bob.

Remark 2.1. Algorithm 1 assumes a channel with polynomial alphabet size but that can be reduced
to alphabet of size Oε(1), as mentioned before, by encoding each edge using a variable-length
encoding over the alphabet {0, 1, sep}. Each symbol is then encoded via a ternary tree code with
distance α, and alphabet of size 3O(1/(1−α)).

We can furthermore reduce the alphabet size and obtain an equivalent scheme that communi-
cates bits (i.e., uses a binary alphabet). This is done by using a relaxed notion of tree code in which
each label is a binary string. Such tree codes are shown to exist for any distance parameter α < 1/2.
The maximal noise resilience obtained by this approach is 1/8− ε [19]. It is still an open question
whether this resilience is optimal or not, as the best upper bound for the binary case [27] is 1/6.
See Theorem 6.3.

2.2 The rewind-if-error paradigm

The other main paradigm for performing resilient interactive communication is the rewind-if-error
paradigm. The main idea here is very simple: the parties run the protocol π0 for k rounds, after
which they transfer some information in order to verify whether or not errors have occurred in the
computation. If there is no indication of errors, the parties continue to simulate the next part of π0.
If, on the other hand, the parties believe there were errors, they simply rewind π0 by k′ rounds,
removing its possibly incorrect suffix, and repeat. The main issue of this paradigm is how to check
whether errors have happened or not and how to (simultaneously) agree whether to rewind or not
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Rewind-if-error coding paradigm:

1. Run π0 for k steps

2. Check whether the other side agrees on the simulated transcript so far.

(a) If the other side seems to be synchronized: repeat (next k steps of π0).
(b) If there is an apparent mismatch: rewind k′ rounds, and repeat.

Figure 2.3: The rewind-if-error paradigm

or, alternatively, how to regain synchronization when one party decides to rewind while the other
does not. The outline of this paradigm is described in Figure 2.3

In order to verify whether the parties agree on the simulated transcript, the most common way
is to exchange hashes of the simulated transcript. Specifically, assume the family of Hash functions
given by Theorem 2.8.

Theorem 2.8 ([67, 3]). For any k ∈ N, there exists a family of hash functions Hk = {hs : {0, 1}2k →
{0, 1}q·k}, where |s| = q · k for some constant q, such that for any two distinct x, y ∈ {0, 1}2k it
holds that

Pr
s∈U{0,1}qk

[hs(x) = hs(y)] ≤ 2−k.

Furthermore, hs ← Hk can be sampled efficiently, and hs(·) can be computed efficiently (in 2k).

If Alice holds a value x and Bob holds y, they can check whether they hold the same value
(with high probability) by exchanging hashes: Alice samples s and sends Bob s, hs(x). Bob then
computes hs(y) and compares it to the value he received from Alice. If x = y, then it is always
the case that h(x) = h(y), so Bob learns they have the same value. However, if x 6= y, then Bob
learns their values are different with probability 1 − 2−k. This consistency check will be used by
the coding scheme to identify errors that may have happened and cause a rewind as necessary.

To illustrate the ideas of the rewind-if-error paradigm we describe a very simple coding scheme
for a slightly nonstandard π0. We assume that π0 takes n0 alternating rounds, in each of which a
symbol of length logn0 bits is sent; similarly, the coding scheme uses a large alphabet (a similar
scheme first appeared in [51]). We show that for any ε > 0, the coding scheme described in Algo-
rithm 2 is resilient to noise rates of up to 1/8− ε and has a constant rate (given the nonstandard
definition of π0). Despite the nonstandard model and the fact this scheme does not obtain the
optimal noise resilience, it is instrumental in conveying the ideas of the rewind-if-error paradigm
that will be used extensively later.

Theorem 2.9. Algorithm 2 has a constant rate.

Proof. We assume that the entire information that is sent during a single iteration is considered as
a single symbol of the alphabet. This information contains one symbol of π0, a seed s, the length
of the transcript simulated so far, and a hash value. The entire simulation sends 2n symbols—2
symbols in each iteration, one in each direction. Each sumbol takes O(logn0) bits. Recall that π0
communicates n0 symbols, where each takes logn0 bits. Thus the rate of the coding scheme is given

17



Algorithm 2 A simplified rewind-if-error coding scheme with polynomial-size alphabet
Input: a protocol π0 of length n0 defined over symbols of size logn0 bits and an input x; a noise-resilience
parameter 1/8− ε.

Let H = {hs : {0, 1}2n0 → {0, 1}O(logn0)} be a hash function family given by Theorem 2.8. Note that
the required seed size is |s| = O(logn0).

1: T ← ∅
2: for i = 1 to n = n0/8ε do
3: sample s and send σ = (s, |T |, hs(T ))
4: receive σ̃ = (s̃, l̃, h̃)
5: run π0 for a single round given the past T (send/receive one symbol); Let T ′ be the symbol sent or

received
6: if |T | = l̃ and hs̃(T ) = h̃ then
7: T ← T ◦ T ′
8: else
9: if |T | ≥ l̃, delete 1 symbol from the suffix of T

10: output T (a prefix of length n0)

by
n0 · logn0

2n ·O(logn0) = n0
2(n0/8ε) ·O(1) = Oε(1).

Theorem 2.10. Algorithm 2 is resilient to a fraction 1/8 − ε of corruptions, with probability 1 −
2−Ω(n logn).

Proof. Again, recall e assume the entire information that is sent during a single iteration is con-
sidered as a single symbol of the alphabet. This information contains one symbol of π0, a seed s,
the length of the transcript simulated so far, and a hash value. Note that each of the preceding
quantities takes O(logn0) bits to describe. Therefore, each iteration can be considered to be sending
a single symbol of alphabet of size 2O(logn0) = poly(n0) by each party.

Consider the state at the end of iteration i, and consider the transcripts both parties hold, say,
TA(i) and TB(i). Compared to T0, the transcript of π0, the partial transcripts the parties hold may
be correct until some point and different from that point an on.

Formally, for any iteration i ∈ [n], we define a potential function ϕ(i): let m(i) be the maximal
point where both TA(i), TB(i) equal T0 (measured in symbols of size logn0 bits, as sent by π0).
Then,

ϕ(i) = 3m(i)− |TA(i)| − |TB(i)|,

that is, the length (in blocks) of the “correct” prefix minus the incorrect suffixes. Our goal is to
show that, at the end of the computation, the potential is large enough. Specifically, if ϕ(n) > n0,
it means that the correct prefix of TA and TB at the end of the computation is at least of length
n0 symbols, which implies the correct output.

Before analyzing the potential, let us first define the bad event of a hash collision, defined as
the case where h(x) = h(y) while x 6= y. Particularly, a hash collision means that even though the
parties hold different transcripts, their consistency test fails to indicate this discrepancy. However,
we can choose our hash function family H to be such that the probability of hash collision is
2−O(logn0) � 1/n2. Throughout the protocol the parties perform at most 2n hash comparisons;
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thus a union bound guarantees that the expected number of hash collisions throughout the protocol
is negligible, � 1/n, and we can assume with high probability that no hash collision occurs during
the protocol.

We now analyze the behavior of the potential function throughout the protocol. Assume that
no errors happen during some iteration and there is no hash collision during this iteration. Then,
the potential increases by one, ϕ(i) ≥ ϕ(i − 1) + 1: either both parties are synchronized and they
simulate the next step of π0 (thus m(i) increases by 1, as well as |TA(i)| = |TB(i)|, and the potential
increases by 3 − 2 = 1) or they realize they are not synchronized, in this case at least one of the
parties removes one incorrect symbol from the suffix of its transcript, while m(i) does not change.
The other party may either remove k bits or keep its recorded transcript unchanged, but it is never
the case that the recorded transcript extends.

On the other hand, no matter what error happens or if a hash collision happens or not, the
potential can decrease by at most 3, ϕ(i) ≥ ϕ(i−1)−3: the largest decrease happens if m is reduced
by 1 (which means that one of the parties removed a (correct) symbol from T ), while the other
transcript increases by 1 (incorrect) symbol.

Finally, when the fraction of noise is bounded by 1/8− ε, there are at most nbad = (1/8− ε) ·2n
erroneous iterations in which the potential decreases2, and at least ngood = n − nbad iterations in
which the potential increases. Therefore, the potential at the end of the computation satisfies

ϕ(n) ≥ nbad × (−3) + ngood × (+1)

≥ −3n
(1

4 − 2ε
)

+ n

(
1−

(1
4 − 2ε

))
≥ 8εn
≥ n0.

Therefore, the correct prefix of TA, TB at the end of the computation is at least n0, except with
probability at most 1/n. If we wish to reduce the failure probability even further, we can set
n = n0/ε. In this case, even up to εn hash collisions happen throughout the protocol, it still holds
that ϕ(n) > n0. On the other hand, the probability of having so many hash collisions is clearly
bounded by 2−Ω(n logn).

A resilience of 1/8 − ε holds for polynomial alphabet but does not hold anymore for smaller
alphabets. If we count the noise as the fraction of bits that were exchanged, then the scheme in
Algorithm 2 is resilient to a fraction of noise of O(1/ logn). It is possible, however, to get better
resilience (i.e., resilience against some constant fraction of noise) [51] by employing a more sophisti-
cated rewinding mechanism in which parties can revert to specific agreed “meeting points” [74, 51].
We discuss this mechanism in §5.2.

The obvious advantage of these coding scheme is that they do not relay on tree codes, and are
more intuitive. They also serve a crucial role in obtaining coding scheme with a rate that approaches
one; see §5.

2Basically, we lose a factor of 2 in the resilience since both parties speak at each iteration. However, this is necessary
in order to ensure they are synchronized.
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2.3 Upper bounds on the maximal noise

We conclude this chapter by showing that the coding scheme of Algorithm 1 actually achieves the
maximal resilience possible for nonadaptive coding schemes.3 In nonadaptive protocols the structure
of the protocol is well-defined, regardless of the observed noise. Specifically,

Definition 2.3 (nonadaptive protocols). A nonadaptive protocol is one in which for any input, and
any noise pattern, there is a consensus between Alice and Bob about the next party to speak.

Braverman and Rao [19] prove that nonadaptive protocols must take the same number of rounds
on every input, and that the party that speaks at every round is determined as a function of the
round number alone (namely, is independent of the input and noise).

Lemma 2.11 ([19]). A nonadaptive protocol π satisfies the following: (1) for all inputs, the protocol
runs for n rounds; (2) at any round, it is predetermined which party speaks (independent of input
and noise)

Therefore, protocols in which the parties exchange symbols every round (or in alternating rounds),
are trivially nonadaptive.

Remark 2.2. The above lemma suggests that nonadaptive protocols always have a fixed order of
speaking, i.e., that the set of nonadaptive protocols and the set of fixed-order protocols is the same
one. However this is not the case when other types of noisy channels are considered. Specifically,
in §6 we discuses nonadaptive protocols whose order of speaking is not fixed.

The maximal resilience of nonadaptive protocols is 1/4. Formally, we have the following.

Theorem 2.12 ([19]). No nonadaptive interactive protocol for the identity function f(x, y) = (x, y)
is resilient to noise rate of 1/4 with probability greater than 1/2 (in the plain model).

Proof. Assume a protocol π for the identity function, that communicates n symbols on every
inputs (which must be the case for a nonadaptive protocol). Consider instance of the protocol on
input (0, 0) and assume without loss of generality that Alice is the party that sends nA ≤ n/2
symbols. Since the protocol is nonadaptive, the same holds also any instance of π(1, 0).

Consider the following two attacks: (1) an instance of π(0, 0) in which the channel changes
Alice’s first nA/2 symbols to be exactly what Alice sends at the same rounds in π(1, 0); (2) an
instance of π(1, 0) in which the channel changes Alice’s last nA/2 symbols to be exactly what Alice
sends at the same rounds in the first instance.

It is clear that Bob’s view in both instances (1) and (2) is the same; therefore, Bob gives the
correct output with probability at most 1/2. The total noise in both instances is nA/2 ≤ n/4.

2.3.1 Circumventing the 1/4 upper bound

It is possible to circumvent the above impossibility and achieve coding schemes with noise resilience
above 1/4 by either relaxing the noise model or the conditions of the impossibility bound of The-
orem 2.12. Here, we explore one such relaxation and state several other possible relaxations that
will be discussed later in this manuscript.

3In previous work [18, 19] nonadaptive protocols were also called robust or oblivious.
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A crucial point in the proof of Theorem 2.12, is the ability to identify in advance the party
that speaks less and attack that specific party. However if the party that “speaks less” changes as a
function of the observed noise (i.e., when the protocol is adaptive), then the proof no longer holds,
and indeed better resilience is achievable. We discuss the case of adaptive protocols in §4.

Another possible relaxation is to allow one of the parties (but not both!) to learn about an
event of an error. This naturally happens in different noise models such as the erasure channels, or
channels with noiseless feedback. See §6 for the maximal noise resilience in these settings.

Braverman and Efremenko [15] considered the case where there is a one limit for the fraction
of noise on the channel from Alice to Bob and a different limit for the fraction of noise on the
channel in the other direction, from Bob to Alice. Let the fraction of noise in one direction be α
and in the other direction β. Then Algorithm 1 works as long as α + β < 1/2. Braverman and
Efremenko analyzed the exact region of noise that is feasible. That is, they show codings schemes
for any point (α, β) within this region, and prove that no coding scheme succeeds if the noise (α, β)
is outside that region. The feasible region nontrivially extends the bound α+β < 1/2. In particular,
(1/3, 1/3) is feasible. The coding schemes of [15] use list-decoding techniques (see §3.4.1) and also
let the parties speak a different number of rounds as a function of the specific noise (α, β).

Allowing the parties to preshare a random string that is unknown to the adversarial channel
also allows lifting the maximal noise and yields a coding scheme with noise resilience of 1/2 − ε,
shown by Franklin, Gelles, Ostrovsky, and Schulman [34, 35]. [A similar resilience is achievable
in the quantum world (where parties preshare entangled states) [13]; see §6.4.] The parties use
the shared randomness in order to detect noise: each transmission is encoded via a random code
whose randomness is taken from the shared string. Such a code serves as a message authentication
code [47], ensuring that any corruption is detected with high probability. Specifically, consider the
following random code known as the blueberry code.

Definition 2.4 (blueberry code [35]). Given alphabets Π,Σ, where Π ⊆ Σ, and n independent
random permutations Bi : Σ→ Σ, the blueberry code B : Πn → Σn is the mapping

B(x1 · · ·xn) = B1(x1) · · ·Bn(xn).

At the i-th transmission, only a random subset of Σ whose size is |Π| is being used by the
code, namely, Si = {Bi(x) | x ∈ Π}. The subset Si is uniformly chosen from Σ and is unknown to
the channel. Then, with probability 1 − |Π|−1

|Σ|−1 , the noise will alter the transmission into a symbol
outside Si and will be detected by the parties. In this case, the receiver knows that the received
symbol is corrupted, so it marks the transmission by a special erasure mark, ⊥. Since erasures are
“twice as easy” to handle than errors, this effectively doubles the noise resilience (see also §6.2).
Combining this approach with Algorithm 1 and carefully analyzing the effect erasures have on
Algorithm 1 gives the following.

Theorem 2.13 ([35]). For any ε > 0, there exists a coding scheme that simulates any protocol π0
in Oε(n0) rounds, uses a constant-size alphabet and is resilient to a fraction 1/2 − ε of corrupted
symbols, assuming the parties share a random string of length O(n0) unknown to the adversarial
channel.

It is easy to see that 1/2 is an upper bound on the noise resilience of nonadaptive coding
schemes, regardless of any computational or other setting assumption.
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Theorem 2.14 ([35]). No nonadaptive interactive protocol for the identity function f(x, y) = (x, y)
is resilient to a noise rate of 1/2 with probability greater than 1/2, even given any other setting
assumption.

Proof. Let π be a protocol for the identity function. Since the protocol is nonadaptive, the length of
the protocol is fixed. Furthermore, the order in which the parties speak is fixed and pre-determined
(Theorem 6.4), which also determines the total number of symbols n communicated in the protocol.
It follows that there exists a party (without loss of generality, Alice) that speaks at most n/2 of the
symbols. The channel can completely corrupt every symbol sent by Alice. This incurs a noise rate
of at most 1/2, and prevents Bob from learning Alice’s input.

X

Open Questions for Section 2

1. What is the maximal noise resilience of binary protocols?

2. Find a binary coding scheme with a constant rate that achieves the maximal
resilience.

3. Is it possible to obtain the maximal resilience in a coding scheme that has a
constant rate and is solely based on the rewind-if-error paradigm?
If not, what is the maximal noise resilience obtainable with a constant rate,
and how do the resilience and the rate trade off?
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3
The Hunt for Efficient Constructions

When using tree codes, two factors prevent coding schemes from being efficient. The first is that
there is no known efficient construction of a tree code. However the second reason is the lack of
efficient decoding procedures. That is, even if one has an efficient way to construct tree codes (i.e.,
an efficient algorithm that generates the label for any given path, TCenc), it is not clear how one
can decode a given received word, that is, how to efficiently compute TCdec. For this reason, the
running time of Algorithm 1 is exponential in the length of the simulation, in the worst case.

Luckily, when the noise is random, then the decoding issue no longer prevents us from achieving
efficient coding schemes. Schulman [76] shows that in the random noise setting, one can efficiently
compute TCdec in a greedy way, so that the expected decoding time is polynomial in the length
of the word to be decoded. Still, the first issue prevails, namely, the inefficient construction of tree
codes prevents us from obtaining a fully efficient scheme.

In this section we discuss efficient constructions of interactive coding schemes. First, we show
that if we are willing to compromise some of the parameters (e.g., the rate or the failure probability)
then efficient schemes can be found. Then, we discuss the case of random noise and provide efficient
constructions of tree code–based schemes. Finally, we move to the realm of adversarial noise and
describe a scheme that achieves it all: it is efficient, is resilient to the maximal possible noise, and
succeeds with overwhelming probability.

3.1 Efficient schemes for random noise with reduced parameters

3.1.1 Coding schemes with a vanishing rate

Efficient coding schemes are quite easy to devise if one is willing to compromise the rate of the
coding scheme and allow a vanishing rate. Ghaffari, Haeupler, and Sudan [46] note that a simplified
version of Algorithm 1 is efficient and is resilient to the optimal fraction of noise, (1/4− ε). In this
simplified version, each symbol of the alphabet is large enough to contain the entire set of edges SA
sent so far (rather than only a single edge, as done in Algorithm 1). Each such set contains at most
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Figure 3.1: A simplified illustration of the tree code encoding S(x) = TCenc(x) of a string x of length 8. Each
symbol Si(x) of the encoding consists of four symbols: the input x itself and log |x| symbols out of codewords of
increasing lengths 1, 2, 4, ..., encoding prefixes of x. [The shifted codewords S̃i(x) are omitted here.]

n edges (out of at most 2n0 possible edges in T0), and takes O(n0) bits to describe. The obtained
rate is then Oε(1/n0), yet no tree codes are needed, and the scheme is computationally efficient.

In an unpublished note [77], Schulman describes a way to efficiently construct a tree code
of depth n over an alphabet of polynomial size in n. Plugging such a tree code in Algorithm 1
(assuming a high-enough distance parameter α) gives, for any ε > 0, an efficient coding scheme
with resilience 1/4 − ε and rate Oε(1/ logn0). Based on ideas in [77, 14, 39], we now describe
a simplified construction of a tree code of depth n and distance α < 1 over an alphabet with
polynomial size.

Theorem 3.1. For any α < 1 there exists an efficient construction of a d-ary tree code of depth n
over an alphabet of size polynomial in n.

Proof. The high-level idea is to construct O(logn) parallel encoding “layers”, where each layer is
an encoding of parts of the inputs via simple error-correction code. The block size doubles in each
layer, that is, the first layer will be the input itself; the second layer separately encodes every two
symbols of the input; the third layer encodes four symbols, etc. Since the encoding must be online,
we can encode input symbols only after the time they arrive. Therefore, the encoding of x1, x2 (in
the second layer) can be used only after x2 is known. The first block in each layer is thus set to a
constant. See Figure 3.1 for a visualization.

We now formally define the encoding and later prove it satisfies the distance requirements. For
any i < log(n/2), assume an efficient error-correcting code Ci : [d]2i → Σ2i with relative distance
at least δ; it is possible to find such a code (e.g., a Reed-Solomon code) with |Σ| = O(d · 1

1−δ ).
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Let 0 ∈ Σ be some arbitrary symbol. For any x ∈ [d]n and any i ≤ log(n/2), define the string
Si(x) ∈ Σn as follows:

S0(x) = 0 ◦ x1 ◦ · · · ◦ xn−1

S1(x) = 02 ◦ C1(x1x2) ◦ C1(x3x4) ◦ · · · ◦ C1(xn−3xn−2)
S2(x) = 04 ◦ C2(x1x2x3x4) ◦ C2(x5x6x7x8) ◦ · · · ◦ C2(xn−7xn−6xn−5xn−4)

...

Si(x) = 02i ◦ Ci(x1 · · ·x2i) ◦ · · · ◦ Ci(xn−2·2i+1 · · ·xn−2i)
...

Slog(n/2)(x) = 0n/2 ◦ Cn/2(x1 · · ·xn/2).

Additionally, for any i ≥ let S̃i be the string obtained by shifting Si by 2i indices, padding zeros
at the beginning and trimming the suffix as needed, that is,

S̃i(x) = 02i ◦ 02i ◦ Ci(x1 · · ·x2i) ◦ · · · ◦ Ci(xn−3·2i+1 · · ·xn−2·2i).

Finally, let S ∈ Σ1+2 logn be the string S = (S1, S2, . . . , Sn) whose j-th index is the tuple

Sj = (xj , S0
j , S

1
j , . . . , S

log(n/2)
j , S̃0

j , . . . , S̃
log(n/2)
j ),

where Sij and S̃ij are the j-th index of Si and S̃i, respectively. Then, the encoding of x is given by
TCenc(x) = S; see Figure 3.1.

It is easy to see that this encoding is online and that the alphabet is of polynomial
size |Σ|O(logn) = polyd,δ(n). Next we show that the encoding satisfies the distance property of
a tree code (Definition 2.1).

Let x, y ∈ [d]m be two strings of the same length m ≤ n that differ starting at their j-th index
(i.e., x1 · · ·xj−1 = y1 · · · yj−1 and xj 6= yj). For the analysis we will consider only long-enough
divergent paths in which m − j + 1 ≥ 16. The distance requirement for short diverging paths can
be easily satisfied by, for example, finding a tree code T32 of depth 32 and distance δ by exhaustive
search (this takes a constant time) and concatenating a copy of T32, every 16 levels: set

Sshort(x) = TCencT32(x1 · · ·x32) ◦ · · · ◦ TCencT32(xn−31 · · ·xn)
Sshort shift(x) = 016 ◦ TCencT32(x16 · · ·x47) ◦ · · · ◦ TCencT32(xn−47 · · ·xn−16) ◦ 016,

and concatenate to each index of Si the corresponding symbol in (Sshort(x), Sshort shift(x)). This
increases the size of the alphabet by only a constant.

Let i∗ = blog(m− j + 1)c be the largest power of 2 that is at most m− j + 1. We can assume
i∗ ≥ 3. Let us also write j = t · 2i∗ − rj and m = (t · 2i∗ + 1) + rm with some t, rj , rm ∈ N and
0 ≤ rj , rm < 2i∗ . First we show that if the endpoint m is aligned with 2i∗ , then there is a sequence
of Ci with 0 ≤ i ≤ i∗ that exactly covers the interval [j,m] and provides a relative distance of δ in
this case.

Lemma 3.2. If m mod 2i∗ = 0, then ∆(S(x), S(y)) ≥ δ(m− j + 1).

Proof. The claim holds by induction on i∗. For i∗ < 5 the claim holds due to Sshort, Sshort-shift.
For the induction step, note that indices [m − 2i∗ + 1,m] in Si

∗ consists of the code-
word Ci∗(xm−2·2i∗+1 · · ·xm−2i∗ ) and note that j ∈ [m−2 ·2i∗+ 1,m−2i∗ ]. It follows that restricted
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to the indices [m−2i∗+1,m], the distance between S(x) and S(y) is at least δ2i∗ . By the induction
hypothesis on x1 · · ·xm′ , y1 · · · ym′ with m′ = m − 2i∗ (which satisfies m′ mod 2i∗−1 = 0), we find
that restricting to the indices [j,m′], the distance is at least δ(m′ − j + 1); thus

∆(S(x), S(y)) ≥ δ2i∗ + δ(m− 2i∗ − j + 1) ≥ δ(m− j + 1).

We now prove the case where m mod 2i∗ 6= 0. We create two intervals: [j, t2i∗ ] and [t2i∗+1,m].
In the first interval, [j, t2i∗ ], the endpoint is aligned with 2i∗−1, and using the above lemma we get
that the distance provided restricted to these indices is at least δ(t2i∗ − j + 1) = δ(rj + 1).

As for the interval [t2i∗+1,m], we distinguish two cases. First note that rm+rj+2 > 2i∗−1. Thus,
one of rj , rm is at least 2i∗−1 − 1. If rm ≥ 2i∗−1 − 1, we use the codeword C2i∗ (x(t−1)2i∗+1 · · ·xt2i∗ ),
which lies along the indices [t2i∗ + 1, (t+ 1)2i∗ ] in Si∗ . Since j ∈ [(t− 1)2i∗ + 1, t2i∗ ], this codeword
provides us with at least max{0, δ2i∗ − (2i∗ − 1− rm)} different indices in the interval [t2i∗ + 1,m],
and since rm ≥ 2i∗−1 − 1, the relative distance in the interval [j,m] in this case is at least

δ(rj + 1) + max{0, δ2i∗ − (2i∗ − 1− rm)}
rm + rj + 2 ≥ δ(rj + 1) + δ2i∗ − 2i∗−1

rj + 2i∗−1 + 1

≥ δ + δ2i∗ − 2i∗−1

2i∗−1 + 1

≥ 9δ − 4
5 ,

where the last transition occurs because we assume i∗ ≥ 3.
The other case is when rj ≥ 2i∗−1 − 1, and thus rm ≤ 2i∗−1 − 1. Here we use the shifted

string S̃i∗−1: the codeword Ci∗−1(x(t−1)2i∗+1 · · ·xt2i∗−2i∗−1), which encodes xj , lies along the indices
[t2i∗ + 1, t2i∗ + 2i∗−1], and gives us a distance of max{0, δ2i∗−1 − (t2i∗ + 2i∗−1 −m)}. The relative
distance in [j,m] is then at least

δ(rj + 1) + max{0, rm − 2i∗−1(1− δ) + 1}
rj + rm + 2 ≥ δ2i∗−1

2i∗−1 + 2i∗−1(1− δ)

≥ δ

2− δ .

