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Speaker Tracking Using Recursive EM Algorithms
Ofer Schwartz and Sharon Gannot

Abstract—The problem of localizing and tracking a known
number of concurrent speakers in noisy and reverberant enclo-
sures is addressed in this paper. We formulate the localization
task as a maximum likelihood (ML) parameter estimation prob-
lem, and solve it by utilizing the expectation-maximization (EM)
procedure.

For the tracking scenario, we propose to adapt two recursive
EM (REM) variants. The first, based on Titterington’s scheme,
is a Newton-based recursion. In this work we also extend
Titterington’s method to deal with constrained maximization,
encountered in the problem at hand. The second is based on
Cappé and Moulines’ scheme. We discuss the similarities and
dissimilarities of these two variants and show their applicability
to the tracking problem by a simulated experimental study.

I. INTRODUCTION

In many scenarios, an estimation of the location of speakers
is required. These scenarios may include navigation, surveil-
lance, beamforming [1], source separation [2], target acqui-
sition and tracking geared towards the steering of automated
cameras [3].

In reverberant environments, secondary reflections, may
result in biased location estimates. Multiple concurrent speak-
ers scenarios, that require multiple estimations of several
dominant directions, are more vulnerable to these secondary
sound reflections. The movement of the speakers further
complicates the localization problem, as the amount of data
available in each location is limited, especially in multiple
speaker scenarios. In these scenarios, tracking procedures, that
maintain smooth trajectory of the speakers should be applied.
The objective of this contribution is, therefore, to derive com-
putationally efficient tracking algorithms for multiple sources
that are not affected by the coexistence of the sources in
reverberant and noisy environments.

The target of tracking (and localization) schemes can be
either the coordinates of the speaker location, or the time
difference of arrival (TDOA) between two signals observed
by two adjacent microphones. Although this contribution is
dedicated to coordinate localization, TDOA estimation meth-
ods will also be addressed, as some of the core techniques for
solving both problems are common.

The mathematical relations between the coordinates of the
speakers (or the respective TDOAs) and the observed signals
is nonlinear and non-injective. Hence, the estimation cannot be
achieved by linear estimators. Attempts to estimate the TDOA
in the time-domain encounter difficulties in associating the
observations with the various speakers. On the contrary, the
separation between speakers’ signals in the frequency-domain
is achievable due to the sparseness of the speech signals.
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Therefore, the frequency domain will be the preferable choice
for our estimation procedures.

A plethora of algorithms for speaker localization and track-
ing has been proposed. Some of them will be reviewed in
the sequel. The simplest estimator for finding the TDOA
between two observed signals is the cross-correlation method
and its variants, mainly the generalized cross correlation
(GCC) [4] with phase transform (PHAT) normalization. In [5],
the authors presented the steered response power (SRP)-PHAT
algorithm, which is the generalization of the GCC-PHAT to
an array of microphones in the far-field scenarios. However,
in the multiple speakers scenario, these estimators will not
necessarily yield the required results. These basic techniques
are widely used and can be incorporated into many algorithms.
In the experimental study of the current contribution we will
compare the proposed localization methods with the SRP-
PHAT algorithm.

Two paradigms can be adopted in deriving tracking algo-
rithms, namely the Bayesian and non-Bayesian families of
estimators. By defining the trajectory, or the TDOAs time-
sequences, as stochastic processes, Bayesian methods that aim
at the minimum mean square error (MMSE) estimation can be
utilized [6], [7], [8], [9], [10], [11]. In contrast, by defining the
trajectory as a deterministic and time-varying parameter, the
maximum likelihood estimator (MLE) can be used. Bayesian
tracking algorithms are out of the scope of this contribution.

In this work we adopt the non-Bayesian framework. A de-
terministic system identification approach is taken in [12],[13]
for estimating the room impulse response and in [14] for
estimating the relative transfer function. The TDOA can be
deduced from both estimates. Dvorkind and Gannot [14] also
derive tracking procedure based on a recursive Gauss scheme.

In [15] the ML criterion was used for estimating the TDOA.
In [16], the EM algorithm [17],[18] is adopted to evaluate the
TDOA values of the sources. In the EM formulation in [16]
the hidden data is defined as the individual source signals.
As a result, the E-step simplifies to the MMSE estimator of
each of the source signals, given the measured microphone
signals at the current estimated TDOA. The M-step simplifies
to a maximization of a steered beamformer output yielding
new TDOA estimates for all speakers. The authors do not
utilize the sparseness often attributed to speech signal activity
patterns.

The EM framework presented above estimates the TDOAs
of static sources. For moving sources the TDOA changes from
frame to frame. Implementing the EM algorithm for each
frame separately discards the smooth nature of the source
trajectory. A REM algorithm can mitigate this problem. Two
versions of the REM algorithm are described in the literature,
one of which was proposed by Titterington [19] and the other
by Cappé and Moulines [20]. Based on the model in [16],
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REM algorithms were derived to track moving sources. In [21]
and in [22] the Titterington recursive EM (TREM) variant is
applied and in [23] the Cappé and Moulines recursive EM
(CREM) variant is applied.