To summarize, the relative distance in any [j,m] is at least min{9δ−4
5 , δ

2−δ , δ}. For any α < 1, the
preceding construction with δ ≥ 5α+4

9 gives a d-ary tree code of depth n, distance α, and alphabet
size

(
c·d

1−α

)1+2 logn
, for some constant c. For any constants d, α, the alphabet size is polyα,d(n).

3.1.2 Coding schemes with a reduced success probability

If one is willing to compromise requiring a success probability of 1 − 2−Ω(n0), then it is fairly
easy to obtain an efficient coding scheme that has a constant rate and polynomially small failure
probability for random noise. A prominent approach towards this goal is to replace the tree code
with the following relaxation:

Definition 3.1 (k-local tree code). A d-ary k-local tree code over an alphabet Σ with distance
parameter α is an infinite rooted d-ary tree in which each edge e is marked with a label we ∈ Σ and
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for any rooted paths p1 = (e1, . . . , en) and p2 = (e′1, . . . , e′n) of the same length, that differ starting
from the j-th level (i.e., ei = e′i for all i < j, but ej 6= e′j) and for which n− j < k, it holds that

∆ (label(p1), label(p2)) ≥ α(n− j + 1).

That is, local tree codes satisfy the distance property only for “short” divergent paths, where
the length of the diverging parts is at most k.

Using a k-local tree, we can obtain a coding scheme with failure probability < 2logn−O(k) by
performing Algorithm 1 replacing the tree code with a k-local tree code. The intuition is that if
we consider k consecutive transmissions, the local tree code behaves like a standard (i.e., nonlocal)
tree as long as the number of errors in that chunk is small enough, say smaller than ck for some
small-enough constant c. On the other hand, the probability of having a stretch of k consecutive
transmissions with more than ck bit corruptions anywhere throughout the protocol is bounded by

n · εck ≤ 2logn−c′k,

which is polynomially small for k = O(logn).
Schulman [77] observed that O(logn)-local tree codes can be efficiently constructed in poly(n)

time: one can find a tree code T of depth 2c logn via exhaustive search, and then concatenate
the same trees every c · logn layers. That is, each label in the local tree is composed of two labels
of T , where the label of the last edge in the path p = (e1, . . . , en) is computed the following way.
Let k = c logn and assume n = t · k + r where t, r ∈ N and r < k. Let p−1 = (etk, . . . , en) and
p−2 = (e(t−1)k, . . . , en). Then, the label of the last edge in p is given by (TCencT (p−1),TCencT (p−2)).

c logn

p2p1

Figure 3.2: A concatenated tree code. Every black dot represents a concatenation of another tree code T of depth
2c logn (only one such concatenation is depicted). Every two diverging paths p1, p2 of length ≤ c logn are fully
contained within at least one of the concatenated trees.

Every two divergent paths of length k ≤ c logn are fully included within a single T , and thus
their corresponding labelings must satisfy the distance property; see Figure 3.2.

Theorem 3.3. For any constant ε < 1/2, there exists a randomized efficient coding scheme that
simulates π0 over a BSCε, has a constant rate, and has a success probability of 1− poly(1/n0).

3.1.3 Further Reading: Other efficient schemes with reduced success probabilities

In this section we review other coding schemes that obtain computational efficiency by sacrificing
the success probability.
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Tree code based schemes

A comprehensive analysis of the tree-based coding scheme of [76] when replacing the tree code with
a local-tree relaxation appears in [65]. A formal statement of the construction of §3.1.2 also appears
in [14]. Moitra [65] showed another technique for efficiently constructing O(logn)-local tree codes
based on high-girth expander graphs.

Braverman [14] showed how to construct a O((logn)c)-local tree of depth n for any c > 1 in time
2O(logn)1/c , that is, in subpolynomial time in n. Encoding and decoding takes a similar amount of
time. This leads to an efficient coding scheme in the random noise setting with a success probability
of 1− 2−Ω((logn0)c). Furthermore, the obtained scheme is deterministic.

Peczarski [70] showed a randomized construction for a tree code with distance parameter α =
1/2 that uses an alphabet of size O(exp(

√
log 1/ε)) and succeeds with probability 1− ε. This gives

a tradeoff between the rate O(1/
√

log 1/ε) and the success probability 1− ε of the obtained coding
scheme, assuming random noise. Specifically, obtaining coding schemes with success probability
of 1 − 2−Ω(n0) incurs a vanishing rate of O(1/√n0), while a reduced success probability of 1 −
1/poly(n0) gives a vanishing rate of O(1/

√
logn0).

Rewind-if-error based schemes

The scheme that gets closest to the desired exponential success probability is a scheme by Schul-
man [74], which follows a rewind-if-error paradigm where, for every i ≥ 1, after 2i steps of the
noiseless protocol the parties exchange O(2i/i2) checking bits that verify the transcript so far, and
rewind if error has been found. The rewinding mechanism allows the simulation to revert back to
two possible meeting points (i.e., rewind the protocol to nearest multiple of 2i or to the previous
multiple of 2i). We will explore these ideas further in §5 when discussing communication-efficient
coding schemes. The scheme of [74] provides the following.

Theorem 3.4 ([74]). For any constant ε < 1/2, there exists a randomized efficient coding scheme
that simulates π0 over a BSCε, has a constant rate, and has a success probability of 1−2−Ω(n0/ log4 n0).

3.2 Efficient coding schemes over BSC: Potent tree codes

The first efficient scheme over BSC channels that achieves constant rate and exponentially small
failure probability was suggested by Gelles, Moitra, and Sahai [41, 42]. As with local trees, the main
idea is to replace the inefficient tree code with a relaxed notion called potent tree code. The relaxed
structure is a labeled tree in which most of the divergent paths, but not all of them, satisfy the
distance properties. The fraction of paths that do not satisfy the distance property may be large;
however, only a small number of them collide with any given root-to-leaf path.

Definition 3.2 (potent tree code). An (ε, α)-potent tree code is a d-ary tree of depth n whose edges
are labeled with symbols from Σ. For any root-to-leaf path P , the following holds.

• Two paths p◦p1 and p◦p2 of the same length are called bad paths of length ` if |p1| = |p2| = `,
the first edge in p1 differs from the one in p2, and

∆(label(p ◦ p1), label(p ◦ p2)) < α`.

The divergent suffices p1, p2 are called bad subpaths.
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• The number of nodes along P that belong to a bad subpath is at most εn.

Theorem 3.5 ([43, 42]). For any constants ε, α < 1, a random labeling of a d-ary tree of depth n
from alphabet of size |Σ| = dOε,α(1) yields a (ε, α)-potent tree with probability 1− 2−Ω(n).

Proof. Assume T is a d-ary tree of depth n, labeled uniformly and independently from an alphabet
Σ whose size we determine later. We bound the probability that T fails to be (ε, α)-potent.

If T is not (ε, α)-potent, there must exist a path P and t bad paths of length `1, . . . , `t along P ,
such that

∑
`i > εn. We can select a subset of these bad paths so that the selected paths satisfy

1. the divergent part (along P ) for each two bad paths is edge-disjoint;

2. the total length of the paths is ≥ εn/2.

This is immediate from the following lemma.

Lemma 3.6 ([76]). Let `1, `2, . . . , `n be intervals on N, whose union is of size σ. Then there exists
a subset S ⊆ {1, 2, . . . , n} such that for any i, j ∈ S, `i ∩ `j = ∅, and

∑
i∈S |`i| ≥ σ/2.

The probability of having a bad path of length `, say, between levels [h, h + `] in P is the
probability that some path that diverges from P at the h-th level will have labels that collide with
the labels along P in the interval [h, h+ `] by a fraction of at least (1− α). Summing over all such
d` divergent paths, we bound this probability by

d`
∑̀

x=(1−α)`

(
`

x

)( 1
|Σ|

)x
≤ d`2`|Σ|−(1−α)`,

which with the appropriate choice of |Σ|, can be smaller than, say, d−4`/ε. Then, the probability of
having disjoint bad paths along P , whose total length is at least εn/2, is bounded by∏

i

d4`i/ε = d(4/ε)
∑

i
`i ≤ d−2n.

Note that since the bad paths we consider are disjoint, the probability of a certain (sub)path being
bad is independent of the other (sub)paths. Using a union bound over all dn possible paths P we
complete the proof and conclude that |Σ| = dO(1/ε(1−α)) = dOε,α(1).

The main observation of [42] is that potent tree codes are good enough to replace tree codes
in coding scheme for interactive communication. Qualitatively, a bad node of the potent tree is a
node for which the code has no distance guarantees, and therefore it is probable that the decoding
will fail to output the correct node at those places. However, since the fraction of the bad nodes
along any path is at most ε, this amounts to at most εn times where the potent tree code fails
or, equivalently, additional εn rounds where the simulation may not decode the correct sent word
(even if there were no errors). Practically, this can be compared to a simulation with a standard tree
code that observes a fraction of noise that is higher by an additive factor of at most ε. Thus, if the
scheme (assuming a standard tree code) is resilient to a fraction c of adversarial noise, it becomes
resilient to a fraction c−ε of adversarial noise when replacing the tree codes with potent tree codes.
For random noise, this amounts to having a worse noise parameter, yet it keeps the scheme resilient
for any noise parameter below 1/2 (by choosing a potent code with the right parameters).
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The last step that is needed in order to obtain an explicit coding scheme construction, is to
make both parties agree on the potent tree in use. Since the construction is random, the parties
cannot construct the trees independently (their trees will mismatch), and since it takes O(dn) to
describe the tree, if one party constructs it and sends it to the other side, the rate will be vanishing.

Luckily, it is possible to partially derandomize the construction of potent tree codes [42] using
ε-biased sample spaces [3, 67]. To simulate a protocol of length n0, one party samples a random
seed of length S = O(n0) bits and sends it to the other side encoded via some error-correction code.
Then both parties generate a string of length dS , which is almost 2S-wise independent. This string
is used to label the potent tree in a straightforward way. The 2S-wise independence guarantees
that the labels of any two root-to-leaf paths in the tree are almost independent, which is enough
to show that the tree is potent with high probability. The parties then continue with a tree code
based coding scheme, e.g., Algorithm 1, and obtain an efficient coding scheme that succeeds with
probability 1− 2−Ω(n0), assuming a BSC channel. Theorem 3.7 summarizes these ideas.

Theorem 3.7 ([41, 42]). For any constant ε < 1/2, there exists a randomized efficient coding scheme
that simulates π0 over a BSCε and has a constant rate and a success probability of 1− 2−Ω(n0).

3.3 Efficient coding schemes for adversarial noise: Suboptimal noise resilience

We now focus on the case of adversarial noise. Recall that no efficient decoding of tree codes is
known, assuming a constant fraction of adversarial noise.

The first efficient coding scheme in this setting was suggested by Brakerski and Kalai [10] and
later improved upon by Brakerski and Naor [12] to obtain almost linear time; see also [11]. The idea
behind the coding scheme is to split the simulation into chunks of logarithmic size. Each chunk is
simulated via a inefficient scheme (say, Algorithm 1). The synchronization between chunks, that is,
choosing which chunk is the next to be simulated, is performed using a rewind-if-error paradigm
similar to Algorithm 2, that is, by exchanging hashes of the transcripts simulated so far, and
proceeding to the next chunk if the hash values match (or otherwise, rewinding to a previous
chunk). To protect the synchronization part from noise, we can assume that each simulated chunk
begins with exchanging the hash values and only then proceeds to transmissions of π0, while the
entire chunk (including the synchronization parts) is being simulated via Algorithm 1.

Since each chunk is of logarithmic size, Algorithm 1 takes exp(c logn0) = poly(n0) time per
chunk; computing and comparing hashes, and rewinding accordingly can be done efficiently. This
yields an efficient scheme that is resilient to a fraction of 1/16 − ε corruptions, assuming a large
yet constant alphabet.1 The scheme is described in Algorithm 3.

Theorem 3.8. Algorithm 3 is efficient, has a constant rate, and is resilient to 1/16 − ε symbol
corruptions with probability 1− 2−Ω(n0).

Proof. The efficiency and rate claims are immediate. We show that as long as the adversarial noise
level is below 1/16− ε, the algorithm succeeds in simulating π0.

We say that a chunk is good if the output (Line 9) is correct: each party receives the correct
(hash) values s, l, h sent by the other side, and the simulated transcript T̃ is equal to the noiseless
transcript of the same chunk. Otherwise, we say that the chunk is bad.

1Similarly, the scheme is resilient to up to 1/32− ε bit flips.
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Algorithm 3 The Brakerski-Kalai coding scheme [10]
Input: a protocol π0 of length n0 = |π0| and an input x; a noise-resilience parameter 1/16− ε.

Let H = {hs : {0, 1}c·n0 → {0, 1}logn0} be a hash function family given by Theorem 2.8, with seed size
|s| = logn0.

1: k = logn0
2: T ← ∅
3: for i = 1 to N = n0/εk do
4: run Algorithm 1 on the noiseless protocol πT defined as follows:
5: procedure πT :
6: sample s and send (s, |T |, hs(T ))
7: run π0 for k rounds (assuming the past is T )
8: end procedure

9: let (s̃, l̃, h̃), T̃ be the output of the simulation of πT , with |T̃ | = k
10: if |T | = l̃ and hs̃(T ) = h̃ then
11: T ← T ◦ T̃
12: else
13: if |T | ≥ l̃, delete k bits from the suffix of T
14: output T (a prefix of length n0)

Next, we use a similar potential function argument as in the proof of Algorithm 2. Define the
potential function ϕ(i) as the length of longest correct prefix in TA and TB at the end of iteration i,
minus the length of the incorrect suffixes—let m(i) be the maximal point where both TA(i), TB(i)
equal T0 (in blocks of size k). Then

ϕ(i) = 3
⌊
m(i)
k

⌋
− |TA(i)|+ |TB(i)|

k
.

Using the same argument as in Algorithm 2, for each good iteration i in which there is no hash
collision, we have ϕ(i) ≥ ϕ(i−1) + 1, while for each bad iteration or when there are hash collisions,
ϕ(i) ≥ ϕ(i− 1)− 3.

Next, we bound the number of hash collisions throughout the protocol. The probability of
having a hash collision, given that the seed is uniformly chosen, is 2− logn0 ≤ 1/n0; thus the
expected number of hash collisions in the simulation is at most N · 1/n0 = 1/εk. The probability
that there were more than εN hash collisions throughout the protocol2 is bounded via a tail bound
by

Pr[#collisions > εN ] = Pr
[
#collisions > (εN · εk) · 1

εk

]
≤ exp

(
−Ω

(
n2

0
k

))
≤ 2−Ω(n0).

We can therefore assume that the potential has decreased due to hash collisions in at most εN
iterations, with probability 1− 2−Ω(n0).

2We note that hash collision decreases the potential only if the parties are unsynchronized, and has no effect if
the parties are synchronized. We nevertheless can assume that every collision is harmful, and the proof still holds.

31



If at the end of the simulation, ϕ(N) < n0/k, then there must have been at least (1/4 − ε)N
iterations in which the potential has not increased. Recalling that the number of iterations with hash
collisions is bounded by εN , we see that the fraction of bad iterations must be at least (1/4− 2ε).
Since each chunk is simulated via Algorithm 1, if the output in Line 9 is incorrect, the fraction of
errors during the simulation of that chunk must be at least 1/4 − ε. Therefore, the global noise
fraction in this failed simulation must be at least

(1/4− ε) · (1/4− 2ε)N
N

= 1
16 −O(ε).

3.4 Efficient coding schemes for adversarial noise: Optimal noise resilience

The drawback of the efficient scheme described in the last section is that it can tolerate only up
to 1/16− ε adversarial noise, while the optimal bound on the adversarial noise is 1/4, as discussed
in §2. In this section we describe a scheme by Ghaffari and Haeupler [45] that is both efficient and
resilient to the optimal noise fraction of 1/4 − ε. To that end, we need to detour first through a
new concept of coding for interactive communication, namely, interactive list-decoding.

3.4.1 Interactive list-decoding coding schemes

In an equivalent manner to list-decoding codes in the one-way communication setting [31, 82], we
can define interactive list-decoding as an interactive protocol that outputs a small list of possible
outcomes, so that as long as the noise is small enough, the correct output f(x, y) appears in the
list [46, 45, 15].

Definition 3.3 (interactive list-decoding coding scheme). An interactive list-decoding protocol for a
function f with list size L and noise resilience ρ is an interactive protocol in which both parties
output a list of L values, and if the noise rate is at most ρ, then f(x, y) appears in the output list
of both parties.

Braverman and Efremenko [15] showed how to construct an interactive list-decoding coding
scheme by augmenting the notion of tree codes into list tree codes. When decoding a codeword x of
length n via a list tree code, one gets a list of size at most Ln that contains all prefixes of messages y
so that ∆sfx(TCenc(y), x) < α. This implies that for every length n′ < n, the list tree code provides
a list Ln′ of messages of length n′ that may have been encoded, and the size of this list is L on
average, that is,

∑
n′<n

1
n |Ln′ | ≤

1
n · Ln = L. Formally, we define list tree codes as follows.

Definition 3.4 (list tree codes). An (α,L)-list tree code T is a d-ary tree of depth n labeled with
symbols from Σ. The labeling of the tree satisfies the following. For any word w of length n, let
Li be the list of codewords x of length i that are close to a prefix of length i of w in their suffix
distance, that is,

Li = {x1 · · ·xi | ∆sfx(TCencT (x1 · · ·xi), w1 · · ·wi) < α} .

Then it holds that
∑n
i=1 |Li| ≤ n · L.

Similar to the case of tree codes, no efficient deterministic construction for list tree codes exists.
However, Braverman and Efremenko show that a random labeling of the tree yields a list tree code
with overwhelming probability.
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Theorem 3.9 ([15]). For any 0 < α < 1 and d > 0, a d-ary tree of depth n in which each edge is
labeled uniformly from an alphabet Σ with |Σ| > (2d)3/α2 , is an (α,L)-list tree code with L = 1

α +1
with probability at least 1− 2−n.

On the surface, using a list tree code does not seem so useful for obtaining interactive coding
schemes with a good rate: if at every round where we decode the tree, we obtain L possible
decodings, then after n0 rounds, the number of possible answers explodes to Ln0 . However, a more
carful analysis shows this is not the case.

Assume a variant of Algorithm 1 in which each symbol of Σ encodes L possible edges (instead
of only a single edge). Then, whenever Alice decodes, at some round i, all the symbols she has
received so far, she gets (on average) L strings of length i of symbols of Σ. These amount to L sets
of edges Alice should consider and extend (rather than a single one, as in Algorithm 1). Each such
set, when combined with Alice’s own edges, either leads to a unique root-to-leaf path, or is clearly
an incorrect decoding of Bob’s edge set. Therefore, Alice has (on average) at most L potential paths
to consider at every round. Then, Alice extends each one of these L paths by a single edge from
the set of her own edges. Note that a single symbol of Σ suffices to describe these new L edges
that Alice wishes to send on the next round. Thus, the number of possible answers remains L and
doesn’t explode exponentially.

Combining list tree codes with the simulation ideas of Algorithm 1 leads to the following.

Theorem 3.10 ([15]). For any ε > 0, there exists an interactive list-decoding scheme that simulates
any π0 in Oε(n0) rounds, sends symbols from alphabet of size Oε(1), outputs a list of size Oε(1),
and is resilient to 1/2− ε fraction of corrupted symbols.

We note that the output of the preceding coding scheme is in fact a path on the underlying tree
that describes the noiseless protocol (see §2.1.3) rather than the final output f(x, y). This allows
the parties to verify that the output is fully consistent with their own input. We call a list-decoding
scheme with this property a verifiable list-decoding scheme. This verifiability property will be very
useful when using list decoding as a primitive in order to obtain a unique-decoding coding scheme
with optimal resilience.

3.4.2 From list decoding to unique decoding

List decoding is a simpler task than unique decoding. On the other hand, it allows a greater noise
resilience. In this section we describe how to reduce unique decoding to list decoding, that is, how to
obtain an interactive coding scheme by using a list-decoding coding scheme. Most of the techniques
presented in this section appeared in [45].

Theorem 3.11 ([45]). For any ε > 0 for which there exists a verifiable list-decoding scheme with
noise resilience 1/2− ε and rate Θε(1), there exists a (unique-decoding) coding scheme with noise
resilience 1/4− ε and rate Θε(1), with essentially the same computational complexity.

Proof. Consider the coding scheme sketched in Figure 3.3: given the noiseless protocol π0, we
sequentially perform N = 1/ε independent instances of the list-decoding scheme simulating π0.
Each such instance takes n = Oε(n0) rounds over an alphabet of size |Σ1| = Oε(1), and, if the noise
fraction during that instance is less than 1/2−ε, the output is a list of at most L paths of length n0
in the tree T0 describing the noiseless protocol π0.
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Assume a verifiable list-decoding scheme π of length n and resilience 1/2− ε.

A unique-decoding coding scheme for noiseless protocol π0:
For i = 1 to N = 1/ε, repeat:

1. Simulate π0 using the verifiable list-decoding scheme and obtain output list Yi (remove
invalid outputs from the list).

2. Parallel to Step 1, send Si = ∪j<iYj to the other side encoded with an error-correcting
code with relative distance 1− ε, that is, send send = ECC(Si).

3. Receive the codeword recv from the other side, and decode S̃i−1 = DEC(recv). Assign
each consistent path in S̃i−1 with confidence ci = 1− 2∆(recv,ECC(S̃i−1))

n .

Output the valid path that has gained the most confidence.

Figure 3.3: From a list-decoding scheme to a unique-decoding scheme

Parallel to the preceding process, at iteration i we also communicate the list of paths Si ob-
tained during the simulations of iterations less than i (removing any invalid path, i.e., path that
is inconsistent with the input of that party). To that end, first note that a list of L paths of
length n0 in T0 takes at most O(Ln0) bits to communicate. Thus, for any i, we can encode Si using
O(NLn0) = Oε(n0) bits. Next, we encode each such Si using a code ECC over an alphabet of size
|Σ2| = Oε(1), with relative distance 1− ε; such a code with length Oε(n0) can be easily found, and
we will assume its length is exactly n (increasing the length of the coding scheme π if needed).
Since both π and ECC are of the same length, we can concatenate each symbol of the codeword to
a symbol of the list-decoding scheme. This is done by using a larger alphabet Σ = Σ1 × Σ2, which
is still of constant size, without increasing the number of rounds the coding scheme takes.

The output is based only on the sets of paths S̃i the party receives. After receiving a specific Si,
the receiver removes any path that is inconsistent with its input, and gives a weighted vote to each
of the remaining paths. The weight of the vote (the confidence) is given according to the estimated
noise in the received word, recv: The closer recv is to a valid codeword, the higher the confidence
of the path in S̃i = DEC(recv). The output of the entire scheme is the path that has received the
highest overall confidence.

The analysis idea is simple: if at some iteration there were less than (1− ε)/2 corruptions, then
the correct path will be included in the list Si of that iteration and all subsequent iterations. Then,
at every subsequent iteration that has at most (1 − ε)/2 errors, the receiver adds confidence to
the correct path. If the total noise level is below 1/4 − ε errors, then the correct path will get a
positive confidence. Furthermore, note that as long as the set Si is decoded correctly, no incorrect
value gains confidence (since the sender sends only outputs that are consistent with his input, and
the receiver eliminates any output inconsistent with its own input). We now formally compute the
confidence of the correct path and show it surpasses the confidence of any incorrect path.

Assume that i∗ is the first iteration in which the list decoding outputs the correct path. Since π
failed in all iterations less than i∗, it must be that the relative noise fraction during these iterations
is at least (1 − ε)/2. Let ρi be the noise fraction of the codeword recv (without loss of generality,
received by Alice) at instance i. Consider the two cases where (1) S̃i = Si, so the confidence is
ci = 1− 2ρi, and (2) S̃i 6= Si, that is, when ρi > (1− ε)/2, so the confidence is ci = 2ρi − (1− 2ε).
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Figure 3.4: An illustration of the two types or errors. Both x and x′ are codewords with distance d, x is the sent
word, r is the received word, and t is the noise. In the first case, t = ∆(x, r); in the second, t = d−∆(r, x′).

See Figure 3.4.
Let Ig ⊆ [N ] denote all the iterations in which the correct path appears in Bob’s Si and Alice

correctly decodes the received word S̃i = Si. Then incorrect paths gain confidence only in iterations
not in Ig. We need to show that

∑
Ig ci >

∑
Ig
ci. Also note that in all the iterations in Ig, it holds

that ρi > (1− ε)/2: otherwise, if i < i∗, then the list decoding would have succeeded, and if i > i∗,
then the decoding of Si must be successful, and the iteration must belong in Ig instead. We have
that ∑

Ig

ci −
∑
Ig

ci ≥
∑
Ig

(1− 2ρi)−
∑
Ig

(2ρi − (1− 2ε))

≥ |Ig| − 2
∑
i

ρi + (1− 2ε)(N − |Ig|)

> 2ε|Ig|+ (1− 2ε)N − 4ρN
≥ (1− 2ε− 8ε2)N − 4 · (1

4 − ε)N

≥
(
2ε− 8ε2

)
N

> 0,

where ρ is the global fraction of noise, ρ = 1
2N
∑
i ρi. By noticing that if ρ < 1/4−ε, then |Ig| > 4εN :

indeed, the maximal number of iterations that have ρi > (1−ε)/2 (at Alice side; assuming no noise
at Bob’s side) is below (1− 4ε)N . This means that the correct path gets more confidence than all
the other paths altogether, and thus the output must be correct.

Using a slightly more careful analysis, Ghaffari and Haeupler [45] showed that there is no need
to use an optimal list-decoding coding scheme that is resilient to a 1

2(1− ε) fraction of errors, but
even a weaker list-decoding scheme that is resilient to a 1

4(1− ε) fraction of errors will do just fine.

Theorem 3.12 ([45]). For any ε > 0 for which there exists a verifiable list-decoding scheme with
noise resilience 1/4− ε and rate Θε(1), there exists a (unique-decoding) coding scheme with noise
resilience 1/4− ε, and rate Θε(1), with essentially the same computational complexity.

3.4.3 Efficient coding schemes with optimal noise resilience

The final ingredient is obtaining an efficient list-decoding scheme that could be plugged into The-
orem 3.11 and provide an efficient coding scheme that is resilient to the optimal fraction 1/4− ε of
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noise. Unfortunately, either the list-decoding scheme of Braverman and Efremenko (Theorem 3.10)
or scheme of Braverman and Rao (Theorem 2.5) can take exponential time in the length of the
simulated protocol. The key to obtaining an efficient list-decoding scheme is a boosting procedure
given by Ghaffari and Haeupler [45], which practically augments the techniques of Brakerski and
Kalai presented in §3.3 to the case of interactive list decoding. Namely, the boosting procedure
simulates the protocol on small chunks (here, of size log2 n0) and adds a layer of synchronizing
between computation of chunks. However, since each chunk yields a list of possible transcripts, the
synchronization part is more involved.

Theorem 3.13 (interactive list decoding boosting [45]). Assume a list-decoding scheme that simulates
protocols of length O(log2 `) in O(R log2 `) rounds, outputs a list of size L, resilient to ρ fraction
of noise with success probability 1 − 2−Ω(log2 `), and has a computational complexity T . Then,
for any ε > 0, there exists a list-decoding scheme for noiseless protocols of length n0 that takes
O(Rn0) rounds, outputs a list of size O(L/ε), resilient to a fraction ρ − ε of noise, succeeds with
probability 1− 2−Ω(n0), and has a computational complexity of T · poly(n0).

Applying the theorem onto the (exponential-time) protocol of Theorem 3.10 yields an efficient
list-decoding scheme with resilience 1/2 − ε and constant list size Oε(1). Note that we need to
apply the boosting at least twice3 in order to simulate π0 of length n0 in an efficient way: the
protocol of Theorem 3.10 is not efficient on chunks of size O(log2 n0). However, starting from chunk
size O((2 log logn0)2) and using Theorem 3.10, the boosting theorem guarantees an efficient list-
decoding for protocols of length O(log2 n0) with good parameters, specifically, with a computational
complexity of 2O(log logn0) ·poly(logn0) = poly(logn0). A second application of the boosting on that
protocol yields the following.

Theorem 3.14 ([45]). For any ε > 0, there exists an efficient interactive coding scheme that simu-
lates π0 in Oε(n0) rounds, is resilient to a fraction 1/4− ε of noise, and succeeds with probability
1− 2−Ω(n0).

The boosting procedure is given in Algorithm 4. We now sketch the main ideas that lead to
Theorem 3.13.

Theorem 3.13 proof sketch. Assume a protocol π0 to simulate. The main idea is to cut the protocol
into chunks of size log2 n0 and run the list-decoding scheme guaranteed by the theorem separately on
each chunk. As mentioned before, after each chunk the parties need to verify if they are synchronized
and agree on the next chunk to be simulated. The difficulty here is that each party possesses a
list of possible paths that previous chunks may have simulated (SA for Alice and SB for Bob). In
order to decide which path is the correct one (so that the simulation will continue extending this
part), the parties perform an interactive protocol that takes O(log2 n0) rounds, whose purpose is
to determine the longest path both Alice and Bob have simulated so far.

The interactive algorithm that finds the longest common path in SA∪SB can be seen as a binary
search over the set of paths SA. Consider SA as a set of edges. At each step Alice splits SA into two
parts by finding an edge e such that |Te|, the number of edges in SA located in the subtree below e,
is almost half of the entire set, that is, |SA|/3 ≤ |Te| ≤ 2|SA|/3. Alice then sends Bob a hash value
of the edge e. Bob replies with a single bit denoting whether the edge belongs to SB or not. Alice

3A third application of the boosting theorem yields a coding scheme with almost linear computation time; see [45].
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then recurses, either onto Te or onto SA \ Te, both of which reduce the number of edges by at least
one-third. The process completes after O(log2/3 n0) rounds. We can assume that each hash value
takes O(logn0) bits, so this scheme takes O(log2 n0) rounds, assuming a constant-size alphabet.
The scheme succeeds as long there is no hash collision between two different paths. The probability
that two different paths cause a hash collision can be bounded by O(N2L2) ·2−Ω(logn0) = 2−Ω(logn0)

by choosing a large-enough hash size. The failure probability can further be reduced to 2−Ω(log2 n0);
see [45].

Algorithm 4 Boosting interactive list-decoding schemes [45]
Input: a protocol π0, visualized as the tree T0 of depth n0.
Assume Alice’s edges in T0 for the input x are given by the set Ex.

1: SA ← ∅
2: for i = 1 to N = O( 1

εn0/ log2 n0) do
3: run an interactive protocol that finds the longest joint path between SA and Bob’s SB .

and let P be the output path
4: run a list-decoding scheme on the next O(log2 n0) rounds of π0 starting from the end of P ,

and assume Yi is the set of output paths
5: for each path p ∈ Yi do
6: if p is consistent with Ex then SA ← SA ∪ pj
7: if p leads to a leaf then add a vote to that leaf
8: output the O(L/ε) leaves with most votes

X

Open Questions for Section 3

1. Efficiently construct a d-ary tree code of some distance α where the encoding
of each label at depth of at most n takes polyα,d(n) time to compute.

2. Design an efficient binary coding scheme that is resilient to the maximal
possible fraction of noise.
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4
Adaptive Coding Schemes

As we saw in previous sections, 1/4 is an upper bound on the fraction of noise any nonadaptive
interactive protocol in which structure of the protocol (i.e., the order of speaking and the number of
rounds) is predetermined and is independent of the noise pattern. In this section we discuss adaptive
interactive protocols, which adaptively change their structure according to the observed noise. In
particular, the identity of the party that sends the next symbol may depend on the transcript so
far and, thus, on the noise. This adaptiveness allows protocols with noise resilience that surpasses
the upper bound of 1/4 presented in Theorem 2.12.

Modeling adaptive protocols is a subtle task. Since the parties don’t share the same view, they
might have different beliefs regarding the identity of the next party to speak, and an adaptive
model should carefully define how the protocol behaves in such situations. We discuss here two
different approaches to model adaptive protocols. The first approach, by Ghaffari, Haeupler, and
Sudan [46, 45], allows each party to decide, independently at each round, whether the party sends a
symbol (“speaks”) or awaits for an incoming symbol (“listens”), but it cannot do both. The second
approach, by Agrawal, Gelles, and Sahai [1], allows parties to choose whether or not they speak at
the next round; however, they always receive a sent symbol (i.e., they always listen).

Another issue that comes in adaptive protocols is determining the round of termination. While
in nonadaptive protocols, the length of the protocol is fixed and predetermined, in adaptive protocol
we may let each party decide on its own whether the protocol has terminated or not. Again, this
may lead to instances where one party has terminated while the other has not, and the model
should carefully define such situations. The approach of Agrawal et al. [1] allows also this sort of
adaptivity.

4.1 Adaptive coding schemes: The speak-or-listen model

Consider the following model, in which each party decides, independently at each round, whether to
speak or listen. In the nominal case, one party speaks and the other listens, so a symbol is transferred
between the parties (unless corrupted by the channel). If both parties decide to speak, none of them
receive the symbol sent by the other party (as none of them is expecting an incoming symbol). The
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most subtle case is when both are set to listen (but no symbol is sent over the channel). In this
case we allow the adversarial channel to determine which symbol they receive, but this corruption
is excluded from the noise count, that is, in such rounds the error comes “for free”. Except for this
change, the setting behaves as in the standard model described in previous sections. Specifically,
the simulation protocol π runs for n rounds, where up to a fraction ε of the symbols (in rounds
where one party speaks and the other listens) may be corrupted by the adversarial channel.

This model, suggested by Ghaffari, Haeupler, and Sudan [46, 45], allows tolerating a maximal
noise fraction of 2/7 − ε. Note that 2/7 ≈ 0.2857 is larger than 1/4; thus the resilience of these
adaptive coding schemes outperforms the resilience of nonadaptive schemes.

Theorem 4.1 ([46]). For any ε > 0, there exists an adaptive coding scheme in the speak-or-listen
model that simulates any π0 in Oε(n0) rounds, uses an alphabet of exponential size, and is resilient
to a fraction 2/7− ε of corrupted symbols.

Proof. The main idea is the following: split the protocol into seven chunks of equal size. The first
six chunks are used to perform a standard (nonadaptive) coding scheme—for example, a simplified
version of Algorithm 1 in which Alice maintains a set SA (and Bob maintains SB) that contains
the edges Alice would have communicated in Algorithm 1. At each round Alice sends this entire
set to Bob. Since the set contains only polynomially many edges, it can be described as a single
symbol out of a polynomially large alphabet.

The last chunk is the adaptive part. Each party estimates the noise that it “sees” during the
first six chunks and decides accordingly what to do during the last chunk: If the noise is high, it is
probable that the information received from the other side is incorrect, and the party uses the last
chunk to listen. If, on the other hand, the noise that party sees is low, then it is probable that the
channel corrupted the communication going to the other side. Then, the party uses the last chunk
to speak. The information in the chunk is all the information SA (or SB for Bob) accumulated
during the first six chunks. The scheme is sketched in Algorithm 5.

Algorithm 5 Adaptive coding scheme with resilience 2/7 in the speak-or-listen model
Input: a protocol π0 of length n0 = |π0| and an input x; A noise-resilience parameter 2/7− ε.
Describe π0 as the tree T0 and let Ex be the set of Alice’s edges in T0, on input x. Set n = n0/ε.

1: SA ← ∅
2: for i = 1 to 3n/7 do
3: Send SA, receive S̃B (takes 2 rounds)
4: if SA ∪ S̃B has a unique rooted path that ends at Alice’s owned node then
5: SA ← SA ∪ e where e is the (unique) edge of Ex that extends that path
6: if the unique path of SA ∪ S̃B reaches a leaf then
7: add a vote to that leaf

8: let t be the total number of votes cast so far, and let s be the votes of the leaf with most votes
9: if s > t− n/7 then

10: at each one of the next n/7 rounds, send SA
11: else
12: at each one of the next n/7 rounds, receive S̃B ; if SA ∪ S̃B leads to a leaf, add a vote to that leaf
13: output the path to the leaf that obtained the highest vote count
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First, we note that each set SA can be sent in a single round, using an alphabet of exponential
size, where each symbol contains O(n) bits. This follows since SA is constructed one edge at a time,
where each edge extends a previous path which is already contained in SA; that is, SA is a rooted
subtree of size at most n, and can be fully described using O(n) bits.

Next, we note that the number of votes the correct leaf gets at one side is at least 3n/7−n0−B,
where B is the number of rounds that were corrupted during the first 6n/7 rounds: during the first
6n/7 rounds, only 3n/7 are rounds in which a symbol is received and a vote may be cast (in the
other 3n/7 rounds, a symbol is sent, and a vote may be cast by the other party); furthermore,
it takes n0 rounds to “build” the path to the correct leaf so that in these rounds the correct leaf
cannot get a vote. Since the channel is limited to making at most (2/7−ε)n corruptions, the correct
node gets at least 3n/7−n0− (2n/7− εn) ≥ n/7 votes, while any incorrect node could get at most
(2/7 − ε)n votes. Therefore, if a certain node gets more than t − n/7 of the votes, where t is the
total amount of votes cast by that party during the first 6n/7 rounds of the protocol, that node
must be the correct node.

Lemma 4.2. If a node v gets more than t− n/7 of the votes, then it is the correct node.

Proof. Assume towards contradiction that some wrong node ṽ gets s votes where s > t− n/7; the
correct node v gets k votes, with n/7 ≤ k < s; all the other nodes (together) get p = t− s− k ≥ 0.
Since s > t− n/7 we have s > (s+ k + p)− n/7, thus k < n/7− p, which is a contradiction.

Furthermore, since any vote to an incorrect leaf (say) at Alice’s side stems from a corrupt symbol
sent to Alice, and since the total budget is less than 2/7, for at least one party the correct node
gets more votes. For that party, the correct node will get s > n/7 votes, while all other incorrect
nodes will get at most n/7 votes together; thus t − s ≤ n/7. Therefore, it is never the case that
both parties are set to listen during the last n/7 rounds.

Finally, we need to show that if for a given party s < t − n/7, then it recovers the correct
leaf by the end of the protocol. As we just saw, during the last n/7 rounds, that party will set to
listen while the other party will set to speak, sending its edge set SA or SB. Repeating the above
argument and taking into account the additional n/7 rounds in which the set of edges (SA or SB)
already contains the correct path, we find that the correct leaf gets at least 4n/7− n0 −B ≥ 2n/7
votes throughout the entire protocol. Any other leaf can get at most B ≤ (2/7 − ε)n votes; thus
the output must be the correct leaf.

While the preceding coding scheme of Algorithm 5 uses alphabet of polynomial size, in [46]
an equivalent scheme that uses a constant alphabet size but with a vanishing rate of O(1/n0) is
given. To reduce the alphabet size, each transmission of SA is replaced with O(n0) rounds in which
the set is encoded using good error-correcting code. This yields a scheme with O(n2

0) rounds and
a constant-size alphabet—thus a rate of O(1/n0). Using list-decoding techniques similar to the
ones discussed in §3, one can obtain an efficient scheme with a constant alphabet and a constant
rate [45].

Theorem 4.3 ([45]). For any ε > 0, there exists an efficient randomized adaptive coding scheme in
the speak-or-listen model that simulates any π0 in Oε(n0) rounds, uses an alphabet of size Oε(1),
and succeeds with probability 1−2−Ω(n0), assuming at most a fraction 2/7−ε of corrupted symbols.
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4.2 Adaptive coding schemes: The adaptive-termination and the speak-at-will models

4.2.1 Interactive coding with adaptive length

Consider the following adaptive-termination model, in which the party that speaks at round i is
predetermined by the round number; however, each party can take, independently at any round of
the protocol, an irreversible decision to terminate. When a party terminates, it gives an output and
stops participating in the protocol. After a party (say, Alice) has terminated (assuming Bob hasn’t
terminated yet), in each round where Alice is supposed to speak, Bob receives a default symbol ∅.
The channel may still corrupt rounds in which the default symbol ∅ is sent.

Since the protocol length is not fixed anymore, we need to be more careful in defining the
fraction of noise the channel may introduce. The natural way is to define the noise rate per instance
as the fraction of corruptions out of all the symbols that were sent in that instance. We denote this
noise model as relative noise rate.

Definition 4.1 (relative noise rate). Given a specific noise pattern, the relative noise rate in a
certain instance of the protocol is the fraction of corrupted symbols received by the parties out of
the number of symbols the parties sent in that instance.

Adjusting the length of the protocol according to the observed noise leads to a higher noise
resilience than the 1/4 obtained in the nonadaptive case. Specifically, this model, suggested by
Agrawal, Gelles, and Sahai [1], allows for interactive coding protocols with a noise resilience of 1/3−
ε, yet with a vanishing rate.

Theorem 4.4 ([1]). Given any function f(x, y) and any ε > 0, there exists an interactive protocol
in the adaptive-termination model, that computes f and is resilient to a relative fraction 1/3 − ε
of noise.

Proof. The idea of the protocol is the following. Alice and Bob will exchange their inputs x and y
encoded via some good error-correcting code (hence, the rate will be vanishing). Yet, the parameters
of the encoding (i.e., its length) will depend adaptively on the observed noise. Specifically, Alice
starts by sending ECC(x) using some fixed parameters. Then, Bob estimates the noise in the received
word, and chooses his encoding accordingly: the less noise he sees, the more corruption budget still
available to the channel, the stronger his encoding would be. The protocol is sketched in Figure 4.1.

Let us analyze the noise the channel makes in case the protocol fails. If Bob aborts before
sending y, then clearly the relative noise is (1 − ε)/2 > 1/3. Otherwise, there are two cases we
need to consider. If Bob decodes DEC(x̃) 6= x, it must be that the channels has corrupted at least
(1− ε)N0− t symbols in Alice’s codeword (recall Figure 3.4), and her relative noise in this case will
be at least

(1− ε)N0 − t
N0 + (2N0 − 4t) = N0 − εN0 − t

3N0 − 4t ≥ 1
3 −O(ε).

In the second case Bob correctly decodes DEC(x̃) = x, even though the channel has corrupted
t symbols of Alice’s codeword. The protocol can fail in this case only if Alice incorrectly decodes
DEC(ỹ) 6= y. For this to happen, the channel must corrupt (1− ε)/2 · (2N0−4t) additional symbols
of Bob’s codeword. This gives a relative noise rate of at least

t+ (1− ε)(2N0 − 4t)/2
N0 + (2N0 − 4t) = N0 − t− ε(N0 − 2t)

3N0 − 4t ≥ 1
3 −O(ε).
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0. Alice and Bob decide on a family of codes ECCi : {0, 1}n0 → ΣNi with |Σ| = O(1)
and 0 ≤ i ≤ N0. Each ECCi has a relative distance of 1 − ε and length Ni = N0 + i.
Furthermore, ECCi(x) is a prefix of ECCj(x) for any i < j. A random linear code will
have these properties with high probability.

1. Alice encodes x with via ECC0 of length N0 = O(n0).

2. Bob receives a word x̃ and computes t = ∆(x̃,ENC(DEC(x̃))).

3. If t ≥ 1
2 (1− ε)N0, Bob terminates and outputs ⊥.

4. Otherwise, Bob sends Alice ECC(y) with |ECC(y)| = 2N0 − 4t.

5. After Bob finishes sending ECC(y), he outputs f(DEC(x̃), y) and terminates.

6. Alice keeps listening until round N0 +2N0 and receives the word ỹ (the length of which
is determined by the point after which Alice received only ∅ symbols)

7. Alice outputs f(x,DEC(ỹ)).

Figure 4.1: Adaptive-length coding scheme with resilience 1/3 in the adaptive-termination model for the identity
function f(x, y) = (x, y).

It can also be shown that corrupting the ∅ symbols in order to make ỹ seem longer or shorter is
not helpful for the attack.

The above protocol only allows the parties to exchange their inputs. Hence, if this protocol is
use to simulate an arbitrary protocol it will result with a very bad rate. It is currently open whether
a coding scheme with constant rate and noise resilience of 1/3− ε can be achieved in this model.

On the other hand, 1/2 is an upper bound on the fraction of noise for adaptive protocols that
can only change their length.

Theorem 4.5 ([1]). No adaptive-length interactive protocol in the adaptive-termination model for
the identity function f(x, y) = (x, y) is resilient to a relative noise rate of 1/2 with probability
greater than 1/2.

While an upper bound of 1/2 on the noise rate is completely trivial for the nonadaptive case,
because there is always a party that speaks at most half of the symbols, this is not the case for
adaptive protocols, as the identity of the party that speaks at most half the symbols may change
throughout the protocol as a function of the noise. The key idea for proving the bound of 1/2 in
the adaptive-termination setting is to corrupt both parties until one of them terminates.

Proof. Assume a protocol π that computes the identity function and tolerates a relative noise
fraction of 1/2. Consider an instance of π where Bob holds y ∈ {0, 1} and in which we confuse
Bob about whether Alice holds a 0 or a 1. That is, regardless of Alice’s input, at each round where
Alice sends a different symbol in π(0, y) and in π(1, y), the channel alternates between sending
symbols from π(0, 0) and from π(1, 0). At the same time, the channel alters Bob’s transmission in
a similar fashion, alternating between π(x, 0) and π(x, 1). Note that this attack is well defined for
any input x, y ∈ {0, 1}.

Without loss of generality, let x, y be the input on which some party P terminates the earliest
among all other inputs in {0, 1} × {0, 1}. It is clear that P cannot output the correct bit of the

42



other party with probability greater than 1/2 since P ’s view is the same whether the other party
holds 0 or 1. The channel corrupts about half of all the transmissions until P terminates, so the
relative noise is at most 1/2.

The subtlety that arises in the preceding proof is that we must consider only the party P that
terminates first, since the view of the other party may be different if that party terminates after P
for one input and not the other; in one of the instances ∅ is received after P ’s termination point,
which may give the other party an advantage in guessing the input bit of P . A variant of the
preceding adaptive-length model that bypasses this subtlety is discussed in [1]. In that variant, the
parties are forced to output an invalid output ⊥ in case they terminate prematurely.

4.2.2 Interactive coding with adaptive order of speaking

The “fully adaptive” speak-at-will model combines adaptive termination of the protocol and adap-
tive choice of whether to speak or not. In contrast to the model of GHS, here the parties always
listen; however they can choose whether or not they send a symbol over the channel. In case they
choose not to send a symbol, the other side will hear a default ∅ symbol (unless corrupted by the
channel).1 This allows the parties to terminate the protocol at any desired round by simply giving
an output and ignoring symbols received in future rounds.

In this model we again use the notion of relative noise to denote the fraction of corrupted
symbols out of all the symbols sent by the parties (i.e., excluding rounds in which a party does not
speak).2 The channel is allowed to corrupt ∅ and thus may induce a relative noise that exceeds 1.
Note that if rounds where no symbol is sent were counted toward the noise budget, then the model
would be equivalent to the adaptive-termination model described in §4.2.1.

The ability to remain silent during some of the rounds leads to a new coding approach that has
the net effect of doubling the amount relative noise needed to corrupt a single message.

Definition 4.2 (silence encoding). Given a finite message spaceM = [n], The k-silence encoding of
a message i ∈M is the string

k-SE(i) = ∅ · · · ∅︸ ︷︷ ︸
(i−1)k times

11 · · · 1︸ ︷︷ ︸
k times

∅ · · · ∅︸ ︷︷ ︸
(n−i)k times

,

where 1 ∈ Σ is any non-∅ symbol. The decoding of codeword y returns the unique message m ∈M
that minimizes ∆(y, k-SE(m)) or a failure symbol ⊥ if no such unique message exists.

Lemma 4.6 ([1]). For any k ≥ 1, if k-SE is used to encode a message m ∈M, then

1. at least k corruptions are required to make the decoder output ⊥;

2. at least k + 1 corruptions are required to make the decoder output m′ ∈M, m′ 6= m.
1The motivation behind this model is, for example, an energy-aware channel. Assume the alphabet Σ = {0, 1, ..., k},

encoded via a discrete amplitude modulation. That is, in order to send i ∈ Σ, the party needs to put i units of energy
into the channel. If the party chooses not to spend energy at a given round, the other side hears “silence” that is, the
symbol 0 ∈ Σ.

2We stress that this is not without loss of generality: choosing not to speak at a given round does communicate
information to the other side. For this reason, in this model the rate of a protocol should be measured as a function
of the round complexity rather than the communication complexity.

43



Assume k = 1 is used to decode symbols. Then, with a single corruption, the receiver will decode
a ⊥ and be aware of the corruption (this is equivalent to an erasure). On the other hand, it takes
two corruptions to convert the symbol into a different one, thus doubling the amount of relative
corruption the channel needs to invest in order to make the protocol fail. This idea, along with the
protocol of Figure 4.1, or along with Algorithm 1 gives the following.

Theorem 4.7 ([1]). Given any function f(x, y) and any ε > 0, there exists an interactive protocol
in the speak-at-will model, that computes f and is resilient to a relative fraction 2/3− ε of noise.
In the worst case, the protocol has a vanishing rate (with respect to the shortest noiseless protocol
for f(x, y)).

Theorem 4.8 ([1]). For any ε > 0 there exists an interactive coding scheme that simulates any
protocol π0 in Oε(n0) rounds, uses a binary alphabet and is resilient to a relative fraction 1/2− ε
of noise.

It is rather straightforward that 1 is a trivial upper bound on the relative noise rate of this
model; with such a high corruption budget the channel can erase the entire communication, that
is, turn any symbol into ∅.

Theorem 4.9 ([1]). No interactive protocol in the speak-at-will model can compute a nonconstant
function f(x, y) and is resilient to a relative noise rate of 1 with probability greater than 1/2.

X

Open Questions for Section 4

1. Is it possible to achieve coding schemes with varying length (in the adaptive-
termination model) with resilience at least 1/3− ε and a constant rate?

2. What is the maximal noise resilience for protocols with varying length?
Specifically, is it possible to achieve a coding scheme with resilience 1/2− ε
(even one with a vanishing rate)?

3. What is the maximal noise resilience of an adaptive constant-rate coding
scheme with both varying length and adaptive order of speaking?
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5
Communication-Efficient Coding Schemes

So far we have concentrated on coding schemes with a constant (nonvanishing) rate; however we
didn’t care much about the actual constant. In this section we ask how large (how close to 1) the
rate of interactive coding schemes can get, as a function of the noise. Throughout this section, we
will assume the noise fraction ε is small, and analyze the asymptotic behavior of the rate as ε tends
to 0.

The above question is well studied for the unidirectional setting, where a sender holds a message
from some message space M and the goal is to communicate this message to a receiver utilizing
a noisy channel. The pioneering work of Shannon [80] proves that asymptotically (i.e., for a large-
enough message space), a rate slightly below 1 − H(ε) is enough for coding over a BSCε that
succeeds with exponentially high probability (in the length of the message). H(·) is the binary
entropy function H(x) = x log 1

x + (1− x) log 1
1−x . A similar result (up to the constants) holds for

the case where up to a fraction ε of the bits may be corrupted [53]; a coding scheme with a rate of
1−O(H(ε)) is still achievable.

We now extend the discussion to the interactive case. In order to obtain communication-efficient
coding schemes with a rate that approaches 1, it seems that there is no other choice but simulat-
ing the (noiseless) protocol as is while trying to figure out whether errors have happened, and
then quickly correcting any errors that may have happened. That is, the rewind-if-error paradigm
(Figure 2.3) is the prominent one for coding schemes with a rate that approaches 1 as the noise
approaches 0.