In [24],[25] the EM algorithm is also adopted to estimate
the direction of arrival (DOA) values. DOA candidates, taken
by maximizing the SRP output at every frequency bin, are
associated with the various speakers by applying (a variant)
of mixture of Gaussians (MoG) clustering, based on the EM
algorithm. Assuming disjoint activity of the speakers in the
Fourier domain, it is possible to cluster these DOA candidates
to various speakers.

In [26] a two microphone (binaural) scenario is considered
and the model-based EM source separation and localization
(MESSL) algorithm is derived. The phase ratios and the
absolute value ratios of the microphone signals in the short-
time Fourier transform (STFT) domain are associated with
the speakers by utilizing the EM algorithm to perform MoG
clustering. The mean of the Gaussians can be associated with
any potential TDOA value for every speaker. Hypothetically,
the model “duplicates” each speaker to multiple candidate
locations. The number of the Gaussians in the MoG distri-
bution is equal to the number of candidate locations. The
means of these Gaussians are associated with all possible
TDOA values. The E-step is responsible for determining a
time-frequency mask, that is the extent to which each time-
frequency bin associates with each of the Gaussians. The
M-step determines the probabilities of the Gaussians by its
number of associations. The final TDOA estimates can be
taken as the TDOA value associated with the Gaussians with
the largest probability. Another contribution [27] improves the
estimation in the presence of reverberation.

The algorithm in [26] will be the starting point of our
algorithm development. Our contribution is threefold: 1) gen-
eralization of [26] to the estimation of the coordinates of
multiple sources, rather than only their associated TDOAs; 2)
the development of REM schemes for constrained optimization
problems (often encountered in tracking procedures); and 3)
the development of efficient tracking algorithms for multiple
speakers in reverberant environments.

The remainder of this paper is organized as follows. In
Section II the problem of multiple speakers location esti-
mation with a spatially distributed microphone constellation
is defined. In Section III we summarize the EM framework
developed in the context of static TDOA estimation [26] and
generalize it to coordinate localization. This generalization will
serve as the basis of the tracking algorithms developed in the
subsequent sections. Sections IV and V are dedicated to the
main contribution of this paper, the adaption of two versions
of the REM procedure to the multiple speakers tracking
scheme. A simulative experimental study, that demonstrates
the tracking capabilities of the proposed algorithms, can be
found in Section VI. Conclusions are outlined in Section VII.

II. PROBLEM FORMULATION AND THE PROBABILISTIC
MODEL

Consider an array with M microphone pairs receiving
signals from S speakers as illustrated in Fig. 1. The mea-

Fig. 1. Illustration of microphone and speaker constellation.

sured array output is a linear combination of the incoming
waveforms, corrupted by additive Gaussian noise. Let zim be
the signals received by the ith microphone of pair m, where
i = 1, 2 and m = 1, . . . ,M . The signals in the STFT domain
are given by

zim(t, k) =

S∑
s=1

aism(t, k) · vs(t, k) + nim(t, k) (1)

where t = 0, . . . , T − 1 denotes the time index and k =
0, . . . ,K − 1 denotes the frequency index. The speaker index
is denoted s = 1, . . . , S. The number of speakers S assumed
to be a priori known. vs(t, k) denotes the speech signal
emanating from speaker s, aism(t, k) denotes the acoustic
transfer function (ATF) relating source s and microphone i
in pair m, and nim(t, k) denotes additive noise as received by
the microphones. Define

z = vecm,i,t,k
({
zim(t, k)

})
, (2)

where the vec operation denotes the concatenation of all time-
frequency observations received by all microphones. In low-
reverberant environments the ATF can be approximated by the
direct arrival alone:

aism(t, k) w
1

||ps − pim||
· exp

(
−j 2πk

K

τ ism
Ts

)
(3)

where Ts denotes the sampling period, ps and pim are the
speaker s and microphone i in pair m locations, respectively,
and τ ism denotes the travel time between the respective speaker
and microphone. || · || denotes the Euclidean norm. The travel
time τ ism is given by

τ ism =
1

c
·
(
||ps − pim||

)
(4)

where c is the sound velocity. Define the vector of the
concatenated unknown source locations as:

pcon =
[

pT1 · · · pTS
]T
.

Estimating these, possibly time-varying, parameters is the goal
of this paper.
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Rather than using the measurements z directly we will use
the pair-wise relative phase ratio (PRP) defined as:

φm(t, k) ,
z2m(t, k)

z1m(t, k)
· |z

1
m(t, k)|
|z2m(t, k)|

. (5)

The observed measurement vector at time instant t and fre-
quency bin k is constructed by augmenting the PRPs of all
sensors:

φ(t, k) =
[
φ1(t, k) · · · φM (t, k)

]T
. (6)

The set φ(t, k) will be designated the observed data in the
EM formulation, defined in the sequel. The various speakers
are assumed to exhibit disjoint activity in the STFT domain.
Therefore, by means of a clustering process, every time-instant
and frequency-bin of φ(t, k) can be associated with a single
active source.

We use MoG probability function to characterize the coor-
dinates of the entire speakers set in the following way, adapted
from [26]. The mean of each of the Gaussian is a candidate
PRP associated with a specific coordinate on a predefined grid.
The set of grid points is denoted P . The total number of
Gaussians is therefore S×|P|. Each speaker is attributed with
a subset of the |P| Gaussians. Hence, localization boils down
to selecting the most probable Gaussian per speaker.

Based on the disjoint activity of the sources, we give the
observations the following probabilistic description:

φ(t, k) ∼
∑
s,p

ψsp · N c(φ(t, k); φ̃
k
(p),Σs) (7)

where ψs,p is the (unknown) probability of speaker s to be
in location p and N c(·; ·, ·) denotes the complex Gaussian
probability1 with covariance matrix Σs. The mean of each
Gaussian, φ̃

k
(p) =

[
φ̃k1(p) · · · φ̃kM (p)

]T
, is set to the

expected PRP from all candidate locations in the room p ∈ P
to the microphone pairs, satisfying:

φ̃km(p) , exp

(
−j 2πk

K

·(||p− p2
m|| − ||p− p1

m||)
c · Ts

)
(8)

where p1
m ,p2

m are the locations of the microphones in pair
m. The set p ∈ P can be depicted as a dense grid of points
in the enclosure. Other, more sophisticated point selection
mechanisms can be applied as well.

It is reasonable to further assume that the PRP readings
at the microphone pairs are independent, since they experi-
ence different sound reflection patterns. Hence, the covariance
matrix can be modeled as Σs = diag(σ2

1s, . . . , σ
2
Ms), and

consequently:

N c(φ(t, k); φ̃
k
(p),Σs) =

∏
m

N c(φm(t, k); φ̃
k

m(p), σ2
ms).

(9)

1Note, that in [26] the argument of the PRP is approximated by a (real)
Gaussian probability. We preferred to directly approximate the PRP by a
(complex) Gaussian probability to avoid the nonlinearity involved in the
argument operation. The absolute value of the PRP is confined to the unit
circle. Note that distances between two PRP values are approximated by the
chord of the unit circle connecting these values, rather than by the correct
distance measured on the arc connecting them. For small distances both values
are approximately identical. For any two PRP values, long arc-distances are
mapped to long chord-distances. In our experiments both approximations yield
the same performance.

Collecting all terms, the distribution of the PRP readings at
microphone m is given by:

N c(φm(t, k); φ̃km(p), σ2
ms) = (10)

1

πσ2
ms

· exp

(
−|φm(t, k)− φ̃km(p)|2

σ2
ms

)
.

In this contribution we further simplify the model and set
σms = σs∀m. Alternative, more general models, can be used
as well.

Finally, by augmenting all PRP readings for t = 1, . . . , T
and k = 0, . . . ,K−1 in φ = vect,k({φ(t, k)}), the probability
density function (p.d.f.) of the entire observation set can be
stated as:

f(φ) =
∏
t,k

∑
s,p

ψsp
∏
m

N c(φm(t, k); φ̃km(p), σ2
s) (11)

where we assumed that the PRP readings for all time segments
and frequency bins are independent. This assumption follows
directly from the disjoint activity of all speakers.

Let the unknown parameter set be

θ =
[
ψT ,

(
σ2
)T ]T

(12)

where, ψ = vecsp ({ψsp}) and σ2 = vecs
({
σ2
s

})
. The MLE

problem can readily be stated as:

{ψ̂, σ̂2} = argmax
{ψ,σ2}

log f(φ;ψ,σ2). (13)

III. THE EM ALGORITHM FOR LOCALIZATION

In this section the MLE of the (static) source locations
is derived, utilizing the EM algorithm. We extend previ-
ous work [26] developed for TDOA estimation and set the
foundations to the development of tracking procedures in
Sections IV,V.

The EM algorithm requires the definition of three datasets
and their probability model: the observations, the target pa-
rameters (already defined in Sec. II) and the hidden data. In
our case, we define the hidden data to be the association
of each time-frequency bin with a single source located in
a particular location. The parameters to be estimated are the
Gaussians’ standard deviations and the probability of selecting
one Gaussian. The mean of the Gaussians are pre-defined
according to the distance between the prospective source
positions on the grid and the known microphone locations,
as explained in Sec. II.

A. The Hidden Data

The EM algorithm is a common procedure for finding
the MLE in complex problems. Define the hidden data,
x(t, k, s,p), to be the indicator that the time-frequency bin
(t, k) belongs to speaker s located at p. The total number of
indicators in the problem is T ×K×S×|P| . The expectation
of the indicator is readily equal to ψsp, the probability of
speaker s to be in location p:

E{x(t, k, s,p)} = ψsp. (14)
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Let x = vect,k,s,p ({x(t, k, s,p)}) be the set of all indicators.
The probability density function of x is given by:

f(x;θ) =
∏
t,k

∑
s,p

ψspx(t, k, s,p) (15)

where we applied our model assumptions, that each observa-
tion can only be associated with one source, i.e, that at each
time-frequency bin only a single indicator equals 1.

B. The Derivation of the EM Algorithm for Localization of
Static Sources

Given the hidden data, the probability function of the
observations is given by:

f(φ|x;θ) =
∏
t,k

∑
s,p

x(t, k, s,p)
∏
m

N c(φm(t, k); φ̃km(p), σ2
s).

(16)
The p.d.f. of the complete data can be deduced from (15)-(16):

f(x,φ;θ) = f(x;θ) · f(φ|x;θ)

=
∏
t,k

∑
s,p

ψspx(t, k, s,p)
∏
m

N c(φm(t, k), φ̃km(p), σ2
s).