Unlike the unidirectional setting, when an error happens in an interactive protocol the rest
of the information (which is based on the incorrect history) is useless. Thus, in order to obtain
communication-efficient coding schemes, it is important to be able to find and correct errors very
close to the time which they occurred, which implies one needs to check the correctness of the
simulation very frequently.

The above realization suggests that the maximal obtainable rate is 1 − O(
√
ε). Assume we

run k bits of the protocol and then perform some checks to see if errors have happened, say, by
communicating c bits. Then, there are two contradictory goals in setting k: On one hand, we want k
to be large, since we add c bits every k bits of the protocol, that is, we lose a factor of c/k in the
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rate. On the other hand, as k gets larger, so does the probability of an error during this chunk.
Such an error will cause the simulation to rewind at least one chunk, increasing the simulation by
at least k additional bits.

Assuming a channel with random noise BSCε, the preceding reasoning suggests that the coding
scheme needs to communicate at least

n0 + c · n0
k

+ (k + c) ·
(
n0
k
· ε(k + c)

)
bits in expectation: n0 bits for the (noiseless) simulation of π0, c checkup bits for every k-bit chunk
gives the second term, and finally, for each one of the expected n0

k · ε(k + c) errors, we need to
re-simulate the noisy chunk which costs another c+ k bits and gives the third term. The minimum
is obtained when choosing k ≈

√
c/ε, which explains the square-root factor loss in the rate.

A naive attempt to convert Algorithm 2 into an efficient-communication one involves reducing
the block size (k) from logn0 to O(1/

√
ε). Similarly, the output of the hash function in use must

be restricted to a small constant (e.g., O(log 1/ε), for a total rate of 1− Õ(
√
ε log 1/ε)). However,

this naive conversion faces a difficulty when the parties need to communicate the length |T | of their
currently simulated transcript. Communicating this value directly takes logn0 bits, which is too
high. On the other hand, communicating only a small hash of this value reveals only whether or
not they have the same length, but it doesn’t reveal which party is ahead of another; thus they
cannot synchronize back to a point where they agree.

There are two approaches to solve a possible mismatch in the length of T without communi-
cating its length: (1) With fixed point of return, the parties predetermine certain rounds of the
simulation to perform a consistency check. If the check fails, the simulation is rewound to a fixed
and predetermined point. (2) In a dynamic point of return, the parties dynamically find a common
prefix of T where they both agree. To this end, they start “going back” in T in an increasing
magnitude until they find a point of agreement.

In the following we explore two schemes that take these two paths. The first scheme, by Kol
and Raz [59], uses fixed return points, while the second scheme, by Haeupler [51], takes the second
approach and dynamically coordinates rendezvous points.

5.1 Rate 1− O(
√

ε log 1/ε) for random noise

The first communication-efficient protocol, suggested by Kol and Raz [59], achieves a rate of 1 −
O(
√
ε log 1/ε) = 1−O(

√
H(ε)) over a BSCε. The protocol takes a recursive rewind-if-error approach,

which can be seen as an optimized version of the checking steps of the scheme in [74]: after every
chunk of data the parties exchange some bits to verify the correctness of the currently simulated
transcript. However, as the transcript gets longer and longer, so does the number of checking bits
communicated to verify the transcript and so does the number of steps we allow the simulation to
rewind. The checking steps are built in recursive levels that can be thought of as a k-ary tree: each
chunk of the noiseless protocol is a leaf of the tree (level 0), and each node above it (level `) is a
checking point that verifies all the levels below it and rewinds the protocol 2` steps back in case of
inconsistency. The coding scheme is described in Figure 5.1.

Lemma 5.1 ([59]). The KR protocol (Figure 5.1) has a rate of 1−O(
√
ε log 1/ε).
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Protocol A1 (assuming currently simulated transcript Tprev):
1. Run π0 for k steps, assuming the simulated transcript so far is Tprev. Let T be the new

k simulated bits.

2. Let H = {h : {0, 1}k → {0, 1}} be a family of 101 log k hash functions, shared between
the parties (e.g., via a shared random string).

3. For any h ∈ H send ECC(h(T )), concretely, use a repetition code of length 101 bits.

4. If all the (decodings of the) received hash values are consistent with T , output Tprev◦T .
Otherwise, output Tprev.

Protocol A`+1 (assuming currently simulated transcript Tprev):
1. T ← Tprev.

2. Repeat k times: T ← A` (assuming the currently simulated transcript is T ).

3. Let H = {h : {0, 1}k`+1 → {0, 1}} be a family of O(101`+1 log k) hash functions.

4. For any h ∈ H send ECC(h(T )), concretely, use repetition code of length 101`+1.

5. If all the (decodings of the) received hash values are consistent with T , output T .
Otherwise, output Tprev.

The KR simulation:
Given a protocol π0 to simulate and a noise parameter ε, set k so that ε = log k

k2 , and let
s = c logn0 for some small-enough c. Run As sequentially for β = n0

ks (1 +O( log k
k )) times.

Figure 5.1: The Kol-Raz coding scheme [59].

Proof. The subprotocol A` communicates k ·CC(A`−1)+2·1012` log k bits. By opening the recursion,
we can bound this amount by k`(1 +O( log k

k )). Therefore, the KR scheme communicates a total of

CC(As) ·
n0
ks

(
1 +O

( log k
k

))
≤ ks

(
1 +O

( log k
k

))
· n0
ks

(
1 +O

( log k
k

))
= n0

(
1 +O

( log k
k

))
bits. Recall that ε = (log k)/k2, then the above equals

n0
(
1 +O

(√
ε log k

))
= n0

(
1 +O

(√
ε log 1/ε

))
.

Theorem 5.2 ([59]). The KR scheme simulates π0 over a BSCε with probability 1− 2−n0Ωε(1) .

Proof. For each subprotocol A`, define the following two measures:

1. Disagreement probability: the probability that, given both parties assumed the simu-
lated transcript so far was Tprev, they end up with different outputs.

dis` = Pr[A`(Tprev)Alice 6= A`(Tprev)Bob].

2. Progress: the expected increase in the length of T , given that both parties started with
the same Tprev.

prog` = E [|A`(Tprev)| − |Tprev|] .
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For the base case, A1, the parties would disagree on the output in one of two cases: (1) an error
occurred in the simulation, but all the hash values came out the same (i.e., there was a hash collision
between the simulated transcript T computed at Alice’s and Bob’s sides); or (2) the transcripts
in both sides are the same, but at least one of the received hashes is inconsistent (due to noise in
transmitting this hash value).

The probability of the first case is at most 2−101 log k: we can choose the hash functions so that a
collision will have a probability 1/2 (e.g., by taking the binary inner product hash ha(x) = 〈x, a〉).
The probability of the second case is the probability that the noise flips more than 51 bits of
the encoding of a single hash, which is bounded by 2 · 101 log k · 2101 · ε51 ≤ ε20 (we can change
the constants to force this inequality in case ε is not small enough). Thus, we can safely assume
dis1 < k−20.

As for the progress of A1, note that the simulation progresses by k steps unless there was
at least one bit flip in the entire communication of A1, which happens with probability at most
ε · (k + 2 · 101 · 101 log k) ≤ O( log k

k ). Thus, prog1 ≥ k(1−O( log k
k )).

Repeating a similar argument for the `-th level of the recursion A`, one gets,

dis` ≤ k−20` ,

prog` ≥ k · prog`−1(1− k−10`−1) ≥ k`
(

1−O
( log k

k

))
.

And for the entire KR protocol that runs As sequentially for β = n0
ks (1 + O( log k

k )) times, we have
a disagreement probability of

disKR ≤ β · diss
≤ n0 · diss
≤ n0k

−20c logn0

≤ n0k
−n0Ω(c) = 2−n0Ωε(1)

,

and the expected progress is given by the progress of all the As instances, assuming they all
ended without any disagreement (which happens w.p. at least (1− βdiss),

progKR ≥ βprogs · (1− βdiss)

≥ n0
ks

(
1 +O

( log k
k

))
·
(
1− 2−n0Ωε(1)) · ks (1−O

( log k
k

))
≥ n0

(
1 +O

( log k
k

))
,

where the last transitions can hold with an appropriate choice of constants. This implies that, except
with probability 2−n0Ωε(1) for some small constant c, the parties agree on the output transcript,
and that the simulated transcript has an expected length greater than n0(1 + O(

√
ε)). Therefore,

via a tail bound on the length of the transcript, except with probability of 2−n0Ωε(1) , the parties
will have successfully simulated at least n0 steps of π0.

5.2 Rate 1− O(
√

ε) for random noise

A coding scheme that achieves a rate of 1−O(
√
ε) was given by Haeupler [51].
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The scheme, depicted in Algorithm 6, generally follows the rewind-if-error paradigm using
chunks of size k ≈ O(1/

√
ε) and hash values of size c ≈ O(1). In addition to exchanging hash

values of the currently simulated transcript, the parties also exchange hash values of two additional
meeting points in the history to which the simulation may revert (this is an optimized version of
the meeting-points mechanism in [74]). This mechanism allows the parties to coordinate rewind-
ing the protocol in a synchronized way by communicating hashes of O(1) bits, maintaining the
communication efficiency of the scheme.

To see the need for such a mechanism, recall the simple rewind-if-error scheme of Algorithm 2.
When the two parties find that their transcripts are inconsistent (i.e., the hashes mismatch), they
need to rewind. Note that they must rewind in a coordinated way: if one party is ahead of the
other, only that party must rewind or otherwise, if both rewind, their transcripts would remain
inconsistent until they rewind to the very first round. Indeed, in Step 9 of Algorithm 2, the parties
identify the party that is ahead and only this party rewinds (both parties rewind if both transcripts
are of equal length). This step is possible since Algorithm 2 uses a large alphabet size that allows
communicating the current length of the transcript. However, when the alphabet size is small, we
cannot communicate this information, and a more sophisticate method must be used in order to
determine which party needs to rewind, and by how many rounds.

It is crucial that a small amount of errors would force the parties to rewind only a small number
of rounds. Put differently, if the parties agree to rewind a large number of rounds, then it must be the
case that many transmissions were corrupted by noise. The meeting points mechanism dynamically
sets the number of rounds to rewind as a function of the noise, so that a small amount of noise will
not be able to cause the simulation to rewind too many rounds.

More specifically, the mechanics of the meeting points is as follows. When an inconsistency is
found (hashes mismatch), the parties try to agree on a point that is at most 2 × 2` chunks away
from their current position (starting with ` = 1). To this end, they define as meeting points the
two longest transcript prefixes whose length is an integral multiply of 2`. For example, if the length
(in chunks) of the current transcript is t2` + r with 0 ≤ r < 2`, then the two meeting points will
be the prefix of length t2` chunks and the one of length (t − 1)2` chunks. Whenever the parties
compare hashes of the current simulated transcript, they also compare hashes of the transcript
prefixes corresponding to each of the two meeting points. Each time these hashes are equal for some
meeting point, that meeting point gains more confidence. Eventually, after 2` rounds the parties
make a decision whether or not to rewind to a meeting point: the parties revert to a meeting point
that gained confidence greater than about 2`/2, if such exists. Otherwise, ` is increased by 1, and
the parties repeat this procedure, now with new meeting points located further back in the history.
To be certain that the parties are synchronized with respect to the meeting points’ mechanism, they
also exchange hashes of the meta data regarding their ` and meeting-point position. If during the
2` rounds, more than half of the metadata hashes are inconsistent, the parties reset ` = 1 and try
again. This prevents the adversarial channel from interfering with the meeting points mechanism
itself.

Remark 5.1. In the coding scheme, described in Algorithm 6, we assume the parties pre-share
a random string of length O(n2

0); this randomness is used to seed hash functions. However, this
assumption is not needed, and in fact the parties can exchange randomness while keeping the
communication small. This is done by exchanging about εn0 random bits, encoded via a good error-
correcting code (say, with distance 4εn0; this can be done by communicating O(εn) bits without
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Algorithm 6 Haeupler’s coding scheme with rate 1−O(
√
ε) [51]

Input: a protocol π0 of length n0 = |π0| and an input x.

Let c = O(1) (the hash size), k = O(
√
c/ε) (the size of each chunk).

Assume R is a shared random string of length O(n0
2).

Let N = n0/k + 65n0ε and set n = Nk = n0(1 +O(
√
ε)).

Let H = {hs : {0, 1}n → {0, 1}c} be a family of hash functions with seed size |s| = O(c · (n + logn))
and input size long enough to hash a complete transcript of the scheme below. The i-th bit of hs(x) is
defined as the inner product 〈x ◦ |x|, s(i−1)(n+logn)+1 · · · si·(n+logn)〉.

1: T ← ∅; gap← 0.
2: for i = 1 to N do
3: s← new seed from R
4: compute new estimated gap between the transcripts, and the meeting points:

gap← gap+ 1
`← blog gapc
write |T |/k = m · 2` + rem, with m ∈ N and rem ∈ [0, 2` − 1], then
mp1 = (m · 2`)k, mp2 = max(0, (m− 1)2`)k

5: let (Hgap, HT , Hmp1, Hmp2)← (hashs(gap), hashs(T ), hashs(T [1..mp1]), hashs(T [1..mp2]))
6: send (Hgap, HT , Hmp1, Hmp2)
7: respectively, receive (H ′gap, H ′T , H ′mp1, H ′mp2)

8: if Hgap 6= H ′gap then . the parties don’t agree on the value of gap (i.e., on 2`)
9: gap-err ← gap-err + 1

10: else . maintain the meeting point that is more consistent
11: if Hmp1 = H ′mp1 or Hmp1 = H ′mp2 then
12: mp1.vote← mp1.vote+ 1
13: if Hmp2 = H ′mp1 or Hmp2 = H ′mp2 then
14: mp2.vote← mp2.vote+ 1

Simulate next chunk (if transcripts seem consistent):
15: if (Hgap, HT , Hmp1, Hmp2) = (H ′gap, H ′T , H ′mp1, H ′mp2) and gap = 1 then
16: run k more steps of π0 assuming the simulated transcript so far is T
17: gap← 0, mp1.vote← 0, mp2.vote← 0
18: else
19: perform k dummy simulation rounds (ignore incoming communication)

Rewind mechanism:
20: if 2 · gap-err ≥ gap then . meta data cannot be trusted
21: gap-err, gap← 0
22: else if gap = 2` then . Simulation reached a checkpoint

. rewind if some meeting point gained enough trust.
23: if mp1.vote ≥ 0.4 · 2` then
24: rewind back to mp1; gap← 0
25: else if mp2.vote ≥ 0.4 · 2` then
26: rewind back to mp2; gap← 0
27: mp1.vote,mp2.vote← 0 . reset counters for the next gap level
28: output T (a prefix of length n0)
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affecting the rate of the interactive coding scheme). Then, this short random string is expanded into
a string of length O(n2

0), which is very close to uniform—for example, via small-biased probability
spaces [67, 3]. [The above expansion of randomness used as a seed for hash functions can be seen
as a simple application of Theorem 2.8.] To make explanation simpler, we will assume from this
point on that the parties share a uniform string of the necessary length.

Lemma 5.3 ([51]). Algorithm 6 has a rate of 1−O(
√
ε).

Proof. The scheme runs for N = n0/k + 65n0ε rounds, in each of which the parties communicate
8c+ k bits. The total communication is thus

N(8c+ k) = n0 ·
(

1 + 8c
k

)
+ ε(65n0(8c+ k))

= n0
(
1 +O

(√
ε
)

+O(ε)
)

= n0
(
1 +O

(√
ε
))
,

which proves the claim (recall that ε < 1; therefore, ε ≤
√
ε).

Theorem 5.4 ([51]). Algorithm 6 simulates any π0 over a BSCε with probability 1− 2−Ωε(n0).

Since the complete proof is very technical, we only give here some intuition and refer the reader
to [51] for full details.

Proof intuition. The proof basically goes along the same lines of proving the correctness of Algo-
rithm 2; that is, we define a potential function that measures the length of the correct prefix of the
simulated transcript. It is easy to see that as long the two sides are fully synchronized, gap = 1, and
no error has happened, then the parties simulate the k rounds correctly and increase the potential.
However, errors may decrease the potential either by corrupting the simulated transcript, or by
causing the parties to get out of sync (i.e., by corrupting the metadata Hgap, etc.). Additionally, an
event of hash collision may prevent the parties from learning they are not synchronized and delay
the simulation even further.

Very intuitively, in the worst case, a burst of errors may eventually cause the simulation to
rewind up to 2 · 2` chunks (e.g., by causing enough errors to make gap = 2`); however, this can
happen only if the rewind mechanism at the round where gap = 2`−1 did not make the parties
go back, which implies ≈ 2`/4 errors (or hash collisions) must have happened during the last
2` iterations. It follows that, for any constant c, a total of c · εn0 errors can rewind the simulation
by at most O(cεn0) chunks of size k. Note that for c > 1, the probability that over a BSCε there are
more than cεn0 is at most 2−Ωε(n0). Additionally, it is shown that the number of hash collisions that
happen in iterations where the parties are unsynchronized1 is at most O(εn) with high probability.
Hence, running the coding scheme for n0/k+O(εn0) iterations with a large-enough constant suffices
to correctly simulating π0.

If the coding scheme is allowed to be adaptive, then Algorithm 6 obtains the same rate for
any π0, even non-alternating one. We note that the adaptivity here is needed: assume that π0 is
not alternating, but instead the order of speaking is such that Alice speaks for k rounds and then

1Recall that a hash collision happens when h(x) = h(y) but x 6= y. Thus, iterations in which the parties are
synchronized (i.e., where x = y) should not be counted toward hash collisions!
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Bob talks for k rounds. If the coding scheme is not adaptive, then after each rewind the order of
speaking in the coding scheme may mismatch the one of π0, which causes a loss in the rate.

Using similar methods to Algorithm 6, Haeupler [51] showed a coding scheme that tolerates up
to a fraction ε of adversarial noise and has a rate 1−O(

√
ε log log 1/ε).

Theorem 5.5 ([51]). For any small-enough ε, there exists an efficient interactive coding scheme
that simulates π0 with probability 1− 2−Ωε(n0) in the presence of up to a fraction ε of adversarial
noise. The scheme has a rate of 1−O(

√
ε log log 1/ε).

5.3 Rate upper bounds and the order of speaking

The question that emerges from the above discussion is, “what is the capacity of interactive com-
munication”, that is, what is the maximal rate that coding protocols can achieve. Formally, we can
define the capacity of interactive coding in the following manner:

Definition 5.1. The capacity of interactive protocols over a channel Ch is

C(Ch) = lim inf
n0→∞

min
f s.t.

CC(f)=n0

n0
CCCh(f) ,

where CCCh(f) = minπ CCCh(π) over all the protocols π that compute f over Ch with a vanishing
error probability over the parties’ coin- flips (and the noise, in case it is random).

Note that we define the capacity using limit inferior, since it is not known whether the best
achievable rate, as n0 →∞, converges to a limit.

It is very interesting to compare this quantity to the capacity of a coding over a unidirectional
noisy channel, known to be precisely 1 − H(ε) for a BSCε and 1 − Θ(H(ε)) for a fraction ε of
adversarial noise (with a constant less than 2). In the interactive case, as suggested before, the rate
is likely to be closer to 1−O(

√
ε); hence there is a gap between the unidirectional and interactive

settings; see Figure 5.2.
A first upper bound on the rate of coding schemes in the interactive setting was proven by Kol

and Raz [59], showing a specific noiseless protocol whose (nonadaptive) simulation over a BSCε has
a rate at most 1− Ω(

√
H(ε)).

Theorem 5.6 ([59]). For any d, k ∈ N, there exists a (non-alternating) protocol π0 that computes
a specific distributed function by communicating CC(π0) = d · k bits over a noiseless channel, such
that any coding scheme π with a predetermined order of speaking solves the same task over a BSCε
with ε = O( log k

k2 ) and success probability δ, communicates at least

CC(π) ≥ d · (k + Ω(log k))(1− 2δ)−O(k)

bits, in expectation.
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Figure 5.2: The rate gap between the interactive and the noninteractive case for small ε (omitting the constant in
the leading term)

Assuming large-enough d, k, the theorem implies that any coding scheme for the task mentioned
in the theorem has a rate r bounded above by

r ≤ dk

d · (k + Ω(log k))(1− 2δ)−O(k)

≈ 1
1 + Ω(log k)/k

= 1− Ω
( log k

k

)
= 1− Ω

(√
ε log 1/ε

)
= 1− Ω

(√
H(ε)

)
.

Based on a superficial look, the above theorem seems to conflict with the existence of Algo-
rithm 6, which achieves a rate of 1−O(

√
ε) > 1−Ω(

√
H(ε)). Yet, the two differ in the setting they

assume. Specifically, they differ in the order in which the parties speak in the noiseless protocol:
the upper bound of Theorem 5.6 assumes a particular order of speaking in π0, namely, each party
talks for k consecutive rounds, where k is determined as a function of ε. In Algorithm 6, on the
other hand, it is assumed that the simulated protocol π0 is alternating.

It follows that the order of speaking in π0 greatly affects the rate of any (nonadaptive) coding
scheme. Note that any protocol π0 can be turned into an equivalent alternating protocol; however,
this may cause the increase of the communication by a factor of up to 2. In other words, this limits
the rate by at most half, in the worst case.

The result of Kol and Raz (Theorem 5.6) provides a protocol π0 with a very certain order
of speaking and shows lower bound on the rate of any coding scheme with a predefined order of
speaking for that π0 (even if the order of the simulation is set according to π0). Haeupler [51]
conjectured that, unless the simulation is adaptive, there exist noiseless protocols for which the
rate of any simulation with a fixed order of speaking is bounded away from 1.
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Conjecture 5.1 ([51]). Given π0 whose order of speaking is sufficiently irregular (e.g., pseudo-
random), any fixed-order (nonadaptive) simulation of π0 has a rate which is bounded away from 1.

Overcoming this conjectured impossibility can be done by using adaptive coding schemes—it is
reasonable that Algorithm 6 is capable of simulating any adaptive protocols with rate 1 − O(

√
ε)

(say, in a variant of the speak-or-listen model with a random noise). Upper bounds on the rates of
adaptive coding schemes (either in the speak-or-listen or the speak-at-will model) are still open.

X

Open Questions for Section 5

1. What is the maximal rate of alternating coding schemes, assuming an alter-
nating π0? That is, prove or refute the conjecture [51] that the best coding
scheme has rate 1−Θ(

√
ε).

2. Prove (or refute) Conjecture 5.1: show a π0 for which no nonadaptive simu-
lation with a rate of 1− o(1) exists.

3. What is the capacity of adaptive interactive protocols (that is, the asymp-
totical maximal rate obtainable by adaptive coding schemes), either in the
speak-or-listen or the speak-at-will model?

4. How is the rate of interactive coding schemes affected by various setting
assumptions (e.g., a shared randomness, a reduced success probability, etc.)?
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6
Coding Schemes over Different Noisy Channels

In this section we discuss coding schemes over channels and noise models that are different from
the “standard” BSCε and adversarial noise discussed before. Both the noise resilience and the rate
of the coding scheme greatly depend on the specific noise model. The analysis of different relevant
noise models could possibly lead to coding schemes that perform better in many common situations
and settings.

First we discuss a weaker type of noise, namely, channels with noiseless feedback and erasure
channels. These models are weaker than the standard noise model because here at least one of the
parties is aware of the error: when noiseless feedback channels are present, the sender learns the
symbol received at the other side (and thus can compare it to the sent symbol); in the case of
erasure noise, the receiver learns that a certain symbol was erased. One can also consider erasure
channels with noiseless feedback; however in this type of channel both parties are aware of an error
and can simply repeat the transmission until the symbol is received correctly at the other side [76].

Next we discuss a stronger type of noise, namely, a channel that can insert and delete symbols.
This type of noise causes the parties to believe they are at different steps of the coding scheme.

Lastly we briefly mention a coding scheme that assumes quantum channels, where the parties
exchange quantum systems rather than classical bits.

6.1 Channels with noiseless feedback

In the case of channels with feedback, we assume that in addition to the noisy (“main”) channel, the
parties share another noiseless (“feedback”) channel. However, the additional channel can be used
only in a very restricted manner: when a symbol σ is communicated through the noisy channel
and a symbol σ′ (possibly corrupted) is received, the symbol σ′ is then automatically sent over
the feedback channel back to the sender. This way, the sender can learn whether his symbol was
correctly received at the other side and, if not, what symbol was received. As before, the main
channel can be a BSCε or a channel with a fraction ε of adversarial noise.

We begin by discussing the noise resilience of coding schemes in this model, and show optimal
schemes with constant rate over channels with binary and larger alphabets. Then, we discuss
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communication efficient coding schemes and the maximal rate achievable in this model.

6.1.1 Noise resilience

Nonadaptive coding schemes with fixed order of speaking

When a noiseless feedback is present, the task of identifying whether the simulation so far is correct
or not becomes trivial; at least one side is aware of previous errors. That party can send a special
symbol to instruct the other side to rewind the simulation until all errors are corrected. Following
this observation, Efremenko, Gelles, and Haeupler [27, 28] designed a very simple and efficient
rewind-if-error coding scheme that is resilient to a fraction 1/4 − ε of noise, which is described in
Algorithm 7.

The coding scheme uses a ternary alphabet {0, 1,←}, where 0, 1 are used to denote information
bits and ‘←’ is a special symbol that upon reception, instructs both parties to rewind the simulation
of π0 by 3 rounds. The parties exchange symbols in alternating rounds, and maintain a string T
describing the simulated transcript so far. When an information bit b ∈ {0, 1} is received, this bit is
added to T (in both sides). When ‘←’ is received, both sides erase the last three bits of T . Note that
due to the feedback, both parties know which symbols were received, and so both parties always
hold the same T (which may be correct or may contain errors).

The coding scheme assumes a fixed order of speaking, specifically, the parties send symbols in
an alternating manner. This must hold also when a ← symbol is received. For this reason, the
parties rewind 3 rounds (rather than, say, only 2), and keep the order of speaking alternating;
see Figure 6.1. This has the side effect of reducing the noise resilience (see below for scheme with
nonfixed order of speaking).