(17)

The derivation of (17) from (15)-(16) simplifies due to the
indicator properties. The EM algorithm for the problem at
hand is now derived. The E-step is given by:

Q(θ|θ(`−1)) , E
{

log (f(φ,x;θ)) |φ;θ(`−1)
}

=
∑
t,k,s,p

E
{
x(t, k, s,p)|φ(t, k);θ(`−1)

}
×

[
logψsp +

∑
m

logN c(φm(t, k); φ̃km(p), σ2
s)

]
. (18)

For implementing the E-step it is sufficient to evaluate µ(`−1)

given by:

µ(`−1)(t, k, s,p) , E
{
x(t, k, s,p)|φ(t, k);θ(`−1)

}
(19)

=
ψ
(`−1)
sp

∏
mN c

(
φm(t, k); φ̃km(p), σ

2,(`−1)
s

)
∑
sp ψ

(`−1)
sp

∏
mN c

(
φm(t, k); φ̃km(p), σ

2,(`−1)
s

) .
Maximizing (18) with respect to the parameters θ(`) con-

stitutes the M-step:

ψ(`)
sp =

∑
t,k µ

(`−1)(t, k, s,p)

T ·K
(20a)

σ2,(`)
s =

∑
t,k,p,m µ

(`−1)(t, k, s,p)|φm(t, k)− φ̃km(p)|2

M ·
∑
t,k,p µ

(`−1)(t, k, s,p)
.

(20b)

The resulting location estimation is determined by searching
for the S (assumed to be known) most probable location of
each speaker:

ps = argmax
p

ψ(L)
s,p ∀s (21)

where L is a pre-defined number of iterations. The summary
of the location estimation can be found in Algorithm 1.

Algorithm 1: Static speaker localization with the EM
algorithm.

Obtain z1m(t, k) and z2m(t, k).
Calculate φm(t, k) using (5).
set φ̃km(p) using (8).
initialize ψ(0)

s,p and σ2,(0)
ms .

for ` = 1 to L do
E-step
Calculate µ(`)(t, k, s,p) using (19).
M-step
Calculate ψ(`)

sp using (20a) and σ2,(`)
s using (20b).

end
Find ps ∀s using (21).

The parameter ψ(0)
s,p can be initialized by splitting the room

area into regions, presumably containing a single speaker.
Parameter σ2,(0)

s can be initialized by a uniform value for all
the variances. The default value can be set to 1.

The computational complexity of the proposed localization
scheme is as follows. The term |φm(t, k) − φ̃km(p)|2 can
be calculated once before the iterations starts. This requires
O(M · |P| · T ·K) operations. Then, for L EM iterations we
have: 1) E-step: O(S ·M · |P| · T ·K · L) operations; and 2)
M-step: O(S · |P| · T · K · L) operations for calculating the
probability of each Gaussian and O(S ·M · |P| · T · K · L)
operations for the variance calculation. Note that, as shown in
the experimental study in Sec. VI, in many practical scenarios
the calculation of the variances can be avoided.

IV. THE DERIVATION OF TREM ALGORITHMS FOR
SOURCE TRACKING

The moving target scenario necessitates a tracking algo-
rithm, that can utilize location estimates from previous frames.
In this section we develop a recursive scheme, suitable for
multiple speaker tracking, that uses the TREM algorithm [19].
The original TREM algorithm is summarized in the Appendix.

A. Preliminaries

The recursion for the problem at hand can be stated us-
ing (60):

θ
(t)
R = θ

(t−1)
R + γt · I−1

xt,φt;θ
(t−1)
R

·∇θ log f(φt;θ)|
θ
(t−1)
R

(22)

where θ(t)R denotes recursive estimate of θ at time step t.

θ
(t)
R =

{(
ψ

(t)
R

)T
,
(
σ

2,(t)
R

)T}T
with components ψ(t)

R = vecsp
({
ψ
(t)
sp,R

})
and σ

2,(t)
R =

vecms
({
σ
2,(t)
s,R

})
. xt = veck,s,p ({x(t, k, s,p)}) is the

entire set of hidden data related to time index t and
φt = veck ({φ(t, k)}) is the corresponding observed data.
I
xt,φt;θ

(t−1)
R

is the Fisher information matrix (FIM):

I
xt,φt;θ

(t−1)
R

, −E
{
∇2
θ log(f(xt,φt;θ))|

θ
(t−1)
R

}
. (23)
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The probability density function of the complete data at time
index t required for the evaluation of the FIM is given in (17).
For the calculation of the gradient term in (22) we use (adapted
from (11)):

f(φt;θ) =
∏
k

∑
s,p

ψsp
∏
m

N c(φm(t, k), φ̃km(p), σ2
s). (24)

In our case, ψsp should satisfy the constraints
∑
s,p ψsp = 1

and 0 < ψsp < 1∀s,p, and hence Newton’s method cannot be
directly applied. In [28] a version of the generalized reduced
gradient method (GRG) algorithm was suggested, in which
one of the parameters is not obtained by the maximization,
but rather calculated directly by applying the constraints. This
method did not yield satisfactory results in our case. We
therefore suggest using the constrained variant of Newton’s
method derived in the sequel. In this variant the Lagrangian
is incorporated into Newton’s iterations.