Theorem 6.1 ([28]). For any ε > 0, Algorithm 7 communicates Oε(n0) bits and is resilient to a
fraction 1/4− ε of corruptions.

Proof. It is clear that the algorithm communicates O(n) = Oε(n0) bits, and we need to show only
that it tolerates noise rate of 1/4− ε.

The main observation is that each error causes the simulation to “stall” for exactly 4 rounds.
Consider an error at round i, say changing the value of a communicated information bit. If during
the next 3 rounds there are no errors, then at round i+ 2 the party will send ←, and at the end of
round i+ 3 both parties will hold the same T as they had at the end of round i− 1. See Figure 6.1
for an illustration. The same happens if a bit b is turned by the noise into a ← symbol, or vice
versa.

Furthermore, if an error happens at round i and an additional error happens at round i′, where
i < i′ ≤ i+ 3, then it still takes at most 3 noiseless rounds to get the parties back to the state they
were at the end of round i′ − 1; thus, after at most 6 noiseless rounds, they are back to the state
they were at the end of round i− 1. That is, errors just linearly accumulate.

The preceding analysis suggests that n(1/4 − ε) errors are fully corrected after 3n(1/4 − ε)
noiseless rounds. In the other n − 3n(1/4 − ε) − n(1/4 − ε) = 4εn = n0 rounds, the simulation
progresses without disruption and extends the simulated transcript T by a single bit each time.
Therefore, at the end of the simulation, the correct prefix of T is at least n0 bits long.

It is possible to convert Algorithm 7 to use the binary alphabet, by encoding the ← symbol by
two bits, say 00, and ensuring that the noiseless protocol π0 never sends two consecutive zeros (e.g.,
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Algorithm 7 A coding scheme over channels with feedback with ternary alphabet [28]
Input: a binary alternating protocol π0 and an input value x. A noise parameter 1/4− ε.

Initialize T ← ∅; TF ← ∅.
Split T into two substrings corresponding to alternating indices: TS are the sent characters, and TR the
received characters. Let TF be the characters received by the other side (as learned via the feedback
channel).

1: for i = 1 to n = dn0/4εe do
2: if TF = TS then . no errors in T are known
3: T ← T ◦ π(x | T ) . run one step of π, given the transcript so far is T
4: TF ← TF ◦ 〈symbol recorded at the other side〉 . only if sender
5: else . T contains errors, send a rewind request
6: if sender:
7: send a ‘←’ symbol
8: T ← T ◦ ‘←’
9: TF ← TF ◦ 〈symbol recorded at the other side〉
10: if receiver:
11: extend T according to incoming symbol

12: if either TR or TF ends with a ‘←’ then
13: remove the last 4 symbols from T

(and the corresponding transmissions in TF as well, i.e., its last 2 symbols)
14: output T (a prefix of length n0)

Alice 1 0 1 ←

Bob 1 1 1 ←
↓ ↓↑ ↑

(round)i− 1 i i+ 1 i+ 2
(i+ 3)

rewind

Figure 6.1: Rewinding in Algorithm 7 in the case of a single error at round i. After 3 rounds that contain no errors,
the simulation restores to the exact same configuration it had prior to the error.
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by preprocessing π0 so that each party sends a 1 between any two transmissions of the original
protocol). In this case, each← symbol should rewind the simulation by 6 rounds instead of 4, since
it takes 2 bits just to communicate the ← symbols itself (see Figure 6.2). This binary protocol can
tolerate up to a fraction 1/6− ε of noise.

Theorem 6.2 ([28]). For any ε > 0, there exists an alternating binary interactive coding scheme
that simulates any protocol π0 in Oε(n0) rounds over channels with noiseless feedback, and is
resilient to 1/6− ε corruptions.

Alice 1 0 1 0 1 0

Bob 1 1 1 0 1 0
↓ ↓ ↓↑ ↑ ↑

(round)i− 1 i i+ 1 i+ 2 i+ 3 i+ 4
(i+ 5)

rewind

Figure 6.2: Rewinding the binary variant of Algorithm 7, where 00 denotes ←. A single error at round i followed
by 5 rounds free of errors restores the simulation to the exact same configuration it had prior to the error.

The resilience of 1/6 and 1/4 achieved by the above schemes is, in fact, tight for coding schemes
whose order of speaking is fixed.

Theorem 6.3 ([28]). No interactive protocol for the identity function f(x, y) = (x, y) with a fixed
order of speaking can tolerate noise rate of 1/4 with probability greater than 1/2, and no binary
protocol with fixed order of speaking can tolerate noise rate of 1/6 with probability greater than 1/2,
even in the presence of noiseless feedback.

Since the model of channels with noiseless feedback is stronger than the standard model, the
upper bound carries over to the standard case and extends the upper bound of Theorem 2.12 for
the standard setting. That is, the upper bound of 1/6 applies also for binary noisy channels without
feedback [28].

Proof. The 1/4 bound follows from the same reason as in Theorem 2.12.
The 1/6 bound follows by extending a technique by Berlekamp [7] for showing that a noise

fraction 1/3 is maximal in the case of unidirectional message coding over channels with feedback.
Since the protocol has a fixed order of speaking, there exists one party that speaks less than

half of the rounds; assume without loss of generality it is Alice and that she speaks for a total of
nA ≤ n/2 rounds. Assume Alice holds one of three possible inputs a, b, c. Consider the following
attack, defined recursively on the rounds i where Alice speaks. At round i = 1, the channel considers
the bit Alice sends on each of her inputs (denote these bits by ba(1), bb(1), bc(1), respectively). Note
that at least two of these bits are the same. The attack changes the bit Alice sends at round i = 1
to majority(ba(1), bb(1), bc(1)). That is, for at least two inputs, the channel does nothing, and for
the third input, the channel may need to flip the bit. At every other round i < R where Alice
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is the speaker (we set R shortly), the channel considers the bit Alice sends on each of her inputs
(ba(i), bb(i), bc(i) respectively) given the preceding attack on rounds [1, i − 1] and changes Alice’s
transmission so it becomes majority(ba(i), bb(i), bc(i)).

Denote by Na(i) the noise the preceding attack causes through round i given that Alice holds
the input a (similarly define Nb(i), Nc(i)). Set R to be the minimal round so that second-largest
value out of (Na(R), Nb(R), Nc(R)) equals nA/3. Without loss of generality, assume c maximizes
this value at round R and that b is the second-largest value, that is, Nb(R) = nA/3, Na(R) < nA/3.
Also note that since the attack makes a single corruption in at most one input every round, then
R ≥ Na(R) + Nb(R) + Nc(R). Finally, note that up to round R, Bob sees exactly the same view
whether Alice holds a, b, or c. From this point on, we don’t care about the input c, as we will show
the attack succeeds on inputs a and b.

From round R+1 until the end of the protocol (round nA), if Alice holds a, the channel changes
all Alice’s transmissions to be what Alice would have sent given that she had the input b. If Alice
holds b, the channel does nothing. In Bob’s view, exactly the same bits are received between round
R and the end of the protocol (and therefore, throughout the entire protocol) whether Alice holds a
or b.

We are left to show that the total noise rate on Alice’s side is at most 1/3 (then the total noise
fraction is 1/6, since Alice speaks for at most nA ≤ n/2 rounds). If Alice holds b, then the attack
stops at round R, when Nb(R) = nA/3, as needed. When Alice holds a, the channel corrupts Na(R)
bits until round R and at most (nA−R) bits afterwords. Recall that R ≥ Na(R) +Nb(R) +Nc(R)
and that Nb(R), Nc(R) ≥ nA/3; thus the attack makes at most

Na(R) + (nA −R) ≤ Na(R) + nA −Na(R)− 2 · nA3
≤ nA

3
corruptions, as needed.

Nonadaptive coding schemes with nonfixed order of speaking

One exceptional property of the model of channels with noiseless feedback is the fact that nonadap-
tive protocols (Definition 2.3) need not have a fixed order of speaking. Since both parties have a
joint view of the received symbols, they can determine the next party to speak as a function of the
(noisy) received symbols and this determination will be agreed on both sides. This property does
not happen in other noise models.

Theorem 6.4 ([19, 28]). Any nonadaptive protocol, either over a standard noisy channel or over
an erasure channel, must have a fixed order of speaking.

In contrast, protocols over channels with noiseless feedback can have an order of speaking which
depends on the noise, while the protocol is still nonadaptive, that is, while there is a consensus
regarding the next party to speak (and without the subtleties of adaptive protocols discussed in §4).
Yet, similar to the case of adaptive protocols, allowing the parties to change the order of speaking
leads to a better noise resilience. Surprisingly, the alphabet size of the channel does not come into
play in this setting—a coding scheme with resilience 1/3 can be shown for channels with binary
alphabet as well as larger alphabet [28], and furthermore, this bound is tight!
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Theorem 6.5 ([28]). For any ε > 0, there exists a (binary) interactive coding scheme that simulates
any protocol π0 in Oε(n0) rounds over channels with noiseless feedback and is resilient to a fraction
1/3− ε of corruptions.

It is easy to see how Algorithm 7 can be improved when the order of speaking is not fixed:
when ← is sent, the protocol should rewind only two rounds (exactly to the round where the error
happened) rather than three rounds. The only purpose of the extra round in Algorithm 7 was to
keep the order of speaking alternating! This immediately implies that in the new nonfixed variant,
every error stalls the simulation by 3 rounds rather than 4, and thus a noise fraction of 1/3− ε is
achievable. Naively converting this scheme to the binary case immediately gives a noise resilience
of 1/5− ε.1 This, however, can be improved.

The binary coding scheme tries to simulate the preceding behavior, yet it is slightly more com-
plex. The scheme is described in Algorithm 8. The simulation is based on sending messages of
varying length, where the adversarial channel needs to corrupt a large fraction of a message to cor-
rupt it, while a smaller fraction of noise being detected leads to ignoring that message2. Specifically,
each message consists of two parts: a payload that carries the information {0, 1,←} (corresponding
to their meaning in the variant of Algorithm 7 that resists noise 1/3 − ε), and confirmation bits
that inform the receiver whether or not the payload was received correctly. When the payload is
received correctly (as learned via the feedback), the sender sends many 1 bits to “confirm” this
event. Otherwise, the sender transmits many 0 bits to indicate that the payload should be ignored.
These confirmation bits can be tempered with; however, this causes the adversarial channel to
invest more and more of its corruption budget in order to corrupt a single payload. In order to con-
firm a message the number of 1-confirmation bits needs to be substantially larger than the number
of 0-confirmation bits. At the same time, if the number of 0-confirmation bits exceed 1/3 of the
current message length, the payload will be ignored. We now formally prove that Algorithm 8 is
resilient to the optimal noise level stated in Theorem 6.5 (proof essentially taken from [28]).

Proof. Consider an instance of the protocol that failed to compute the correct output; we will show
that the noise in that instance must have been ≥ 1/3−O(ε).

Let N be the amount of times the protocol executed the loop at line 1, and for i = 1, . . . , N ,
let mi be the entire transmission communicated during the i-th instance of the loop (i.e., |mi| =
sentLength when reaching line 19).

Each message mi can be confirmed or unconfirmed as explained above. If some message mi is
confirmed it can either be correct or incorrect according to whether or not any of its payload bits
msg (i.e., its first two bits), were flipped by the channel. We split m1, . . . ,mN into three disjoint
sets:

U , {i ≤ N | mi is unconfirmed}
C , {i ≤ N | mi is confirmed and correct}
W , {i ≤ N | mi is confirmed and incorrect}.

It is easy to see that an unconfirmed message has no effect on the simulated transcript, because
any such message is just ignored by the parties. If a message is confirmed, it can either be inter-

1These two schemes also implicitly appeared in [57].
2A somewhat similar approach was taken in [1], in order to obtain noise resilience 1 − ε over erasure channels

using adaptive coding schemes.

60



Algorithm 8 A binary coding scheme over channels with feedback [28]
Input: an alternating binary protocol π0 of length n0 and an input x. A noise parameter 1/3− ε.

Initialize T ← ∅.
T = (TS , TR, TF ) is the simulated transcript, split into sent, received and feedback bits

1: repeat
2: if conditioned on TF and TR it is your turn to speak in π0 then
3: sentLength← 2
4: conf0 ← 0, conf1 ← 0
5: if TS = TF then . No corruptions are known
6: rewind = 0
7: else . The transcript at the other side is corrupt
8: rewind = 1

9: info← π0(x | TF , TR) . the next bit of π0 given the current transcript
10: msg ← (info, rewind)
11: send msg
12: while (conf0 < sentLength/3) and (conf1 − conf0 < 1/ε) do
13: if msg received correctly then . verify via the feedback
14: send 1
15: else
16: send 0
17: sentLength← sentLength+ 1
18: let b be the bit received at the other side (learned via the feedback); set confb ← confb + 1

19: if conf0 ≥ sentLength/3 then . message is not confirmed, ignore
20: continue (next loop instance)
21: else if conf1 − conf0 ≥ 1/ε then . msg is confirmed: rewind or advance T

according to info/rewind received at other side
22: if 〈rewind bit recorded at the other side〉 = 0 then
23: TS ← TS ◦ info
24: TF ← TF ◦ 〈info bit recorded at the other side〉
25: else if 〈rewind bit recorded at the other side〉 = 1 then
26: remove the last symbol of TR, TS , TF

27: else . The other party sends a message
28: record msg, and confirmation bits according to the conditions of the while loop on line 12.
29: if msg is not confirmed (line 19), ignore msg and continue
30: if msg is confirmed (line 21):

either extend TR (if rewind = 0) or delete the suffix bit of TR, TS , TF (if rewind = 1)
31: until n0/ε

2 bits were communicated

32: output T (a prefix of length n0)
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preted as an information bit or as a rewind request, and the simulation is similar to the ternary
algorithm stated above in which after a single incorrect transmission it takes another two correct
transmissions in order to revert the simulation to its state just before the corruption has occurred.
This immediately implies that the simulation in our case succeeds as long as

|C| − 2|W | ≥ n0. (6.1)

Next, we bound the length and induced noise rate of a single message.

Lemma 6.6. For any i, |mi| ≤ 2 + 3/ε.

Proof. Assume a message reaches length 2+3/ε, and consider its 3/ε confirmation bits: if 1+1/ε of
these bits are zeros, then the message is unconfirmed since (1+1/ε)/(2+3/ε) > 1/3. Otherwise, there
are at most 1/ε zeros and at least 3/ε− 1/ε ≥ 2/ε ones, thus the difference between confirmation
zeros and ones is at least 1/ε and the message is confirmed.

Note that for a confirmed message, 2 + 1/ε ≤ |mi| ≤ 2 + 3/ε, and for an unconfirmed message
3 ≤ |mi| ≤ 2 + 3/ε. Since the total amount of bits the protocol communicates is n0/ε

2, we have

|C|+ |W | < n0
ε
. (6.2)

The specific length of a message relates to the amount of corruption the channel must have
performed during the communication of that message. For the following analysis, recall that any
mi contains 2 bits of payload, conf0 0-confirmation bits, and conf1 1-confirmation bits, that is,

|mi| = 2 + conf0 + conf1.

Consider the following cases:

• If i ∈ C then the first two bits of mi were received correctly, and the channel could
have only flipped some of the 1-confirmation bits into 0-confirmation bits. The amount
of corrupted bits is exactly conf0. Since the message was eventually confirmed, it holds
that conf1 − conf0 = 1/ε, and thus conf0 = (|mi| − 2− 1/ε)/2.

• For unconfirmed messages, i ∈ U , the message gets unconfirmed as soon3 as conf0 ≥
|mi|/3. There are two cases: (i) if the information/control bits are correct, then the
noise is any 0-confirmation bit, thus conf0 ≥ |mi|/3; (ii) if the information/control
bits are corrupt, then the noise is the corruption of the information/control plus any
1-confirmation bit. For this latter case we have that conf0 < |mi|/3 + 2/3 and then,
(conf1 + 2) > 2

3(|mi| − 1) which implies that the number of corruptions is at least
(conf1 + 1) > 2|mi|

3 − 5/3. It is easy to verify that (conf1 + 1) ≥ |mi|3 .

• For i ∈ W , the corruption consists of at least one of the information/control bits and
any conf1 received. We have conf1−conf0 ≥ 1/ε thus conf1 ≥ conf0 +1/ε or equivalently
conf1 ≥ (|mi|−2+1/ε)/2. Therefore, the number of corruptions is at least (|mi|+1/ε)/2.

3It also holds that conf0− 1 < |mi− 1|/3, for otherwise the message would have been unconfirmed in the previous
round. This implies that conf0 < |mi|/3 + 2/3.
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Therefore, the global noise rate in any given simulation is lower bounded by

Noise Rate ≥ ∑
i∈C

1
2 (|mi| − 2− 1/ε) +

∑
i∈U

1
3 |mi|+

∑
i∈W

1
2 (|mi|+ 1/ε)∑

i∈C |mi|+
∑
i∈U |mi|+

∑
i∈W |mi|

.

We can rewrite the noise rate as

≥
1
2
∑
i∈C |mi| − 1

2 |C|(2 + 1
ε )

n0/ε2 +
1
3
∑
i∈U |mi|
n0/ε2

+
1
2
∑
i∈W |mi|+ 1

2W ·
1
ε

n0/ε2

≥ 1
3 +

1
6
∑
i∈C |mi| − 1

2 |C|(2 + 1
ε ) + 1

6
∑
i∈W |mi|+ 1

2W ·
1
ε

n0/ε2

≥ 1
3 +

1
6
∑
i∈C |mi| − 1

2ε |C|+
1
6
∑
i∈W |mi|+ 1

2ε |W |
n0/ε2 −O(ε),

where we used Eq. (6.2) for the last inequality. We now use the fact that the simulation instance we
consider failed to simulate π correctly. Using Eq. (6.1) we have that |C|−2|W | < n0, or equivalently,
|W | > 1

2(|C| − n0). If |C| < n0 it is trivial that the error rate is ≥ 1/3−O(ε). Otherwise, the error
rate increases as we increase the length of messages in C andW . Since those messages are confirmed,
they are of length ≥ 1/ε. Then,

≥ 1
3 +

1
6ε |C| −

1
2ε |C|+

1
12ε (|C| − n0) + 1

4ε (|C| − n0)
n0/ε2 −O(ε)

≥ 1
3 −O(ε).

We conclude by showing that 1/3 is an upper bound on the noise any interactive protocols over
channels with feedback can tolerate.

Theorem 6.7 ([28]). No nonadaptive interactive protocol over channels with noiseless feedback
for the identity function f(x, y) = (x, y) can tolerate noise rate of 1/3 with probability greater
than 1/2.

Proof. Assume a protocol π of length n for the identity function. We will show an attack that
corrupts at most n/3 symbols, so that Alice’s received symbols (and feedback) look the same for
two different inputs of Bob. Then, Alice cannot output the correct value with probability more
than 1/2.

Assume Alice holds some input x, and assume Bob holds either y or y′. Consider an uninter-
rupted instance of π(x, y), and assume (without loss of generality) that Bob is the party that speaks
for at most n/3 rounds between rounds [1, 2n/3] in that instance.

Now consider the following attack. When Bob holds y′, the channel changes each symbol Bob
sends during rounds [1, 2n/3] to be exactly what Bob would have sent if he had y. After round 2n/3,
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the attack stops. The crucial observation is that the received symbols in this instance are identical
to the ones in the uninterrupted instance of π(x, y). From Alice’s point of view, the order of speaking
must be the same as in π(x, y), and since the protocol is nonadaptive, there is consensus regarding
this order of speaking. Therefore, Bob still talks at most n/3 rounds up to the round where the
attack stops. Thus, the attack has a maximal noise rate of 1/3.

When Bob holds y, the protocol runs until round 2n/3, uninterrupted. Then, the channel cor-
rupts every symbol Bob sends into the symbol Bob would have sent at the same round under the
attack described before. Since we attack only n/3 rounds, the maximal error rate is at most 1/3.

Finally, note that in both attacks the view of Alice is exactly the same (including her feedback,
since the channel never corrupts her outgoing transmissions). Thus, Alice cannot output the correct
value with probability more than 1/2 on at least one of (x, y) and (x, y′).

The above proof assumes a deterministic protocol but can easily be extended to the case of
randomized protocols by attacking the party that speaks more times during rounds [1, 2n/3] in
expectation.

6.1.2 Rate

Remark 6.1. In this section we assume π0 is an alternating (binary) protocol. This comes with a
certain loss of generality, as discussed in §5.3.

Recall the rewind-if-error paradigm depicted in Figure 2.3. The presence of a noiseless feedback
channel greatly simplifies this approach: Step 2 (check if the other side agrees) is immediate, since
the feedback channel tells the party whether or not the other side received the correct transmission.
Therefore, the immediate candidate for a communication-efficient coding scheme would be the
following: (1) communicate k symbols of π0; (2) check via the feedback if the other’s side transcript
is correct; (3) send 1 bit to indicate whether the transcript seems consistent; (4) rewind if either
side indicated inconsistency, or continue to the next k bits otherwise.

Indeed, the above scheme was proposed by Pankratov [69]. The value of k should be chosen to
O(1/

√
ε) to minimize the communication (see the discussion in §5). This gives to the following,

Theorem 6.8 ([69]). For any small-enough ε > 0, there exists a (binary) interactive coding scheme
that simulates any alternating protocol π0 over channels with noiseless feedback with at most a
fraction ε of bit flips. The scheme has rate 1−O(

√
ε).

Gelles and Haeupler [38] show that the rate can be further improved—and provide a coding
scheme with rate 1 − O(H(ε))—over channels with noiseless feedback, assuming a fraction ε of
noise.4 See Figure 6.3 for a comparison between the optimized rates of the schemes in [69] and [38].

It is interesting to compare the interactive case with the unidirectional case. It is well known
that the capacity of a BSCε channel is 1−H(ε) [80] and that the capacity does not change in the
presence of noiseless feedback [79]. However as mentioned in §5, the capacity (i.e., the maximal
achievable rate) of interactive schemes over a BSCε is probably 1−O(

√
ε), and the scheme of [38]

suggests that the presence of feedback does change the capacity in the interactive setting.
4This implies the same rate over BSC(1−c)ε with noiseless feedback, since such a channel makes more than εn bit

flips with probability 2−Ωc(εn).
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Figure 6.3: A comparison of the optimal rate of the Pan13 scheme [69] and the GH15 scheme [38].

Furthermore, over channels with noiseless feedback, the capacity of the interactive setting and
the noninteractive setting are asymptotically the same, 1 − Θ(H(ε)), maybe up to the constant
hidden by the Θ notation. Indeed, it is impossible that an interactive scheme (say for the function
f(x, y) = (x, x)) outperforms the rate of a unidirectional coding scheme that communicates x from
Alice to Bob over channels with noiseless feedback. This makes the rate of the scheme of [38] tight
(again, up to the constant in the leading term).

The scheme of [38] is given in Algorithm 9. The main ideas that lead to the improved rate are
the following. In the scheme of [69], we lose 2 bits (for the “control” data, i.e., the rewind/continue
command) per block of k bits of simulation. However, the vast majority of the simulated blocks
contain no errors; only a fraction ε of these blocks contain errors. Then, the idea is to send the
rewind/continue command only when needed and not every block. To this end, the command is
encoded as sending k zeros in a row. That is, whenever a sequence of k zeros is received, the parties
remove 2k + 1 bits from their recorded transcript T and then continue with the simulation. This
way, every error delays the simulation by exactly 2k + 1 rounds,5 yielding a total communication
of n0 + εn0(2k + 2). Taking k = O(log 1/ε) gives the claimed rate.

We need to make sure that the protocol π0 never sends k consecutive zeros by itself. To this end,
the protocol π0 is preprocessed in the following manner. First, a random string of length O(εn0)
is exchanged between the parties. This randomness is then expanded to an almost uniform string
of length n0, for example, via small-biased probability spaces [67, 3], and XORed, bit by bit, to
the transcript of π0. In this preprocessed transcript, any sequence of k bits equals the zero string
with probability almost 2−k. Every segment of k consecutive zeros is then broken by adding a 1
after the (k − 1)-th zero. This increases the preprocessed transcript (and thus the simulation) by
n02−k bits, so that choosing k = 2c log 1/ε yields an increase in the communication of εcn, which
does not affect the obtained rate as long as c > 1.

Theorem 6.9 ([38]). For any small enough ε > 0, Algorithm 9 efficiently simulates any alternating
5We assume that the order of speaking in the simulation needs not be fixed; otherwise one additional round may

be wasted.
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Algorithm 9 A communication-efficient coding scheme over channels with feedback [38]
Input: an alternating protocol π0 of length n0, and an input x. An error parameter ε > 0.
Set k = Θ(log 1

ε ).

procedure π̃0(x) . Preprocessing π0 to eliminate blocks of k zeros
1: R←uniform string in {0, 1}εn0 that does not contain k consecutive zeroes
2: send R; receive R′
3: mask ← expand(R,R′) . mask ∈ {0, 1}n0 is 2−εn0-away from k-wise independent [67, 3]
4: for i = 1 to n0 do . (if speaker; receiver is symmetric)
5: if the last transmitted k bits are all zeros then
6: send 1
7: send π0[i]⊕mask[i]

end procedure
. Simulating π̃0 of length ñ0

1: initialize T ← ∅; TF ← ∅
T is the simulated transcript viewed so far, split into sent bits TS and received bits TR. Let TF be the
characters received by the other side (as learned via the feedback channel)

2: for i = 1 to n = ñ0(1 + Θ(ε log 1
ε )) do

3: if TF = TS then
4: T ← T ◦ π̃0(x | T ) . run one step of π̃0, given the transcript so far is T
5: else
6: Send ‘0’ whenever it is your turn to speak; extend T, TF accordingly

7: if TR or TF end with k zeros then . remove the last 2k + 1 exchanged bits
8: Remove the last 2k + 1 bits from T , and the corresponding transmissions in TF

9: output T (a prefix of length ñ0)
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binary protocol π0 over channels with noiseless feedback, has a rate of 1−Θ(H(ε)), and is resilient
to a fraction ε of bit flips with probability 1− 2−Ωε(n0).