B. Newton’s method with equality constraints
We will derive now a procedure capable of recursive

constrained optimization. Our method will be based on a
combination of Newton’s method and the method of Lagrange
multipliers. We wish to solve the following optimization
problem:

xopt = argmax
x

f(x) s.t. aTx = b. (25)

Defining the Lagrangian L(x) = f(x) + λ(aTx − b) the
equivalent optimization problem can be defined:

xopt = argmax
[xTλ]T

L(x). (26)

Following [29], the application of one Newton step is given
by:[

x(t)

λ(t)

]
=

[
x(t−1)

λ(t−1)

]
− γt ·

[
H(x(t−1)) a

aT 0

]−1
·
[
∇f(x(t−1)) + λ(t−1)a

aTx(t−1) − b

]
(27)

where H(x(t−1)) is the Hessian2 of x calculated at the
current value of the optimized vector x(t−1). The matrix[
H(x(t−1)) a

aT 0

]
can be inverted by the block matrix inversion

formula [30]:[
A11 A12

A21 A22

]−1
=

[
C−11 −A−111 A12C

−1
2

−C−12 A21A
−1
11 C−12

]
(28)

with the obvious definition of A11, A12, A21, A22 and where

C1 = A11 −A12A
−1
22 A21

C2 = A22 −A21A
−1
11 A12. (29)

Since, in our case A22 = 0, C1 cannot be calculated.
Fortunately, C−11 may be calculated directly by applying the
Woodbury matrix inversion identity [30] given by:

(A−BD−1C)−1 = A−1 +A−1B(D − CA−1B)−1CA−1.
(30)

2Note that the Hessian is calculated without considering the constraint.

When the Woodbury identity is applied to calculating C−11 it
results in:

C−11 = (A11 −A12A
−1
22 A21)−1 (31)

= A−111 +A−111 A12(A22 −A21A
−1
11 A12)−1A21A

−1
11 .

Collecting all terms results in:

C−11 = H−1(x(t−1))− H−1(x(t−1))aaTH−1(x(t−1))

aTH−1(x(t−1))a
(32a)

C−12 = − 1

aTH−1(x(t−1))a
. (32b)

Since we are only interested in recursive optimization algo-
rithm for x(t), the Lagrange multiplier λ should be cancelled
out from the adaptation. Taking the first row of (27) and using
the above matrix definitions results in:

x(t) = x(t−1) − γt ·
[
C−11

(
∇f(x(t−1)) + λa

)
+A−111 A12C

−1
2

(
aTx(t−1) − b

)]
. (33)

Using the explicit matrices:

x(t) = x(t−1) − γt ·
[
H−1(x(t−1))

− H−1(x(t−1))aaTH−1(x(t−1))

aTH−1(x(t−1))a

](
∇f(x(t−1)) + λa

)
− γt ·

H−1(x(t−1))a

aTH−1(x(t−1))a

(
aTx(t−1) − b

)
and following straightforward algebraic manipulations finally
yields:

x(t) = x(t−1) − γt ·H−1(x(t−1))∇f(x(t−1))

− γt ·
H−1(x(t−1))a

aTH−1(x(t−1))a

×
(
aTx(t−1) − aTH−1(x(t−1))∇f(x(t−1))− b

)
. (34)

It is interesting to examine the special case of setting γt = 1.
Defining the unconstrained Newton step:

x
(t)
N , x(t−1) −H−1(x(t−1))∇f(x(t−1)),

results in:

x(t) = x
(t)
N −

H−1(x(t−1))a

aTH−1(x(t−1))a

(
aTx

(t)
N − b

)
. (35)

This recursion can be interpreted as an unconstrained Newton
step with a correcting term, responsible for satisfying the
constraint.

C. Constraint TREM Algorithm
Linear constraints3 aTθ = b can be imposed on the

maximization of the TREM algorithm by utilizing the result4

in Section IV-B.
3Note that there is no need to add the inequality constraints, regarding

positive probabilities, as they are inherently satisfied.
4Since the FIM is an approximation of the Hessian, it is calculated without

considering the constraint as well. This approximated Hessian is not claimed
to be the actual FIM that considers the constraint.
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Following (34), the recursive estimation of the parameters
θ with the linear constraint set aTθ = b is given by:

θ
(t)
R = θ

(t−1)
R +

γtI
−1
xt,φt;θ

(t−1)
R

∇θ log f(φt;θ)|
θ
(t−1)
R

− γt
I−1
xt,φt;θ

(t−1)
R

a

aT I−1
xt,φt;θ

(t−1)
R

a

× (aTθ
(t−1)
R + aT I−1

xt,φt;θ
(t−1)
R

∇θ log f(φt;θ)|
θ
(t−1)
R

− b).
(36)

where in our case a = [1TS·|P| 0TS ]T and b = 1.
The terms required for the calculation of the FIM are:

−E
{

∂2

∂ψ2
sp

log f(xt,φt;θ)|
θ
(t−1)
R

}
=

K

ψ
(t−1)
sp,R

(37a)

−E
{

∂2

∂(σ2
s)2

log f(xt,φt;θ)|
θ
(t−1)
R

}
=

K ·M
σ
4,(t−1)
s,R

∑
p

ψ
(t−1)
sp,R .