6.2 Erasure channels

An erasure channel can substitute a transmitted symbol with a special erasure mark, denoted by ⊥.
As mentioned, this noise is weaker than the standard noise model since the receiver always knows
when a symbol was erased. As with the standard model, one can consider the probabilistic case,
where each symbol is erased with some fixed probability ε, or the adversarial case, which limits only
the total number of erasures. In this section we first discuss coding schemes that achieve optimal
resilience (with a constant rate), and then discuss the case of computationally-efficient schemes.

6.2.1 Noise resilience

The first coding scheme for an adversarial erasure channel was given by Franklin, Gelles, Ostrovsky,
and Schulman [35]. That scheme is based on the simulation of Braverman and Rao (Algorithm 1)
combined with the well-known fact that erasures are twice as easy to correct than standard errors.
Indeed, codes with Hamming distance m can correct up to m− 1 erasures, yet only bm−1

2 c substi-
tution errors. This leads to a scheme that tolerates twice as many corruptions than Algorithm 1
over an erasure channel.

Theorem 6.10 ([35]). For any ε > 0, there exists an alternating interactive coding scheme that
simulates any protocol π0 in Oε(n0) rounds over an erasure channel, and is resilient to an erasure
fraction of 1/2− ε.

However, the coding scheme of Theorem 6.10 is not efficient, because it is based on tree codes.
Efremenko, Gelles, and Haeupler [28] suggested a simple and efficient scheme that also resists
a fraction 1/2 − ε of corruptions over erasure channels with alphabet of size 4. The scheme is
alternating (Alice sends a symbol in odd rounds and Bob, in even rounds) and is described in
Algorithm 10 using an alphabet of size 6 (we later show how to reduce the alphabet size to 4).

The parties progress by simulating the noiseless protocol π0 bit by bit. The idea of this scheme
is that if a party receives some (non-erased) symbol, the party is guaranteed that this is indeed the
symbol the other side has sent! Therefore, as long as a bit is received, the receiver can extend its
belief in the current simulated transcript T , and this string is always correct. The only issue that
may happen is that, due to erasures, the receiver gets a ⊥ and cannot extend its T . Now, that party
needs to be able to tell the other side to retransmit the erased bit. Moreover, the parties need a
mechanism that indicates whether a transmitted bit is the next round of π0 or is a retransmission
of a previous round. To this end, the parties can attach to each bit its position in T , but this will
increase the alphabet to be polynomially large. Instead, they send a parity mod 3 of the length
of their current transcript T . The analysis shows that no matter what error pattern happens, the
length of T differs by at most ±1 between the two parties; thus a parity mod 3 suffices. The scheme
is then very simple: a party always sends the next bit according to its current simulated T . If that
bit was erased, then the other side cannot extend its T , and the parity of the bit sent back by that
party will not match the parity expected by the first party. Thus, the first party cannot extend
its T , and it simply retransmits its last sent bit (i.e., the next bit according to its unchanged T ).
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Algorithm 10 A coding scheme over erasure channels with a small alphabet [28]
Input: an alternating binary protocol π0 of length n0 and an input x. A noise parameter 1/2− ε.

1: initialize T ← ∅, p← 0, and m← (0, 0)
2: for i = 1 to n = dn0/εe do
3: if Sender then
4: if your turn to speak according to π0(· | T ) then
5: tsend ← π0(x | T ) . the next bit of π0 assuming the transcript T
6: m← (tsend, (p+ 1) mod 3)
7: T ← T ◦ tsend
8: p← |T | mod 3
9: send m

10: else
11: send the m stored in memory
12: if Receiver then
13: record m′ = (trec, p′)
14: if m′ contains no erasures and p′ ≡ p+ 1 mod 3 then
15: T ← T ◦ trec
16: p← |T | mod 3
17: output T (a prefix of length n0)

Theorem 6.11 ([28]). For any ε > 0, Algorithm 10 communicates Oε(n0) bits and is resilient to a
fraction 1/2− ε of erasures.

Proof sketch. A key lemma in the analysis is the fact the difference between the T Alice holds to
that of Bob is at most one symbol.

Lemma 6.12 ([28]). let TA(i), TB(i) be the variable T held by Alice and Bob, respectively, at
round i. For any round i < n, ∣∣|TA(i)| − |TB(i)|

∣∣ ≤ 1.

Next we show that each error causes at most two rounds where both parties do not extend T .
Thus, n(1/2−ε) erasures lead to at most n−2εn rounds where T does not extend for both parties.
In the other 2εn rounds, T extends for at least one party; thus at the end of the simulation, the
sum of the lengths of T at both sides is at least 2εn = 2n0. Due to Lemma 6.12 the difference in the
length at both sides is at most 1, which implies that at both sides, the length of T is at least n0.

We analyze only the case where the parties were synchronized when the error happened. That
is, we assume both hold the same T , say, of length t = |T |. Assume an erasure happens at round
i, without loss of generality, when Alice is the speaker. Alice’s message can be written as (b, p),
where b is the t-th bit in the transcript of π0(x, y), and p = t + 1 mod 3. Bob receives ⊥, and
cannot extend his T . Therefore, at round i + 1 he sends back a message (b′, p′) previously sent to
Alice (Line 11). It is not difficult to see that b′ must be the (t − 1)-th bit of π0(x, y), and p′ = t

mod 3. Alice expects a message with parity t+2 mod 3, but instead she receives one with t mod 3;
therefore she ignores it. At round i+2 Alice retransmits the message (b, p) and the protocol is back
on track. The other cases can be analyzed similarly [28].

In order to reduce alphabet size, the observation is that, in fact, only four types of messages are
needed to implement the above protocol: two messages have the meaning of “I’m one step ahead
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of you” or “I’m one step behind you”, and the other two messages have the meaning: “we are
synchronized and my bit is 0” or “we are synchronized and my bit is 1”. This again follows from
the fact that the discrepancy in T between the parties is at most ±1, as stated by Lemma 6.12.

To this end, consider the following preprocessing step for π0, in which we triple the protocol’s
length by adding 11 between any two bits π0 sends. That is, if π0(x, y) is a1, b1, a2, b2, . . . (indicating
bits sent by Alice and Bob, alternating), then the transcript of the preprocessed protocol would
be a1, 1, 1, b1, 1, 1, a2, 1, 1, . . .. It is important to note that all the ai bits still appear in odd rounds
where Alice is the speaker, and all the bi are in even rounds where Bob is still the speaker. In
the preprocessed protocol, both parties know that a “real” bit of information can appear only in
transmissions with parity 0 (mod 3). Thus, for the other parities there is no need to send the
information bit—it is always 1! Therefore, the following quaternary alphabet suffices for simulating
any such preprocessed noiseless protocol:

Σ = {0× (parity = 0) , 1× (parity = 0) , 1× (parity = 1) , 1× (parity = 2)} .

In order to obtain a binary coding scheme, one can encode each symbol of the quaternary
alphabet Σ using a binary code with large relative distance δ. For binary codes of size 4, the
maximal distance is δ = 2/3 (e.g., {000, 011, 110, 101}; see also [8]). The noise resilience obtained
by this approach is (1

2 − ε
′
)
× 2

3 = 1
3 − ε.

Theorem 6.13 ([28]). For any ε > 0, there exists a binary alternating coding scheme that simulates
any π0 in Oε(n0) rounds over a binary erasure channel and is resilient to a fraction 1/3−ε of erasures.

It is still unknown whether an erasure rate of 1/3 is tight for the binary case.

6.2.2 Rate

It is easy to verify that one can obtain a coding scheme for erasure channels with up to a fraction ε
of erasures and a rate of 1−O(

√
ε), by building on the scheme of Pankratov [69] described in §6.1.2.

Gelles and Haeupler [38] showed that similar ideas to those used in Algorithm 9 over channels
with noiseless feedback can also be used in the case of erasure channels, obtaining a coding scheme
with rate 1−O(H(ε)) for a fraction ε of erasures.

Theorem 6.14 ([38]). For any small-enough ε > 0, there exists an efficient randomized coding
scheme that simulates any alternating binary protocol π0 over erasure channels, has a rate of
1−Θ(H(ε)), and is resilient to a fraction ε of erasures with probability 1− 2−Ωε(n0).

The main difference from the coding scheme of Algorithm 9 is that now the receiver needs to
notify the sender that a bit was erased, and similar to the case in §6.2.1, multiple erasures may
cause the parties to be confused, whether the next transmission is new information or retrans-
mitted information. The solution is to add a small parity that indicates the length of the current
simulated T , and helps the parties to distinguish these two cases, similar to Algorithm 10.

In contrast to the setting of channels with noiseless feedback, the capacity of erasure channels
in the noninteractive (unidirectional) setting is 1− ε. Therefore, the rate 1−O(H(ε)) obtained by
the coding scheme of Theorem 6.14 does not match the upper bound dictated by the unidirectional
setting. Nevertheless, it is conjectured that such a rate (up to a constant) is indeed maximal.
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Figure 6.4: An illustration of inserting a b, and deleting a c.

Conjecture 6.1 ([38]). Any nonadaptive coding scheme for alternating binary π0 over erasure
channels with a fraction ε of erasures has a maximal rate of 1−O(H(ε)).

6.3 Channels with insertions and deletions

A channel with insertions and deletion is a channel with a stronger type of noise: in addition to
substituting a certain transmitted symbol into a different one, the channel can inject new symbols
or completely remove transmitted ones. See Figure 6.4 for an illustration.

We need to be more careful when defining interactive protocols over channels that allow in-
sertions and deletions. One main difference would be the notion of a “round” in the protocol. We
cannot assume any external means of synchronization that tells the parties what round they are
at, because such a means will allow the parties to detect insertions and deletions as they happen.6
Therefore, in the insertion/deletion setting a party can determine its “round number” only accord-
ing to the incoming communication. It follows, that insertions and deletions may cause the parties
to get out of synchronization: if the channel inserts a symbol, say, toward Bob, then Bob’s round
becomes larger by 1 with respect to Alice’s round number at the same time. Another problem that
may arise in this setting is that a deletion may cause a “denial of service”. Assume Alice sends a
symbol and then she waits for Bob’s reply. If that reply symbol is deleted, then both parties will
keep waiting indefinitely for the next symbol to come.

A convenient modeling for interactive protocols in the presence of insertions and deletions
was presented by Braverman, Gelles, Mao, and Ostrovsky [17]: they assume that the protocol
is alternating and disallow any noise pattern that causes a denial of service. It follows that any
corruption must be a deletion followed by an insertion. Such a noise leads to two possible effects: (1)
If Alice sends a symbol that gets deleted and Bob gets the inserted symbol, then this is equivalent
to a standard substitution of symbols. (2) If Alice sends a symbol that gets deleted and then Alice
receives an inserted symbol, then the parties become unsynchronized—Alice’s round number is
increased while Bob’s is not.

Under these assumptions, Braverman et al. [17] show a coding scheme that tolerates up to a
fraction 1/18− ε of insertions/deletions.

Theorem 6.15 ([17]). For any ε > 0, there exists a coding scheme that simulates any protocol π0
over a channel with insertions and deletions, has a constant rate, and is resilient to a fraction 1/18−ε
of corruptions.

The scheme of [17] follows the general tree code simulation approach (i.e., Algorithm 1), yet
replacing the tree code with a stronger type of code they call an edit-distance tree code. In such

6It is easy to see that in the presence of an external means of synchronization, insertions and deletions reduce to
erasures.
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a tree code, any two suffixes of any two paths are far apart in their edit distance, that is, in the
number of insertions and deletions it takes to convert the labeling of one of these paths to the
labeling of the other path. A key point in the analysis is showing that one can correctly decode the
entire sent message as long as the received string is close to the sent one by means of edit-distance
suffix distance. This notion extends Definition 2.2 to the case of insertions and deletions.

6.4 Quantum channels

Brassard, Nayak, Tapp, Touchette, and Unger [13] extended the discussion of interactive coding into
the quantum world. Here two possible models can be considered. The first, introduced by Yao [84],
allows the parties to communicate quantum systems over a channel with interference. In the second
model, introduced by Cleve and Buhrman [23], the parties can only communicate classical bits (over
a noisy channel); however they are assumed to preshare an unlimited amount of entangled quantum
systems. This entanglement allows them to communicate quantum states via teleportation [6]—a
quantum phenomena that, given pre-shared entangled states allows to communicate the state of
a given quantum system using only classical information. The latter model is as powerful as the
former one, since any qubit communicated by the first model can be teleported by the second model
and replaced by the communication of two classical bits.

In this model, a noise resilience of up to 1/2− ε is achievable.

Theorem 6.16 ([13]). For any small-enough ε > 0, there exists a quantum coding scheme that
simulates any quantum protocol, has a constant rate, and resists a fraction 1/2− ε of errors.

Surpassing the upper bound 1/4 (Theorem 2.12) is possible due to the fact that the parties
preshare a random key that is unknown to the adversary (derived from their shared entanglement);
see §2.3.1.

The coding scheme of [13] merges ideas from tree code–based coding schemes [76, 19] and
schemes that assume preshared randomness to detect corruptions [35]. The quantum scheme is more
complex due to quantum effects that do not allow copying quantum information, thus making it
more difficult to “rewind” the protocol. Nevertheless, each party can always reverse the computation
by a single step. Through classical communication, the parties can coordinate “reversing” the
computation step by step until all errors are corrected.
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X

Open Questions for Section 6

1. What is the maximal noise resilience of binary coding schemes over erasure
channels?

2. What is the maximal rate of coding schemes over erasure channels? That is,
prove or refute Conjecture 6.1.

3. Design deterministic coding schemes that achieve a rate of 1−O(H(ε)) over
either channels with feedback or erasure channels.

4. What is the maximal noise resilience of coding schemes over channels with
insertions and deletions?

5. How can we obtain efficient coding schemes over channels with insertions and
deletions?

Note: Some progress has been made on the above open questions. See Addendum
in §A.
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7
Multiparty Interactive Communication

In this section we augment the setting of interactive communication to include the case of multiple
parties performing some distributed computation over an arbitrary network, where the communi-
cation links are noisy.

We abstract the communication network as an undirected graphG = (V,E), withm = |V | nodes
and l = |E| edges, where each node is a party and each edge (u, v) is a (private) communication
link connecting the parties u and v (u and v are said to be neighbors in this case). Each party
begins with a private input xi, and the parties’ joint goal is to output a function of their joint
inputs f(x1, . . . , xm). As before, we assume the existence of a noiseless protocol π0 that performs
the computation in n0 rounds, assuming the network is noiseless. We seek a coding scheme π
that performs the same task as π0 over a noisy network. As in the two-party case, the noise
can be random, that is, each link is an independent BSCε, or it can be adversarial, so that the
only restriction on the noise is the total number of corruptions that happen during the protocol,
throughout the entire network.

In the multiparty case we distinguish two settings of message passing: synchronous and asyn-
chronous. The synchronous message passing extends the two-party case in a natural way: the pro-
tocol progresses by distinct simultaneous steps (rounds), where at each round, every party sends a
single message through each of the communication links connected to it. A message here is a single
symbol out of the channels’ alphabet Σ.

In the asynchronous setting there is no notion of rounds or time. When a message is sent, it
is guaranteed to arrive eventually at the other side (but the delay may be arbitrary); it is also
guaranteed that over the same link, messages arrive in the same order they were sent. The protocol
begins by triggering all parties simultaneously with a vacuous message. Each incoming message
may trigger the receiver to send messages to (some of) its neighbors. The protocol ends when all
messages are delivered and there is no party that is scheduled to send any further message. A
message here may be of any length and is not restricted to a certain alphabet.

In both the synchronous and asynchronous settings, the communication complexity of the pro-
tocol is the total number of bits sent throughout the protocol. That is, for a synchronous protocol π
(with |π| = n rounds), the communication is n · 2l log |Σ|. In the asynchronous case, it is the total
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lengths of messages sent during the protocol.

7.1 Coding schemes for networks with random noise

The first coding scheme over networks with random noise (BSCε) in the synchronous message-
passing model was given by Rajagopalan and Schulman [73], extending Schulman’s original work
to the multiparty case.

In this scheme, each two neighboring parties communicate with each other using a tree code.
The content that each party communicates is a simple rewind-if-error simulation that depends on
the view of that party, given all the communication from its neighboring parties. That is, the parties
exchange symbols from {0, 1,←}, where 0 and 1 indicate an information bit, and ← instructs the
recipient party to delete the latest received information bit.

The main idea is the following: at each round, a party decodes all the communication its neigh-
bors have sent him so far (where messages are encoded using tree codes, separately per neighbor).
Based on the current decodings, the party verifies that its outgoing communication so far is con-
sistent with its current understanding of the incoming communication. That is, the party verifies
that at each round so far, its sent information bit corresponds to the information the same party
should have sent in the noiseless protocol π0, given the same incoming information. Note that since
the received transcript changes according to the tree code decoding algorithm, previously sent in-
formation bits may be inconsistent given the current tree code decoding. If all the sent information
is consistent with the current received information, the party sends the next information bit to its
neighbors, according to the noiseless protocol π0. If there is some inconsistency, the party sends the
special back symbol that tells the receiver to disregard the last (undeleted) bit.

The scheme is described (for a specific party p) in Algorithm 11. It runs for 2n0 rounds, and
communicates Oε(log d+1) bits per round, where d is the maximal degree of a node in the network.
Specifically, each bit in {0, 1,←} is encoded via a tree code with distance 8/10. The output symbol
is communicated via a repetition code with k = Oε(log(d + 1)) repetitions. The exact value of
k is determined so that a single symbol is decoded correctly via the repetition code with high
probability, that is, of a magnitude 1− poly(1/(d+ 1)).1 In contrast to the repetition code (which
depends on the capacity of the BSCε channel), note that the distance of the tree code is constant and
independent of ε. Specifically, the alphabet size of the tree is a small constant, which is independent
of ε. The rate of the scheme is then Oε(1/ log(d+ 1)).

Theorem 7.1 ([73]). Given any network with maximal degree d, Algorithm 11 simulates any pro-
tocol π0 over BSCε with probability 1−m2−Ωε(n0), and rate Oε(1/ log(d+ 1)).

Proof. We first need to distinguish between two types of errors: errors that add up and errors that
don’t add up. Assume that a single error happens at the incoming message of some party p, say,
at round i. At the next round i+ 1, the party may realize that the symbol of round i was incorrect
(namely, the tree code decodes a different prefix), and p decides to backtrack by sending ← to
all his neighbors. At round i + 2 each of p’s neighbors receives a ← from p and deletes the last
undeleted bit received from p. Now, however, due to deleting an incoming bit, the symbols that

1Recall that repetition code with k repetitions fails when ≥ k/2 + 1 copies were received incorrectly. If each
symbol is corrupted with independent probability ε, then the decoding fails with probability at most (4ε(1− ε))k/2;
see, e.g., [36].
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Algorithm 11 The Rajagopalan-Schulman coding scheme [73]
Input: a binary alternating protocol π0 and an input x.

Assume a ternary tree code T with distance 8/10 known to all parties. Let d be the maximal degree in
the network. Thus, each party has at most d different neighbors. Each link is assumed to be a BSCε. Set
n = 2n0.

1: for each neighbor j, initialize sj [1..n], rj [1..n]← ∅.
2: for round i = 1 to n do
3: for each neighbor j do
4: mj ← TCdecT (rj [1..i])
5: if for all neighbors j, parse(sj [1..i]) is consistent with the view {parse(mj)}j then
6: set sj [i] as the next bit sent to party j in π0 given the received transcript so far is {parse(mj)}j
7: else
8: for all neighbors j, set sj [i] = ‘←’
9: for each neighbor j, send j the last symbol of TCencT (sj [1..i]) (via a Oε(log(d+ 1))-repetition code).

10: receive from each neighbor j, a symbol rj [i] (via repetition code)
11: output parse(sj [1..n]), {parse(mj)}j (a prefix of length n0 per neighbor)

The procedure parse on a string x ∈ {0, 1,←}∗ scans the string from left to right, and whenever it hits a
←, it deletes that symbol as well as the symbol immediately before it (if such exists). Then it continues
with the scan until it reaches the end of x. Example: if x = 00←11101←←00, then parse(x) = 011100.

were communicated at round i+ 1 are possibly incorrect, and that neighbor needs to send ← to all
his neighbors until the entire network backtracks one step of the simulation.

Now assume that two errors happen. We first demonstrate a case in which the two errors do not
“add up” and cause only a single step of backtracking throughout the network. Assume that the
first error happens again in the incoming message of p at round i. The second error also happens
at round i; however it affects the incoming message of party q (which is p’s neighbor). Say that
at round i + 1, both p and q realize that an error has happened and both decide to backtrack. In
this case, when q receives a ← from p at round i + 2, it doesn’t need to backtrack again since it
has already backtracked one step at round i + 1. Namely, the bits that q sent that depend on the
incorrect bit of p were already removed, and the simulation can continue without any further delay.

The other case, in which errors add up happens, for instance, if the second error affects the
communication of p at some round i′ > i, after p has already backtracked or before p realizes it
needs to backtrack (so that p keeps sending incorrect bits that should be deleted). Similarly, if the
second error happens at one of p’s neighbors after that neighbor has performed the backtracking
due to receiving← from p, (i.e., after round i+1), that error will cause an additional backtracking.
We can define the influence cone of a specific error that happens at party p at round i, as all the
pairs (p′, i′) so that p and p′ are connected by a path of length ` such that ` ≤ i′ − i. All these p′
will backtracking due to the error at (p, i) after at most ` rounds. Any error that happens after that
time may cause a secondary backtracking. Yet all errors that happen beforehand will be corrected
by the same backtracking and will not add up. We say that several errors {ej = (p, i)j}j are in the
same influence cone if, for any j′ > j, ej′ is in the influence cone of ej .

Note that in the preceding argument an “error” is the event that the tree code failed to decode
(rather than an arbitrary error in the channel, even if the repetition code failed); we emphasize this
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fact by calling a tree code failure a tree error and a repetition code failure a repetition error. The
analysis of [73] shows that the simulation succeeds as long as the number of tree errors that “add
up” is at most n0/2. Basically, this argument shows that each error causes two rounds of delay in
simulation: the round of the error and another round for backing up.

Theorem 7.2 ([73]). If a party at round i simulated a correct prefix of length j < i of the transcript
with all its neighbors, then there must have been a sequence of at least (i− j)/2 tree errors in the
same influence cone.

We run the simulation for 2n0 rounds, and the simulation fails if the correct transcript’s prefix
of some party is shorter than n0. Theorem 7.2 indicates that n0/2 tree errors that add up must have
occurred in the same influence cone. Assume that the tree code has distance α; then n0/2 tree code
failures imply at least α

8n0 repetition errors (i.e., the reception of an incorrect symbol rj [i]). This
follows from Lemma 3.6: each time the tree code fails, consider the incorrect decoded suffix and let
[r1, r2] be the interval that describes the rounds that correspond to this suffix. Using Lemma 2.4
we know that the number of repetition code errors within this suffix is at least α

2 (r2 − r1 + 1).
Furthermore, the union of all these intervals is at least n0/2, and Lemma 3.6 tells us there is a set
of disjoint intervals with total length at least n0/4. This implies that the repetition code must have
failed for at least αn0/8 times. We can fix α = 8/10 and determine that the simulation fails only
if there are n0/10 repetition errors in a same influence cone.

We can bound the probability of having so many repetition errors at the same influence cone by
the following. Given any endpoint (p, 2n0), there are at most (d+ 1)2n0 different ordered sequences
of 2n0 pairs (party,round) in the same influence cone, that is, if (p1, i1) comes before (p2, i2) in the
ordered sequence, then p1 and p2 are connected by a path of length at most i2 − i1. For each such
sequence, there are at most 22n0 possible error patterns with at least 1

10n0 errors. Taking a union
of all the m possible endpoints (p, 2n0) of the influence cone, we find that the probability of having
at least 1

10n0 errors at the same cone is bounded by

m(d+ 1)2n0 · 22n0 · (prep)n0/10,

where prep is the probability the repetition code fails. It is easy to see (Footnote 1) that by taking
poly(ε, log(d+ 1)) repetitions, we can lower the failure of the repetition code to prep <

(
1

2(d+1)

)20
.

In this case, the simulation succeeds with probability 1−m2−Ω(n0).

Coding schemes with a constant rate for specific topologies.

The scheme of Rajagopalan and Schulman (Algorithm 11) implies a coding scheme with a constant
rate for many topologies. Specifically, a constant-rate coding is achievable over graphs with a
constant maximal degree d = O(1), for example, a line, a cycle, or O(1)-regular graphs. On the
other hand, if the maximal degree is super-constant, the rate is vanishing. In the worst case (e.g.,
over a complete graph or a star), the obtained rate is O(1/ logm).

A scheme by Alon, Braverman, Efremenko, Gelles, and Haeupler [2] obtains a constant-rate
coding for another set of topologies not covered by Algorithm 11. Specifically, their scheme obtains
a constant rate over any d-regular graph that has “many” short disjoint paths between any two
parties. This is formulated via the mixing time of the graph,
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Definition 7.1 (mixing time). The mixing time of a graph G is the smallest number t such that a
random walk of length t ends at every node in G with probability 1

m ±
1
2 ·

1
m .

Theorem 7.3 ([2]). For any ε < 1/2, there exists a synchronous multiparty interactive coding
scheme that simulates any binary protocol π0 over a d-regular graph G in Oε(n0 · t3 log t) rounds,
where t is the mixing time of G. The scheme uses a binary alphabet and succeeds with probability
1− 2−Ω(dΩ(1)n0), assuming each channel is a BSCε and d ≥ log1+Ω(1)m.

Theorem 7.3 implies a constant-rate coding scheme for any d-regular topology with a constant
mixing time t = O(1). These include the complete graph and random d-regular graphs with d = mα

for some constant α > 0 (note that if t is the mixing time, then 2dt > m). Yet, some topologies are
not covered by either the scheme of [73] or by [2]—for instance, a star.

The scheme of [2] builds on Algorithm 11. As shown in the analysis of Theorem 7.1, in order
to guarantee the success of Algorithm 11 one needs to guarantee that each transmitted symbol
is received correctly at the other side with probability at least 1 − poly(1/(d + 1)). The scheme
in [2] shows how to deliver all the symbols of a single round in π0 in a reliable way that fails with
a negligible probability. This, along with the reasoning of Theorem 7.1, yields the coding scheme
guaranteed by Theorem 7.3.

Consider the following neighborhood connectivity task, which is equivalent to a single round in
the noiseless protocol π0.

Definition 7.2 (neighborhood connectivity). Assume that for each neighboring parties (u, v) ∈ E,
party u holds a bit bu→v which should be sent to v, and the party v holds a bit bv→u which should
be send to u. The neighborhood connectivity task amounts to the computation after which each
party u outputs bits {bj→u} for all j’s.

Clearly, the neighborhood connectivity task can be solved via a single round of noiseless com-
munication over the network. Interestingly, coding for multiparty interactive protocols reduces to
solving the neighborhood connectivity task:

Corollary 7.4 ([73, 2]). Given a scheme that solves the neighborhood task on graph G in k rounds
with probability 1−p, there exists a coding scheme that simulates any π0 over G in O(kn0) rounds
and succeeds with probability 1−m(2(d+ 1)p)Ω(n0), assuming each channel is a BSCε.

The above is a corollary of the analysis of Theorem 7.1.
The scheme in [2] solves the neighborhood task over d-regular graphs with mixing time t in

O(t3 log t) rounds and success probability 1− tm22−Ω(dΩ(1)). With the above corollary, this in turn
proves Theorems 7.3. Below we give a brief summary of how to solve the connectivity task over
d-regular graphs in a constant number of rounds.

Proof sketch of Theorem 7.3. The scheme for the neighborhood connectivity task is based on the
following claims/steps:

1. For any (arbitrary) list of L = {(si, di)} of source nodes si and destination nodes di,
where any node u ∈ V appears at most O(d/t) times in L, there exists a list P that
contains |L| edge-disjoint paths with length at most 2t, such that each for any i, the i-th
path in P connects si and di.
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The existence of the list follows from the Lovász local lemma [32, 4]: since the mixing
time is t, there areO(d2t/m) paths of length≤ 2t connecting each (si, di). Additionally, if
we randomly pick paths, the probability that two such paths share an edge is O(m2/d4t).
The local lemma shows it is possible to choose one path for each pair (si, di), so that
all the paths are jointly edge disjoint.

2. Let Λ be a parameter. Assume that each party in G needs to send a total number of at
most d bits to at most d/Λ different parties in G. Then, there exists a coding scheme over
the noisy network G that delivers all the bits in O(t2 log t) rounds with probability 1 −
n22−Ω(Λ).

Consider some party p, and assume that for any 0 < i ≤ d/Λ, p needs to send ai bits to
some party pi, where

∑
i ai ≤ d. The proof follows by encoding all the bits directed to pi

using a standard error correcting code of length O(ai + Λ). Then, all these codewords
are sent to their destinations using the disjoint paths of Step 1. Note that the total
number of bits each party needs to send (after the encoding) is

∑
iO(ai + Λ) = O(d);

therefore, t instantiations of Step 1 suffice to communicate all the codewords to their
destinations. Each instance of Step 1 takes t log t rounds to send 1 bit along each path
of length t (using repetition code of length log t per edge). Therefore, Step 2 takes a
total of O(t2 log t) rounds to communicate all codewords.

Recall that in the neighborhood connectivity task over a d-regular graph, each party
begins with d bits targeted to all its d neighbors (1 bit per neighbor). If we were to use
Step 2 directly, this would imply Λ = 1 and a success rate of 1− O(n2)... To maintain
a high success rate, we need, say, Λ = dc for some constant c ∈ (0, 1). However in that
case Step 2 cannot be used directly, because it limits the number of different parties
p can talk with to d/Λ = d1−c. The last step in the proof shows how to reduce the
neighborhood connectivity task to O(t) instances of Step 2, delivering d bits to at most
d/Λ parties at each instance.

3. The neighborhood connectivity can be solved by O(t) applications of Step 2, with proba-
bility 1−mn22−Ω(Λ).

The proof goes in a recursive manner, where at each step the network is being split into
O(d/Λ) disjoint subsets, where the communication happens only among parties within
the same subset. Splitting each subset is done via the coding of Step 2: each party
sends all the bits that belong to a specific subset to a designated member of that subset
(the nontrivial part is to show how to choose these designated parties without violating
the conditions of Step 2). With the choice of Λ = dc for some c < 1, repeating this
“localization” step for about t/(1 − c) times reduces the size of each individual subset
to

m

(Λ
d

)t/(1−c)
≤ dt

(
d−(1−c)

)t/(1−c)
≤ d

Λ
(recall that 2dt > m); thus a final application of Step 2 in parallel in every subset
completes the task.
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7.2 Coding for networks with adversarial noise: Upper bounds on the maximal noise

Similar to the two-party setting, the case of adversarial noise is more difficult to handle also in
the multiparty setting. Here, rather than a noise that has a “smooth” distribution over all the
transmissions (as in the stochastic case), the noise can target specific messages, specific links, or
specific parties.

In fact, this puts a stringent constraint on the noise level—it must not be the case that the
noise is able to completely “silence” any single party. Indeed, Jain, Kalai, and Lewko [56] observed
that no protocol can tolerate more than a fraction Θ(1/m) of adversarial noise. This bound also
holds in the case of adaptive protocols [46, 1], where the number of bits a party sends may depend
on the noise.

Theorem 7.5 ([56]). No protocol for the m-party identity function over a network G can output
the correct value with probability greater than 1/2 in the presence of a fraction 4/m of adversarial
noise.

Proof. The claim is quite trivial in the synchronous setting, where the party with the minimal
number of neighbors talks less than CC(π)/m and its entire communication can be corrupted.

Yet this holds also in the asynchronous setting. Let p be the party that, assuming no errors,
sends and receives at most 2CC(π)/m bits (say, on input x, but without loss of generality, we can
assume the same holds for another input x′). The adversary can completely corrupt the view of p,
replacing it with the view p would have on input x′. This attack cannot be detected by any party
and leads to corrupting at most 4CC(π)/m bits, i.e., a fraction 4/m of adversarial noise.

7.3 Coding schemes for networks with adversarial noise: Synchronous setting

Hoza and Schulman [55] considered the case of coding schemes over networks G = (V,E) with
m = |V | parties and l = |E| communication links in the synchronous message passing setting
assuming adversarial noise model. They show, through a careful analysis of Algorithm 11, that the
same coding scheme works even in the presence of a fraction Θ(1/l) of adversarial noise.2 That is,
the noise resilience is inversely proportional to the number of edges in the network.

Theorem 7.6 ([73, 55]). For any graph G, there exists a synchronous coding scheme that simulates
any noiseless binary protocol π0 in O(n0) rounds, uses a binary alphabet, and is resilient to a
fraction Θ(1/l) of adversarial noise.

In order to improve the noise resilience and obtain the maximal noise resilience, Hoza and
Schulman perform a routing that reduces the number of edges that are actually used to O(m).
By this, they obtain a higher noise resilience, namely, of O(1/m). More specifically, they take the
following course of action:

1. Find a subgraph G′ = (V,E′) of G with at most |E′| = O(m) edges, so that in any cut U ⊂ V
the number of edges crossing the cut in G′ is at least 5l/m times the number of edges crossing
the cut in G. Formally, let δ(U) be the set of edges in G crossing U , and δ′(U) be the set of

2By saying that a scheme is resilient to a fraction Θ(ξ) of noise, we mean that there exists a constant ε > 0 such
that the scheme is resilient to a fraction εξ of noise.
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edges in G′ crossing U , then
5l
m
δ′(U) ≥ δ(U).

The existence of such a subgraph is guaranteed by [26].

2. Given a subgraph G′ with the preceding properties, they show that the neighborhood connec-
tivity task of G can be solved in O( l logm

m ) noiseless rounds over a subgraph G̃ that contains
the edges of G′ and at most O(m) other edges in G. This part involves routing and scheduling
of messages performed via multicommodity flow methods [61, 63].

3. Preprocess π0 so that it communicates only using the edges of G̃. Using Step 2, the prepro-
cessed protocol takes O( l logm

m · n0) rounds.

4. Use Theorem 7.6 (Algorithm 11) to obtain a coding scheme that simulates the preprocessed
protocol over the graph G̃.

However, in the subgraph G̃ the number of edges is only O(m), rather than l as in G; thus Algo-
rithm 11 provides the preprocessed protocol with resilience of Θ(1/m). This approach leads to the
following.

Theorem 7.7 ([55]). Given any graph G = (V,E) with |V | = m and |E| = l and a noiseless pro-
tocol π0 over G, there exists a synchronous coding scheme that simulates π0 in O( l logm

m n0) rounds
over a subgraph G̃ = (V, Ẽ) and is resilient to a fraction Θ(1/m) of adversarial noise.

Note that the coding scheme is defined over a different graph G̃ than the original protocol G.
This can be seen as a hybrid of the asynchronous model described in the next section: several edges
are being “silenced”, while over the other edges, a single bit is sent in every round. While a noise
resilience of Θ(1/m) is maximal in the multiparty case (see §7.2), a remaining open question is
whether the obtained rate of O(m/l logm) is optimal in the adversarial-synchronous case and, if
so, which topology satisfies it.

In addition to the above, the work [55] considers also the case where the network is given by
a directional graph. In this case, certain relations between noise tolerance and the topology of the
network are given. Other settings that are considered by [55] include the case where the noise is
budgeted per edge rather than globally over the entire network.

7.4 Coding schemes for networks with adversarial noise: Asynchronous setting

Jain, Kalai, and Lewko [56] gave the first coding scheme assuming asynchronous message passing.
Their scheme assumes there exists a party that is connected to all the other parties (i.e., the graph G
contains a star), and is resilient to a fraction Θ(1/m) of adversarial noise.

Theorem 7.8 ([56]). Given any G that contains a star, there exists an asynchronous coding
scheme π that simulates any noiseless protocol π0 over G. The coding scheme communicates
CC(π) = O(CC(π0)) bits and is resilient to a fraction Θ(1/m) of adversarial noise.

The main idea behind the coding scheme [56] is the following. All the communication is sent
over the edges of the star subgraph. That is, when p1 needs to send a message to p2, it actually
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sends a message to the star center (which we simply name p), and then p relays the message to p2.
This way, p has a global view of the progress of the protocol.

The communication over each edge (p, pi) is encoded via a ternary tree code sending the mes-
sages {0, 1,←} and using a simple rewind-if-error paradigm, similar to the case in [73]. Since all the
communication goes through the center p, in case one of the parties backtracks, p can backtrack
the entire protocol (i.e., all affected parties) until all the parties have removed the incorrect suffix.

Let us give an example that clarifies this idea and highlights several subtleties we need to
address. Recall that in the asynchronous message-passing model, a party sends a message only
after the event of receiving at least one message. Consider the following noiseless π0: for 100 times,
p1 sends a bit to p2 and then receives a bit from p2. Then, p1 sends a bit to p3 and receives a bit
back; the same pattern (of 100 + 2 exchanges) is then repeated again and again.

Assume that the bit sent at the 101st exchange from p1 to p3 is corrupted by the channel. As
a result, the bit p3 sends back to p1 is incorrect and the 100 bits exchanged between p1 and p2
afterward are also incorrect. This error cannot be corrected until enough messages are transmitted
from p1 to p3, allowing the tree code between them to recover the error. This means that only
after approximately 300 exchanges occurred in the protoocol, will p3 realize that the bit received
at the 101st exchange is incorrect, and only then would p3 indicate that its reply to p1 should be
corrected. Only then can the backtracking process in the network begin. However, by that time a
suffix of approximately 200 bits between p1 and p2 needs to be deleted.

This example suggests it may take a while to correct errors that happen between parties that
“do not speak a lot”, and until such errors are corrected, the protocol keeps communicating large
numbers of (incorrect) bits, which are wasted.

To mitigate this effect, the scheme of [56] polls each party from time to time, even if this party is
not scheduled to speak in the underlying π0. That is, assume the alphabet {0, 1,←, H}, where the
symbol H (hold) causes the noncenter recipient only to reply with an H and is ignored otherwise.
The center allows the simulation to progress in chunks of O(m) bits. After each such chunk, the
center sends an H to each party (and expects to receive an H back). This way, every party has a
chance to “talk” at a constant frequency, and errors are being detected in a timely manner, that
is, within O(m) bits of communication.

The analysis in [56] shows that running the preceding coding scheme for 6n0 rounds (assuming
a tree code with distance 1/2) suffices to complete the protocol correctly as long as the fraction
of bit errors does not exceed 1

10638m . More specifically, the analysis plots a relation between the
progress of the simulation and the number of errors, and shows that in order to delay the progress
by xn “rounds”, it must be that the tree code failed in decoding O(x) symbols (where the constant
depends on the distance of the tree and the amount of rounds it takes to backtrack after a single
error has happened). Tree code failures amount to corrupted symbols, as explained in the proof of
Theorem 7.2.

Balancing the communication. The work of Lewko and Vitercik [62] follows the same idea of [56],
but instead of having a designated party that serves as the coordinator, this role is being distributed
among all the parties in a round-robin fashion. Specifically, the protocol is run in chunks, where
during the i-th chunk, the i-th party pi serves as the coordinator. Hence, the topology is assumed
to be a complete graph.
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Between each two chunks, the coordinator performs a consistency check, where every party
sends the coordinator a hash of the view that party holds. The coordinator verifies that the hash
values match its own view and either instructs the parties to continue to the next chunk or to
rewind one chunk. In addition, pi passes its role as a coordinator to the next party, pi+1. Note that
the new coordinator has only its own local view on the computation so far and cannot perform
the consistency check without the “global view” that pi has. To this end, the old coordinator sends
the new one hash values of its entire view (separately per party). These hashes will serve the new
coordinator as the “global view”, and will be concatenated to the communication in the new chunk.
[Each party does the same: if the party passes the consistency check, then its view matches the
hash sent to the new coordinator. In the next chunk the party can hash its communication of the
last chunk concatenated with the hash of the communication up to that chunk.]

This scheme achieves a similar rate and resilience as [56]; however, the net effect of distributing
the role of the coordinate is avoiding a “bottleneck” that concentrates all the communication. That
is, while in [56] the center’s view consists of all the CC(π) bits communicated during the protocol,
in [62], the view of each party consists of O(CC(π)/m) bits.

X

Open Questions for Section 7

1. What set of topologies admits a synchronous coding scheme with rate O(1)
over a BSCε? In particular, find a precise relation between a graph G to the
maximal rate it admits.

2. What is the maximal rate obtainable for synchronous coding schemes that
are resilient to a fraction Θ(1/m) of noise? (That is, is the rate O(m/l logm)
of Theorem 7.7 optimal?)

3. Devise a coding scheme in the asynchronous model for a general topology
(specifically, one that does not have a star as a subgrph). What is the best
rate that can be achieved with maximal noise?

4. Find a coding scheme that is resilient to a fraction Θ(1/m) of noise, where
the topology is not known in advance. What is the maximal rate in this case?

5. Extend the above coding results to other communication and noise models:
specifically, the case of noisy Broadcast or Multicast channels, or the case of
point-to-point channels with insertion and deletion noise.

Note: Some progress has been made on the above open questions. See Addendum
in §A.
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8
Applications and Related Topics

In this section we survey several applications of noise-resilient interactive protocols and several
other topics that relate to noise-resilience techniques presented in this manuscript.

8.1 Noise-resilient formulas

Kalai, Lewko, and Rao [57] showed how to use coding for interactive communication in order to
fortify formulas (i.e., circuits with fan-out 1) against a specific type of faulty gates, namely, gates
that may short-circuit one of the inputs to the output. More generally, they show how to compile
any formula F into a resilient formula E with size |E| = poly(|F |), so that E is correct even if
at any path between input and output at E, a fraction of up to 1/10 − ε of the gates may be
adversarially replaced with any gate g for which g(0, 0) = 0 and g(1, 1) = 1. Such a noise is called
a short circuit, since it can be seen as adversarially connecting one of the inputs to the output,
possibly in a way that depends on the input. If gates with fan-in 3 can be used, the noise resilience
is 1/6− ε. Furthermore, the compiler is efficient.

Theorem 8.1 ([57]). For any ε > 0, there exists an efficient compiler that converts any balanced
boolean formula (with fan-in 2 gates) of depth d into formulas E2 and E3 that consist of ∨ and ∧
gates, and compute the same function as F even if up to e of the ∨-gates and up to e of the ∧-gates
in any input-to-output path suffer from a short-circuit noise. E2 contains only gates with fan-in 2,
and has depth 4d+ 10e. E3 contains only gates with fan-in 3, and has depth 2d+ 6e.

The theorem suggests that we can convert F into a formula that is resilient up to a noise fraction
of 1/6− ε with fan-in 3 and up to a noise fraction of 1/10− ε with fan-in 2. If we set e2 = 4d

ε , then
the obtained E2 can tolerate e2 noisy gates out of every 4d+ 10e2 in a single input-to-output path,
which amounts to a fraction

e2
4d+ 10e2

= 4d/ε
4d+ 40d/ε = d

10d+ εd
≥ 1

10 − ε

of noisy gates. Similarly, setting e3 = 2d/ε guarantees E3 is resilient to a fraction 1/6− ε of short-
circuit gates. Note that the size of the resilient formula is polynomial in the size of F , that is,
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assuming F is balanced,

|E2| ≤ 24d+40d/ε = (2d)4+40/ε = |F |4+40/ε = polyε(|F |);

similarly E3 = polyε(|F |).
The high-level outline of the compiler of Theorem 8.1 is the following:

1. Convert the formula into an interactive protocol (via the Karchmer-Wigderson relation [58]).

2. Compile the interactive protocol to a noise-resilient version (via a rewind-if-error technique).

3. Convert the noise-resilient interactive protocol back into a noise-resilient formula (via
Karchmer-Wigderson).

We now give more details about Karchmer-Wigderson games and converting formulas into
interactive protocols, and vice versa. For any boolean function, the Karchmer-Wigderson game
for f is the following communication task: Alice is given x ∈ f−1(0) and Bob is given y ∈ f−1(1).
The parties need to find an index i for which xi 6= yi; note that such an index always exists because
0 = f(x) 6= f(y) = 1. Karchmer and Wigderson [58] observed that given a formula F (with fan-
in 2 ∨- and ∧-gates1) that computes f , one can obtain an equivalent interactive protocol by the
following process: Alice considers F (x) and Bob considers F (y). Start with the output gate of F . If
an ∧-gate, Alice sends a single bit {L,R} to Bob according to an input of that gate that evaluates
to 0. If an ∨-gate, Bob sends {L,R} to Alice according to the input of that gate that evaluates to 1.
The parties then follow to the gate indicated by the message {L,R} and repeat, until they reach
a leaf that corresponds to a literal for which xi 6= yi. The correctness can be seen by observing
that this process preserves the invariant that the currently considered gate always evaluates to 0
for Alice and to 1 for Bob.

Note that if this protocol is expressed as a tree (i.e., as a pointer-chasing problem, as described
in 2.1.3), then it exactly corresponds to the formula F , replacing each ∧-gate with a node that
belongs to Alice and any ∨-gate with a node that belongs to Bob and replacing the literals of F
with output leaves.

After the parties obtain an interactive protocol, they can convert it into a resilient scheme via
techniques discussed earlier in this manuscript. It turns out that short-circuit errors translate into
substitution errors in the feedback model. To see this, consider the Karchmer-Wigderson protocol
when a short-circuit noise occurs. In such a case, the new gate to be considered is the one dictated
by the short-circuit error rather than by the {L,R} symbol sent by the party. But, it is also
necessary that both parties be aware of this short-circuit noise so that they can agree on the next
gate to consider. In other words, they always have a consensus regarding where they stand in
the protocol tree. Such a consensus is equivalent to the case of channels with feedback (recall the
discussion in §6.1). Indeed, the coding scheme used by [57] to make the interactive protocol resilient
to noise “follows”2 the same ideas as Algorithm 7 (specifically, the variant used for Theorem 6.5)
and obtains noise resilience of 1/3−ε and 1/5−ε, respectively, for the ternary and binary protocols
that correspond to the (naïve) bounds for the feedback channel [27], as discussed in §6.1. Translating

1Without loss of generality, we consider only formulas that do not contain ¬-gates, since by DeMorgen’s rule we
can assume all the negations are at the variables.

2We note that [57] chronologically precedes Algorithm 7.
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the protocol back to a formula results in a loss of another factor of 2 in the maximal resilience,
which leads to the bounds of 1/6 and 1/10 stated earlier. Using the more sophisticated machinery
of Theorem 6.5, (i.e., Algorithm 8), it is possible to obtain a formula with fan-in 2 that is resilient
to a fraction 1/6− ε of faulty gates.

In order to show the translation from a resilient protocol into a resilient formula, we need the
set up some notation. Let P be an interactive protocol, and let V A and V B be the set of Alice’s
nodes and Bob nodes, respectively, in the protocol tree. We define a noise pattern e = (eA, eB), with
eA ∈ (Σ∪{⊥})V A being the noise on Alice’s nodes and eB ∈ (Σ∪{⊥})V B , the noise on Bob’s nodes.
The error pattern e tells, for each node v ∈ V in the protocol tree, if the transmission is corrupted
or not: if the transmission of node v is corrupted, the pattern ev = σ tells which symbol σ ∈ Σ is
received by the other side; otherwise ev = ⊥ denotes an uncorrupted transmission. Similar to the
standard Karchmer-Wigderson conversion, each node in the protocol tree will be replaced with a
gate. The noise pattern e on the formula denotes whether the gate at node v is short-circuited or
not: if ev = σ, it is short-circuited to its σ-input, and if ev = ⊥, the gate behaves correctly.

Translating a resilient protocol back into a resilient formula is performed via the following
lemma.

Lemma 8.2 ([57]). Let f be a boolean function, and let P be an interactive protocol (assuming
noiseless feedback) that correctly solves the Karchmer-Wigderson game for f on any input and noise
pattern from T ×U , where T ⊆ f−1(0)×(Σ∪{⊥})V A and U ⊆ f−1(1)×(Σ∪{⊥})V B . Furthermore,
assume that each node in the protocol tree of P is reachable by some element in T × U . Then the
formula F obtained from the protocol tree of P by replacing every time Alice speaks with an ∧-gate,
every time Bob speaks with an ∨-gate, and every leaf with a literal correctly computes f for any
input and noise in T ∪U . That is, for any (x, a) ∈ T , F (x) = 0 assuming the noise pattern e = (a, eb)
with any eb ∈ (Σ ∪ {⊥})V B . Similarly, for any (y, b) ∈ U , it holds that F (y) = 1, assuming the
noise e = (eA, b) for any eA ∈ (Σ ∪ {⊥})V A .

Proof. We prove a simpler variant of the lemma, namely, that given some (x, a) ∈ T , it holds
that F (x) = 0, assuming the noise pattern e = (a,⊥V B ). The lemma will then follow, since short-
circuiting an ∨-gate can turn its output only from 1 to 0, but not in the other direction. The proof
for (y, b) ∈ U is similar.

The proof is done by induction on the depth d of the protocol tree. If d = 0, then the protocol
simply outputs without communicating. Since the protocol is correct (from Alice’s point of view),
on each input (x, ·) ∈ T , it outputs an index i, so that for any (y, ·) ∈ U , xi 6= yi. Since Alice does
not know y, her output i must be independent of y. Similarly, Bob’s output is independent of x.
Since the protocol is correct, both parties output the same value i, which means that i does not
depend on the specific x, y. This implies that either F (z) = zi or F (z) = zi satisfies the claim.

For the case of d > 0, consider the root of the protocol tree (i.e., the first round of the protocol).
Assume without loss of generality that Alice owns the root node, so she sends a symbol at the first
round. For each σ ∈ Σ, let Tσ be the set of (x, a) ∈ T for which Bob receives σ in the corresponding
round of the protocol. Let Σ′ ⊆ Σ be the set of σ for which Tσ 6= ∅.

Let F (z) be the formula obtained by converting the protocol tree into a formula, as stated in
the lemma. The output of F (z) is an ∧-gate; we let Fσ(z) be the subformula connected to the
σ-input of the output gate. Since every node in the protocol tree is reachable, the root gate has an
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input only for σ for which Tσ 6= ∅, that is,

F (z) =
∧
σ∈Σ′

Fσ(z).

For any σ ∈ Σ′, the induction hypothesis guarantees that Fσ(z) correctly computes f for any Tσ×U .
Given (x, a) ∈ T , we want to show that F (x) = 0 assuming the noise pattern e = (a,⊥V B ).

Assume (x, a) ∈ T1, that is, either Alice sends 1 and eroot = ⊥ or eroot = 1. The induction hypothesis
asserts that F1(x) = 0, assuming the noise induced by (a,⊥V B ); therefore, F (x) = 0 either in the
case where eroot = ⊥ or in the case that the first input (i.e., F1(x)) is short-circuited to the output.

Given (y, b) ∈ U , we want to show that F (y) = 1, assuming the noise pattern e = (⊥V A , b).
The induction hypothesis asserts that for all σ ∈ Σ′, it holds that Fσ(y) = 1, assuming the noise
induced by (⊥V A , b); thus F (y) = 1 regardless of eroot.

8.2 Noise-resilient private protocols (do not exist)

“Can noise-resilient protocols be also private?” This question was asked by Chung, Pass, and
Telang [22] as well as by Gelles, Sahai, and Wadia [44], trying to employ coding techniques upon
distributed protocols that perform secure computation. The somewhat surprising answer to this
question is that privacy and noise resilience are contradictory goals that damage each other. While
one can always make a private (noiseless) protocol π0 resilient by the naive approach of encoding
each message separately (which has a vanishing rate, and is resilient to at most O(1/n0) adversarial
noise), there is no hope of getting a private protocol that is resilient to more than a fraction
of O(1/n0) corruptions or, in particular, a constant fraction of noise.

Theorem 8.3 ([22, 44]). For any ε > 0, there exists a function f and a private interactive protocol π0
that computes f , assuming noiseless channels; however, no protocol π for f is both private and
resilient to a fraction ε of adversarial noise.