(37b)

All the cross-derivatives comprising the FIM are equal to zero;
therefore, the FIM turns out to be diagonal. The FIM inversion
can be performed by inverting each element of the diagonal.
Therefore, the recursive equation system can be decoupled into
multiple scalar equations for each ψsp∀s,p and the other for
σ2
s ∀s.
The terms required for the calculation of the gradient are:

∂

∂ψsp
log f(φt;θ)|

θ
(t−1)
R

=
∑
k

µ(t, k, s,p)

ψ
(t)
sp,R

(38a)

∂

∂(σ2
s)

log f(φt;θ)|
θ
(t−1)
R

=
1

σ
4,(t−1)
s,R

∑
k,p

µ(t, k, s,p) (38b)

×
[∑
m

|φm(t, k)− φ̃km(p)|2 −M · σ2,(t−1)
s,R

]
where µ(t, k, s,p) is defined as:

µ(t, k, s,p) ,

ψ
(t−1)
sp,R

∏
mN c

(
φm(t, k), φ̃km(p), σ

2,(t−1)
s,R

)
∑
sp ψ

(t−1)
sp,R

∏
mN c

(
φm(t, k), φ̃km(p), σ

2,(t−1)
s,R

) . (39)

The calculation of TREM involves the multiplication of the
FIM and the gradient. Using (37a) and (38a) and due to the
similarity to (20a) we have :(

−E
{

d2

dψ2
sp

log f(xt,φt;θ)|
θ
(t−1)
R

})−1
× ∂

∂ψsp
log f(φt;θ)|

θ
(t−1)
R

=
∑
k

µ(t, k, s,p)

K
, ψ(t)

sp . (40)

Using (37a) for the FIM and (40) in (36), a recursive estima-
tion for ψsp results in:

ψ
(t)
R = ψ

(t−1)
R + γtψ

(t) − γt
ψ

(t−1)
R

1TS·|P|ψ
(t−1)
R

× (1TS·|P|ψ
(t−1)
R + 1TS·|P|ψ

(t) − 1) (41)

Algorithm 2: Speaker tracking using TREM.

set φ̃km(p) using (8)
initialize ψ(0)

sp,R and σ2,(0)
s,R

for t = 1 to T do
Obtain z1m(t, k), z2m(t, k) ∀k,m
Calculate φm(t, k) using (5)
Calculate ψ(t)

sp,R using (42)
Calculate σ2,(t)

s,R using (43)
end

Algorithm 3: The CREM algorithm.

initialize θ(0)R
for t = 1 to T do

E-step
η̄(φt,xt) , E

{
η(φt,xt)|φt;θ

(t−1)
R

}
ηR(φt,xt) = ηR(φt−1,xt−1) +
γt
(
η̄(φt,xt)− ηR(φt−1,xt−1)

)
M-step

θ
(t)
R = argmaxθ〈ηR(φt,xt), ξ(θ)〉

end

where ψ(t) = vecsp
({
ψ
(t)
sp

})
. Noting that 1TS·|P|ψ

(t) = 1,
the recursion can be further simplified to:

ψ
(t)
R = ψ

(t−1)
R + γt(ψ

(t) −ψ(t−1)
R ) (42)

To recursively estimate σ2
s , the unconstrained TREM pro-

cedure (22) can be applied. Using (37b) and (38b) in (36) we
get:

σ
2,(t)
s,R = σ

2,(t−1)
s,R + γt

1

K ·
∑

p ψ
(t−1)
sp,R

∑
k,p

µ(t, k, s,p)

×

[
1

M

∑
m

|φm(t, k)− φ̃km(p)|2 − ·σ2,(t−1)
ms,R

]
. (43)

The TREM algorithm is summarized in Algorithm 2.

V. TRACKING USING CREM ALGORITHM

In this section we develop an alternative tracking procedure
based on the CREM algorithm [20]. The CREM version is
based on the time-smoothing of Q(θ|θ(`)) obtained through
the EM iterations.

In our case, the complete data probability function is an
exponential p.d.f., namely:

log f(φt,xt;θ) = 〈η(φt,xt), ξ(θ)〉 (44)

where η(·) and ξ(·) are vectors of functions and 〈·, ·〉 denotes
the scalar product. The CREM algorithm for any exponential
p.d.f. is summarized in Algorithm 3.

We now turn to the derivation of the speaker tracking
procedure based on the CREM. From (17) the log-likelihood
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of the complete data is given by:

log f(φt,xt;θ) =∑
k,s,p

x(t, k, s,p)×

[
log(ψsp)−

∑
m

log(πσ2
s)

]
−

∑
k,s,p,m

x(t, k, s,p)|φm(t, k)− φ̃k(p)|2σ−2s . (45)

η and ξ can now be identified in (45):

η(φt,xt) =[
veck,s,p ({x(t, k, s,p)})

veck,s,p,m
({
x(t, k, s,p)|φm(t, k)− φ̃km(p)|2

})]
(46a)

ξ(θ) =

[
veck,s,p

({
log(ψsp)−

∑
m log(πσ2

s)
})

veck,s,p,m
({
−σ−2s

}) ]
. (46b)

The term η̄(φt,xt) required for the E-step can be simplified
by only calculating the term:

µ(t, k, s,p) = E
{
x(t, k, s,p)|φt;θ

(t−1)
R

}
(47)

which is readily given by (39). Using the above definition,
η̄(φt,xt) can be written as:

η̄(φt,xt) =[
veck,s,p ({µ(t, k, s,p)})

veck,s,p,m
({
µ(t, k, s,p)|φm(t, k)− φ̃km(p)|2

})]
(48)

and the recursive term ηR(φt,xt) can be calculated by defin-
ing:

ηR(φt,xt) ,

[
veck,s,p

({
ηR1 (t, k, s,p)

})
veck,s,p,m

({
ηR2 (t, k, s,p,m)

})] (49)

where

ηR1 (t, k, s,p) = ηR1 (t− 1, k, s,p)

+ γt
[
µ(t, k, s,p)− ηR1 (t− 1, k, s,p)

]
(50a)

ηR2 (t, k, s,p,m) = ηR2 (t− 1, k, s,p,m)

+ γt

[
µ(t, k, s,p)|φm(t, k)− φ̃km(p)|2

− ηR2 (t− 1, k, s,p,m)

]
. (50b)

The maximization step in the CREM is similar to the max-
imization step in the batch EM. Hence, the M-step θ(t)R =
argmaxθ〈ηR(φt,xt), ξ(θ)〉 yields:

ψ
(t)
s,p,R =

∑
k η

R
1 (t, k, s,p)

K
(51a)

σ
2,(t)
s,R =

∑
k,p,m η

R
2 (t, k, s,p,m)

M ·
∑
k,p η

R
1 (t, k, s,p)

. (51b)

The M-step and the E-step can be merged into one recursion:

ψ
(t)
R = ψ

(t−1)
R + γt(ψ

(t) −ψ(t−1)
R ) (52)

Algorithm 4: Speaker tracking using CREM.

set φ̃km(p) using (8)
initialize ψ(0)

sp,R and σ2,(0)
s,R

for t = 1 to T do
Obtain z1m(t, k), z2m(t, k) ∀k,m
Calculate φm(t, k) using (5)
Calculate ψ(t)

sp,R using (52)
Calculate σ2,(t)

s,R using (53)
end

where ψ(t) = vecsp
({
ψ
(t)
sp

})
, the latter was defined in (40),

and

σ
2,(t)
s,R = σ

2,(t−1)
s,R

∑
p ψ

(t−1)
sp,R∑

p ψ
(t)
sp,R

+ γt

(∑
k,p,m µ(t, k, s,p)|φm(t, k)− φ̃km(p)|2

K ·M ·
∑

p ψ
(t)
sp,R

− σ2,(t−1)
s,R

∑
p ψ

(t−1)
sp,R∑

p ψ
(t)
sp,R

)
. (53)

Interestingly, the recursion for ψ(t)
R is identical for the CREM

and TREM variants. However, the recursion for σ2,(t)
s,R differs.

It is not clear which of the versions for estimating σ2,(t)
s,R is ad-

vantageous. Whereas the CREM exhibits a faster convergence
rate, the TREM may produce smoother contour estimates for
slowly moving speakers.

Both tracking procedures (based on either the TREM or
CREM algorithms) have the same computational complexity.
For the recursive algorithms the E-step and M-step are com-
bined and no iterations are required. Hence, for each time step
t, O(S ·M · |P| ·K) operations are required.

The CREM tracking procedure for our case is summarized
in Algorithm 4.

VI. EXPERIMENTAL STUDY

This section is dedicated to an experimental study of the
proposed localization and tracking algorithms. We start with
a simulated experimental study of the localization algorithm
derived in Section III-B. We then turn to an extensive simu-
lated experimental study of the tracking algorithms developed
in Sections IV and V.

A. Localization of Static Speakers

1) Setup: A two speakers scenario was tested. The sen-
tences uttered by different speakers were drawn from the
TIMIT [31] database. The signals were analyzed by a STFT
with K = 1024 frequency bins. Only bins corresponding to
a range of 500 − 1500Hz were considered. We simulated a
room with dimensions 6× 6× 6.1 m and with a reverberation
time set to either T60 = 0.4 s or T60 = 0.7 s. Twelve
pairs of microphones with an inter-microphone distance of
d = 0.2 m were placed around the room 1 m from the walls.
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Fig. 2. Room setup with twelve pairs of microphones. ’o’ denotes micro-
phones and ’*’ denotes speakers.

The microphones constellation and the speakers locations are
illustrated in Fig. 2.

Since, in our simulations, the speakers and the microphone
are placed at the same height (1 m from the floor), we have
used 2-D Gaussians in our MoG model in accordance with
the two-dimensional search grid. P , the set of possible source
locations, was chosen to be a grid of points, with a resolution
of 10 cm. Overall, P consisted of a total of 60× 60 possible
locations. The speech signals received by the microphones
were contaminated by temporally and spatially white noise
with signal to noise ratio (SNR) of 30dB. We evaluated the
algorithm described in Section III and compared its perfor-
mance with the performance of the SRP-PHAT algorithm [5].
θ(0) was initialized with a Uniform distribution as follows.

ψ
(0)
1p = 1

60×60 for all points on the left-hand side of the room
and ψ(0)

2p = 1
60×60 for all points on the right-hand side of the

room. Both variances were identically initialized to a value of
1. The simulation setup is summarized in Table I.