There are several ways to define what “privacy” actually means. Chung et al. [22] require the
resilient protocol π to preserve exactly the same information release as in π0. That is, if π0 transmits
some information b0 and only then transmits b1, so should π. Gelles et al. [44] require only that π
leaks the same information that π0 releases overall (e.g., regardless of the order in which information
is released).

Both impossibility proofs [22, 44] are based on the same observation: in order to correct errors,
the protocol must be able to rewind a faulty suffix of the simulation and perform the same part of
the computation again, yet with different (intermediate) inputs. This rewinding, however, is fatal in
secure computations, as it leaks what the parties do on two different inputs. As an example, consider
a zero-knowledge protocol [49], say for graph isomorphism (Figure 8.1, see also [5, Section 9.4]):
Given two input (isomorphic) graphs G1, G2, at each iteration the prover randomly samples a
graph H isomorphic to the input graphs, and it needs to show an isomorphism to either G1 or
to G2. Assuming the verifier cannot compute isomorphism between two graphs by itself, H gives
the verifier no information about the isomorphism G1 ' G2—the verifier could have generated H
by itself, by sampling a random isomorphism. The only information the verifier learns is the fact
that such an isomorphism exists (if the prover is successful in the protocol). However, if the protocol
is allowed to “rewind”, for example, if it allows the verifier to replace σ = 1 with σ = 2 at Step 2 of
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The Graph-Isomorphism Zero-Knowledge Protocol:
Common input: isomorphic graphs G1 = (V,E1), G2 = (V,E2); The prover is assumed to
know an isomorphism π : V → V such that G1 = π(G2). Repeat for k iterations:

1. The prover picks a random isomorphism ϕ : V → V and sends the verifier H = ϕ(G1).

2. The verifier randomly picks σ ∈ {1, 2} and challenges the prover to show that H ' Gσ.

3. If σ = 1, the prover replies with ϕ; Otherwise, it replies with ϕ(π(·)).

4. The verifier receives the isomorphism π̃ and checks that H = π̃(Gσ).

Figure 8.1: A zero-knowledge protocol for graph isomorphism

the same iteration and get an answer (at Step 3) for both challenges, then it provides the verifier
with the complete isomorphism, leaking more information that it should have and thus violating
privacy.

The result of Chung et al. [22] extends also to the computationally bounded setting, where
the adversarial channel (as well as the parties) are computationally bounded. In this setting, an
interesting tradeoff between the rate and the noise resilience is provided.

Theorem 8.4 ([22]). Assume the existence of a computational private interactive coding scheme
with rate r that is resilient to a fraction ε of noise, then εr = o(1/ log(κ)), where κ is the security
parameter.

This tradeoff does not eliminate the possibility of having computationally private protocols that
are resilient to some constant fraction of noise. Indeed, assuming one-way functions exist, one can
obtain a scheme whose rate is constant (which may depend on the security parameter κ). This is
done via exchanging long signature keys and then signing each one of the messages transmitted
by the noiseless protocol. Since the noise is computationally bounded, it cannot corrupt a message
and generate a valid signature. Then, the corruption will be detected by the receiver (with high
probability). This has the effect of turning corruption into erasures which assists the parties in
advancing the protocol only in the correct track (see §6.2). In particular, the parties would never
(i.e., except with a negligible probability) perform computations on invalid intermediate inputs.

Theorem 8.5 ([22]). Assume the existence of one-way functions. Then, for every ε > 0, there
exists a private interactive coding scheme with rate O(1/κε) that is resilient up to a noise rate
of 1/12− ε. If, additionally, a subexponentially-hard one-way function exists, the rate can be im-
proved to O(1/poly(log κ)).

Remark 8.1. The preceding impossibilities hold only for adversarial noise. Somewhat surprisingly,
random noise makes it easier to perform secure computations. Indeed, in the presence of random
noise, one can obtain an oblivious transfer primitive [24, 25], with which the secure computation of
any function is possible [72, 48]—even functions that cannot be securely computed over a noiseless
channel!
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8.3 Noise-resilient interactive proofs

While privacy cannot be preserved by interactive protocols, does the same hold for other possible
properties of interactive protocol, such as completeness or soundness? This question was asked
by Bishop and Dodis [9], extending the discussion to the class IP of polynomial-time interactive
proofs [49] (see also [5, Section 8]).

Definition 8.1 (polynomial-time interactive proof system [49]). An interactive proof for a language
L is an interactive protocol between an all-powerful prover P and a polynomial-time verifier V ,
which on any input x (given to both parties) satisfies

Completeness: If x ∈ L, then at the end of the protocol between V and P , the verifier accepts x
with probability at least 2/3.

Soundness: If x /∈ L, then for any (possibly cheating) prover P̃ , the verifier V accepts x with
probability at most 1/3.

Not all languages L have a protocol that satisfies the preceding, and the set of languages that
have such a protocol whose length is polynomial in |x| is known as the complexity class IP.

Given some L ∈ IP and given an interactive protocol for L that satisfies the conditions of
Definition 8.1, it is clear that employing coding techniques would preserve the completeness (i.e.,
the correctness) of interactive proofs in the presence of a fraction ε of adversarial noise. Bishop and
Dodis prove that the same holds for soundness [9].

First, we augment interactive proofs into a noise-resilient version.

Definition 8.2. A polynomial-time error-resilient interactive proof for a language L is an interactive
protocol between a prover P and a polynomial-time verifier V , which on any input x (given to both
parties) satisfies

ε-Noisy Completeness: If x ∈ L, then at the end of the protocol between V and P , the verifier
accepts x with probability at least 2/3, even if up to a fraction ε of the protocol transmissions
were adversarially corrupted.

Soundness: If x /∈ L, then for any (possibly cheating) prover P̃ , the verifier V accepts x with
probability at most 1/3.

Define the error-resilient IP (ERIP) complexity class as the set of all languages L that have a
protocol of polynomial length in |x| satisfying Definition 8.2. It then holds that the noise resilient
class is equivalent to the standard class.

Theorem 8.6 ([9]).
ERIP = IP.

Note that the soundness requirement in Definition 8.2 is the same as in Definition 8.1. Indeed,
since the soundness holds for any cheating adversary P̃ , we can merge the role of the adversarial
channel with the role of the cheating prover. The difficulty stems from making the completeness
more lenient, as this can be used by the cheating prover to violate the soundness.

Quite informally, the high-level ideas behind the proof of Theorem 8.6 are as follows. We begin
by using the framework of Shamir [78] for showing that IP = PSPACE. In this framework, the
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interactive protocol between P and V can be formulated as k iterations of challenge-response,
where at each iteration the verifier randomly selects a challenge c (possibly depending on the
communication so far), and sends it to the prover. The prover needs to answer a response rc that
fits that specific challenge. If x ∈ L, the prover can come up with a “correct” response rc for any
challenge c sent by the verifier. However when x 6∈ L, then for a large fraction of the challenges,
there is no correct response; the prover successfully fools the verifier into accepting only in the case
where the challenge that the verifier sends comes from the small set of “bad” challenges that do
have a valid response; however, this happens with small probability.

It then follows that even if we allow noise and allow the protocol to “rewind” some bounded
number of steps back, the probability that the verifier picks a “bad” challenge anywhere during the
protocol is small. This probability can be further reduced via parallel repetitions (i.e., performing
k-copies of the same protocol with different challenges and accepting only each of the copies is an
accepting instance). The downside of this repetition is an increase in the communication of the
protocol. The obtained protocol has a vanishing rate of O(1/r0), where r0 is the number of rounds
in the original (noiseless) protocol [9].

8.4 Noise-resilient perpetual (one-way) communication

In this section we describe several applications of tree codes and related coding techniques applied
in the setting of data-stream communication.

Definition 8.3 (data stream). A data stream S over an alphabet Γ is an (infinite) string S =
s1s2s3 · · · , where each si ∈ Σ arrives at time i (and is unknown beforehand)

Assume Alice generates a stream S that she wishes to transmit to Bob over some channel. That
is, at every given time, Bob wishes to know the stream generated by Alice up to that time. If the
communication is noiseless, then at every timestep Alice would simply send the symbol si that was
just generated at that time. The question is how to handle the datastream’s transmission over an
adversarially noisy channel.

A naive encoding for this setting would partition the stream into blocks of size B and encode
each block separately using a good error-correcting code. However, it is easy to see that such an
approach cannot tolerate B adversarial corruptions, since these can completely corrupt the encoding
of an entire block and would permanently prevent Bob from learning the corresponding datastream
symbols that were contained in the corrupted block. A desired goal is that no matter what the noise
does, Bob should eventually learn any si generated by Alice. Specifically, we would like a coding
scheme that is resilient to a constant fraction of noise and has a constant rate.

Since the stream (and, thus, the encoding) is infinite, we need to be more careful when defining
the noise rate and the rate of the code. Similar to the case of protocols with varying length (§4),
we can define a relative version of these quantities, measured up to some time n. We will assume
the encoding has a fixed (nonvarying) rate. Then, the rate is simply log |Σ|

M log |Γ| , where Γ is the data
stream’s alphabet, Σ is the channel’s alphabet, and M is the number of symbols communicated at
every time step. The fraction of noise up to some time n is the number of corruptions performed
through time n divided by Mn, the number of transmissions up to time n.

One issue that appears in this setting is that at time n we cannot expect the receiver to be
able to decode the entire stream up to time n. Indeed, assume that all the transmissions between
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times (1− c)n and n are corrupted for some constant c > 0; the noise fraction in this case is c. It
is easy to see that the receiver cannot learn s(1−c)n · · · sn: before time (1− c)n these elements were
still unknown (at the sender’s side), while after that time all the transmissions were corrupted.

It is not very surprising that an (infinite) tree code provides a good coding scheme in this
setting. A simple encoding of the stream S through a tree code allows the receiver to decode a
prefix of S of length at least approximately εn at any time n for which the fraction of noise is at
most 1/2− ε.

Theorem 8.7 ([35]). For any constants ε > 0 and δ > 0, there exists a constant-rate error-correction
scheme for data stream S = s1, s2, . . . such that at any given time n the receiver outputs a string
s′1, s

′
2, . . . , s

′
n, and if the noise rate until time n is at most 1/2− ε, then

s′1s
′
2 · · · s′(2ε−δ)n = s1s2 · · · s(2ε−δ)n.

Proof. Let T be an infinite |Γ|-ary tree code with alphabet Σ and distance α ≥ 1−2ε
1−2ε+δ , the existence

of which is given by Theorem 2.2. Alice encodes S by simply encoding each si using the tree code.
That is, at the i-th time step she transmits the last symbol of TCenc(s1 · · · si). Using Theorem 2.2,
the rate of the scheme is given by

log |Γ|
log |Σ| = log |Γ|

O( 1
1−α) log |Γ|

= O

( 1
1− α

)
= Oε,δ(1).

For a specific time n, consider a string s′ ∈ {0, 1}n that agrees with s1, . . . , sn on a prefix
of length less than (2ε − δ)n. Due to the tree distance property, the Hamming distance between
TCenc(s′1 · · · s′n) and TCenc(s1 · · · sn) is at least α(1−2ε+δ)n, which means the decoding will output
s′1 · · · s′n instead of s1 · · · sn only if there were at least dα(1− 2ε+ δ)n/2e corruptions. However, the
corruption rate in this case is

dα(1− 2ε+ δ)n/2e
n

≥
1−2ε

1−2ε+δ (1− 2ε+ δ)
2 ≥ 1

2 − ε.

One can verify that with adversarial noise rate of 1/2, no communication can be carried out,
and so the preceding relation between the noise rate and the decodable prefix is tight. If we relax
the setting, for example, if we allow the parties to possess a secret random string (unknown to the
adversary), then an (efficient) coding scheme exists that for any time n in which the noise fraction
is at most 1− ε decodes a prefix of length at least ≈ εn [35].

Ostrovsky, Rabani, and Schulman [68] considered another interesting relaxation of the setting,
which is inspired by automatic control. Here, the sender’s stream is seen as its internal state, which
it wishes to communicate to the receiver. Given a certain state si at time i, the sender shifts at
time i+1 to another state according to some fixed transition function that depends only on si and i
(but not on the history). Ostrovsky et al. define a family of codes named trajectory codes in which
the encoding of si may depend only on i and si (and does not depend on s1 · · · si−1). In trajectory
codes, the Hamming distance between the encodings of two divergent paths is proportional to the
Hamming distance of the two divergent paths (rather than to the length of the divergent paths, as
in the case of tree codes).

Trajectory codes extend the notion of tree codes. Indeed, when the underlying state space (i.e.,
the possible states and their connections, given by the transition function) is a tree, the obtained
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code is equivalent to a tree code. However, in other special cases, for example, when the set of
states grow polynomially with time (rather than exponentially, as in the case of a tree), better
codes can be found. In [68], asymptotically good trajectory codes (that is, codes with a constant
rate and any distance less than 1) are shown to exist for any possible transition function [68].
Moreover, efficient constructions are provided for the interesting case where the set of states and
the transition function correspond to a d-dimensional grid.

X

Open Questions for Section 8

1. Is it possible to use the techniques of §8.1 to obtain noise-resilient circuits
(i.e., with an arbitrary fan-out) of polynomial size in the noiseless circuit?

2. Can the communication-efficient schemes of §6 be used to minimize the size
of a resilient circuit?

3. When sending a message over a unidirectional setting, the process can be
separated into two independent parts: first compressing the message (using
some source-coding technique) and then encoding the compressed message
(using a some channel-coding technique) [80]. Does the same source-channel
separation hold in the interactive case? That is, do general-purpose coding
schemes perform as well as coding schemes tailored for a certain application?

4. What other applications can benefit from interactive coding techniques?
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A
Addendum

The first version of this manuscript was completed in mid-2015 and included works that were
published by that time. In this appendix we briefly mention recent works that appeared after the
completion of the first version.

A.1 The Hunt for Efficient Constructions (Section 3):

Gelles, Haeupler, Kol, Ron-Zewi, and Wigderson [39] consider efficient deterministic interactive
coding schemes with high rate of 1 − O(

√
H(ε)). The approach of [39], borrowed from the uni-

directional regime, is the approach of concatenation [33]. The code is composed of two layers: the
first layer (the “inner code”) may be inefficient, but has optimal parameters, while the second layer
(the “outer code”) needs to be efficient but may have sub-optimal parameters. Several previous
works (e.g, [11] as well as [59, 51] described in §3) indeed follow this high-level idea of splitting
the scheme into small chunks, simulating each chunk with a (possibly inefficient) interactive code
serving as an inner code. The outer code, in this case, needs to “synchronize” the simulation in
between blocks.

The coding scheme of Gelles et al. [39] follows this path explicitly, and shows a deterministic
and efficient construction of a linear systematic tree code, that can be used as an outer code.

Definition A.1 (linear systematic tree codes [39]). A 2k-ary tree code T over alphabet Σ = {0, 1}n
is systematic if the following holds: if TCenc(x1, . . . , x`) = σ1, . . . , σ`, then for any i ∈ [`], the first
k-bits in the description of σi equal xi. The tree is linear, if for every `, TCenc : {0, 1}k` → {0, 1}n`
is a linear map.

In particular, they show how to construct a systematic linear O(n)-ary tree code of length n

with distance O(1/ logn). Concatenating the above outer code with any coding scheme for BSC
channels (possibly inefficient scheme, e.g., Algorithm 1) that serves as an inner code gives an efficient
simulation with success probability 1− 2−Ω(n0/ logn0) over BSCε.
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Theorem A.1 ([39]). For any ε < 1/2 there exists an efficient and deterministic coding scheme
with rate 1 − O(

√
H(ε)), that simulates any (alternating) π0 over a BSCε with probability 1 −

2−Ω(n0/ logn0).

A.2 Communication-Efficient Coding Schemes (Section 5)

Haeupler and Velingker [52] consider the rate of two-party interactive coding schemes when up
to a fraction ε of the bits are corrupted by the channel. Previous work (Kol and Raz [59] and
Haeupler [51] described in §5) demonstrated that the maximal rate for interactive coding in this
setting is ≈ 1 − O(

√
H(ε)), while coding in the one-way setting can be performed with rates as

high as 1−O(H(ε)) [53].
Haeupler and Velingker find that this quadratic gap can be bridged for a large class of interactive

protocols where the parties’ order of speaking is not alternating. Instead, the parties communicate
messages of length Ω(poly(1/ε)) bits, on average. The noise model allows corrupting up to a frac-
tion ε of the communication. However, the channel is assumed to be oblivious, i.e., the noise pattern
is fixed and independent of the communicated transcript.

Theorem A.2 ([52]). Any protocol π0 in which parties send messages of average length Ω(poly(1/ε))
can be simulated over an oblivious noisy channel that corrupts up to a fraction ε of the transmis-
sions, with a rate of 1−Θ(H(ε)) and a success probability of 1− 2−Ω(n0ε6).

A.3 Coding Schemes over Different Noisy Channels (Section 6):

Sherstov and Wu [81] consider two-party interactive coding over channels with insertions and dele-
tions. Building on top of the scheme of Braverman et al. [17], they show a coding scheme that is
resilient to a fraction 1/4 of insertions and deletions (in the setting of [17]). Recall that a noise
resilience of 1/4 is maximal even for a simpler noise, namely, one that only flips bits. This makes
the scheme of Sherstov and Wu optimal in this sense as well.

Theorem A.3 ([81]). For any ε > 0, there exists a coding scheme with a constant rate that simulates
any protocol π0 over a channel with insertions and deletions, has a constant rate, and is resilient
to a fraction 1/4− ε of corruptions.

This, in fact, completely solves Open Question 4 described in §6.

A.4 Multiparty Interactive Communication (Section 7):

Braverman, Efremenko, Gelles, and Haupler [16] consider multiparty interactive coding over BSCε
channels in the synchronous setting. Recall that in this setting the coding scheme of Rajagopalan
and Schulman [73] (Algorithm 11) achieves a rate of Θ(1/ log d), where d is the maximal degree
in the network G = (V,E) with m = |V | and l = |E|. Braverman et al. show that this rate is
essentially optimal. specifically, they show a communication task over a star network, for which
any coding scheme has a rate of at most O(1/ logm).

Gelles and Kalai [40] revisit the question of rate in the synchronous multiparty case, and ask
what happens if we don’t require every party to communicate with all its neighbors at every round.
Based on the techniques in [16] they show a communication task over a cycle network for which any
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coding scheme has a rate of at most O(1/ logm). Note that in a cycle network any party has exactly
two neighbors, hence d = 2 and Algorithm 11 has a constant rate. The reason for this discrepancy
is simple: the fact that in the setting of [73] ever party speaks with all its neighbors at every round
implies an inherent increase in the communication by a factor of O(m) per round, which allows the
parties to overcome errors. However, this increase in the communication exists both in the noiseless
protocol and in the coding scheme, so it cancels out in the rate. Gelles and Kalai suggest that the
setting of [73] actually focuses on the round complexity rather on the communication complexity
of the coding scheme.

Censor-Hillel, Gelles, and Haeupler [20] consider multiparty coding schemes in the asynchronous
setting, where the topology of the network G is not known in advance, that is, each party only
knows its own neighbors. By combining techniques from the literature of distributed computing
and interactive coding, they devise a distributed asynchronous coding scheme that is resilient to
the maximal fraction O(1/m) of noise and demonstrates a rate of O(1/m log2m).

Theorem A.4 ([20]). For any graph G, and any noiseless asynchronous protocol π0 that sends n0
bits over G, there exists a deterministic, asynchronous coding scheme that simulates π0 over the
noisy network G. The scheme communicates O(n0 ·m logm) messages of size O(logm) each, and
is resilient to a fraction Θ(1/m) of adversarial noise.

Efremenko, Kol, and Sexana [29] consider multiparty interactive coding in a setting where the
parties share a noisy broadcast channel [30]: when a party broadcasts the bit b, all the other parties
receive an independent noisy version of b. I.e., the i-th party receives bi = b⊕ ei where ei = 1 with
probability ε and ei = 0 with probability 1− ε, independently of all {ej} for j 6= i.

This setting was previously examined by Gallager [37], who showed a coding scheme in which
each party begins with an input bit xi and at the end of which all parties know all the inputs
{xi} with high probability. Gallager’s scheme takes O(m log logm) broadcasts, i.e., it has a rate of
Ω(1/ log logm). Later, Goyal, Kindler, and Saks [50] showed a matching upper bound on the rate,
for the same task.

Efremenko et al. [29] slightly change the setting in the following sense: the protocol works in
rounds in each of which any party is allowed to broadcast one bit. However, if two or more parties
broadcast at the same round their transmissions collide. In this case the, each one of the other
parties hears an adversarially chosen bit. (Compare to the adaptive setting in §4.)

In this setting, they show an interactive coding scheme with a constant rate.

Theorem A.5 ([29]). There exists a randomized adaptive coding scheme for noisy broadcast chan-
nels that simulate any (nonadaptive) noiseless protocol, takes O(n0) broadcast transmissions and
errs with sub-constant probability in n0.
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B
Summary of Known Schemes

In this appendix we summarize the coding schemes surveyed in this manuscript. Table B.1 sum-
marizes coding schemes in the random noise setting. Table B.2 summarizes coding scheme in
the adversarial noise model. Table B.3 summarizes adaptive coding schemes. Finally, Table B.4
summarizes coding schemes in the multiparty setting. The parameter n denotes the length of the
coding scheme.
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Table B.1: Coding schemes over channels with noise probability ε

Scheme Rate Alphabet Success
Probability Efficient? Deter-

ministic?
Notes

[Sch92] Θ(1) Oε(1) 1− 2−Ωε(n/ logc(n)) √

[Sch96] Θ(1) Oε(1) 1− 2−Ωε(n) √

[Sch03] Θ(1) Oε(1) 1− 1/nc
√ √

[Pac06] Θ(log−
1
2 (1/p)) Oε(

√
log(1/p)) 1− p

√

[Bra12] Θ(1) Oε(1) 1− 2−Ωε((logn)c) √ √

[GMS14] Θ(1) Oε(1) 1− 2−Ωε(n) √

[KR13] 1−O(
√
ε log 1/ε) binary 1− 2−Ωε(nc) √

(3)
[Hau14] 1−O(

√
ε) binary 1− 2−Ωε(n) √

1−O(
√
ε log log 1/ε) binary 1− 2−Ωε(n) √

(1)
[GHK+16] 1−O(

√
ε log 1/ε) binary 1− 2−Ωε(n/ logn) √ √

[Pan13] 1−O(
√
ε) binary 1− 2−Ωε(n) √ √

(1),(2)
[GH15] 1−O(ε log 1/ε) binary 1− 2−Ωε(n) √

(1),(2)
[HV17] 1−O(ε log 1/ε) binary 1− 2−Ωε(n) √

(4)

Notes: (1) The same result applies also in the case of a fraction ε of adversarial noise.
(2) Over channels with feedback and erasure channels.
(3) The scheme assumes a shared random string; however, this assumption can be removed using standard

techniques. See Remark 5.1.
(4) Assuming the noiseless protocol communicates messages of length Ω(poly(1/ε)) on average.
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Table B.2: Coding schemes over channels with a fraction M − ε of adversarial noise

Scheme Maximal
noise M

Alphabet Success
Probability Efficient? Deter-

ministic?
Setting

[Sch96] 1/240 binary 1
√

[BR14] 1/4 Oε(1) 1
√

1/8 binary 1
√

[BE14] 1/4 (*) Oε(1) 1
√

[BKN14] 1/16 Oε(1) 1− 2−Ω(n) √

1/32 binary 1− 2−Ω(n) √

[GH14] 1/4 Oε(1) 1− 2−Ω(n) √

[FGOS15] 1/2 Oε(1) 1− 2−Ω(n) shared randomness
1/2 Oε(1) 1

√
erasure channel

[EGH16] 1/4 3 1
√ √

feedback, fixed order
1/6 binary 1

√ √
feedback, fixed order

1/3 binary 1
√ √

feedback, varying order
1/2 4 1

√ √
erasure channel

1/3 binary 1
√ √

erasure channel
[BGMO16] 1/18 Oε(1) 1

√
channel with insertions
and deletions

[SW17] 1/4 Oε(1) 1
√

channel with insertions
and deletions

[BNT+14] 1/2 Oε(1) 1− 2−Ω(n) quantum protocols,
shared entanglement

Notes: (*) The noise can be refined to the specific amount affecting each direction.

Table B.3: Adaptive coding schemes over channels with a fraction M − ε of adversarial noise

Scheme Maximal
noise M

Rate Alphabet Success
Probability Setting

[GHS14] 2/7 Θε(1) Oε(1) 1− 2−Ω(n)

2/3 Θε(1) Oε(1) 1− 2−Ω(n) shared randomness

[AGS16] 1/3 exp(−n) Oε(1) 1 adaptive length only
2/3 exp(−n) binary 1
1/2 Θε(1) binary 1
1 Θε(1) binary 1− 2−Ω(n) shared randomness
1 Θε(1) binary 1 erasure channel
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Table B.4: Multiparty coding schemes

Scheme Topology Noise Rate Message
Passing

Success
Probability Notes

[RS94] any BSCε Ωε( 1
log(d+1) ) synch. 1−|V |2−Ωε(n) d = maximal degree

[ABE+16] d-regular BSCε Ωε( 1
t3 log t ) synch. 1− (t|V |22−Ω(dα))Ω(n) t = mixing time;

α < 1
[EKS17] broadcast BSCε Θε(1) synch. 1− n−Ω(1) adaptive

[HS16] any Θ( 1
|E| ) Θ(1) synch. 1

any Θ( 1
|V | ) Θ( |V |

|E| log |V | ) synch. 1
[JKL15] star (*) Θ( 1

|V | ) Θ(1) asynch. 1
[LV15] complete Θ( 1

|V | ) Θ(1) asynch. 1 balanced communi-
cation

[CGH17] any Θ( 1
|V | ) Ω( 1

|V | log2 |V | ) asynch. 1 unknown topology
(distributed)

Notes: Performed over a network G = (V,E).
(*) or any G that contains a star as a subgraph
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