2) Results: The two location of the speakers estimates
are depicted in Fig. 3 for the two values of T60. The true
positions of the speakers are marked with black asterisks. The
estimations of ψ(10)

1p and ψ
(10)
2p are merged into one figure.

To demonstrate the resolution of the proposed algorithm the
speakers were positioned in a rather close proximity. It can be
seen from the figures that the proposed algorithm is capable
of correctly estimating the locations of the speakers, with
sharp and distinguishable peaks at the correct source locations.
The SRP-PHAT algorithm, however, exhibits a wide summit
surrounding both correct locations, making them indistinguish-
able.

B. Speakers Tracking

1) Setup: In this section we demonstrate the ability of the
algorithms derived in Sec. IV and Sec. V to track multiple
moving speakers. Two microphone signals 4 s long were
segmented into frames of 64 msec. The reverberation time was
set to T60 = 0.7 s. The variance of all Gaussians was set to a
fixed value of 1, hence only the recursive estimation procedure
for ψ(t)

sp was activated. The recursive estimation procedure for
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(a) The SRP-PHAT algorithm. Rever-
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(d) The proposed algorithm. Rever-
beration time: T60 = 0.7 s.

Fig. 3. Two speaker location estimate. SRP-PHAT versus the proposed
localization algorithm.

ψ
(t)
sp is identical for both the TREM and CREM algorithms,

as derived from (52) and (42).
We have conducted two sets of experiments. In the first

experiment set each of the two sources was synthesized to
move along a straight trajectory, both with a velocity of
1.25 m/s. The starting points for the two speakers were set
to [1.5, 0.5, 1.0] m and [4.5, 0.5, 1.0] m, respectively. ψ(0)

1p and
ψ
(0)
2p were initialized in the same manner as in the localization

experiment. The step-size γ was set to three different values:
0.1, 0.5, 1.0. Note, that for γ = 1.0 the algorithm degenerates
to the instantaneous estimate (52), hence to fast but noisy
tracking. If γ is set to a very low number the algorithm exhibits
long memory and tends to yield a fixed estimate close to the
initialization point.

In the second set of experiments, each source was syn-
thesized to move along a half circle trajectory, both with a
velocity of 0.8 m/s. The starting points for the two speakers
were set to [2.8, 4.5, 1] m and [3.2, 1.5, 1] m, respectively.
The speakers were set to move counterclockwise. This choice
of trajectory kept the speakers well-separated, avoiding the
algorithm from collapsing to a single trajectory.

2) Results: The tracking results for the straight line sce-
nario are shown in Fig. 4. In the figures the true trajectories are
depicted by thin blue lines. In addition, contours corresponding
to 99% of the highest peak of the p.d.f are also depicted. We
show the entire set of estimated locations concurrently. It is
evident that the algorithm tracks the true trajectory of each
speaker with slight bias towards the competing speaker. The
best results were obtained by setting γ = 0.1. The performance
of the algorithm improves with lower reverberation levels.

Similar trends are evident for the more complex scenario,
for which the speakers were synthesized to move counterclock-
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TABLE I
THE SIMULATION SETUP.

fs T Bins k T60
16000Hz 10 1024 32 : 96 0.4, 0.7 s
Room [m] ||p1

m − p2
m|| [m] Distance from p1 [m] p2 [m]

walls [m]
6× 6× 6.1 0.2 1 [2.6, 2.3, 1] [3.4, 2.3, 1]
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(c) γ = 0.1.

Fig. 4. Two speaker tracking by the proposed algorithm with T60 = 0.7. True
trajectories of the speakers are depicted by blue lines. Red closed contours
present the upper 1% values of ψ(t)

sp .

wise along a half circle trajectory. Again the parameter value
γ = 0.1 yields the best results. It is evident that the algorithms
tracks the two speakers and the estimate is slightly biased
towards closer trajectories.

3) Practical Consideration: Additional adjustments to im-
prove the tracking ability of time-varying parameters were
incorporated in the algorithm framework. We observed a
degeneracy phenomenon. The values of the parameters ψ(t)

sp

might aggregate at a specific location estimate, disabling the
algorithm from further tracking of the speakers. To mitigate
this problem we perturbed the current probability values at the
end of each time instant in preparation for the next stage. This
method is conceptually similar to the propagation stage of the
particle filter (PF).

The algorithm searches for the most probable track of both
speakers. In some scenarios, especially if the speakers are
close to each other or if one the speakers is stronger, we
have encountered a practical problem in which the algorithm
output collapses to a single speaker track. To circumvent this
phenomenon we have taken the following measure. In each
time instant, the estimated probabilities ψ(t)

sp for speaker s are
set to zero for all room locations that are closer to the other
tracked speakers. As a consequence, the search area of the
speaker location at the subsequent time instant is confined to
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Fig. 5. Two speaker tracking by the proposed algorithm with T60 = 0.7 s.
True trajectories of the speakers are depicted by blue lines. Red closed
contours present the upper 1% values of ψ(t)

sp .

relatively close locations hence avoiding tracks degeneration.

VII. CONCLUSION

In this work we considered the problem of localizing and
tracking multiple speakers in reverberant environment. We first
extend the MESSL algorithm [26] to deal with localization
rather than TDOA estimation.

The main contribution of this work is the derivation of
two tracking algorithms. The algorithms are based on two
REM variants, namely the TREM and the CREM. In this
work we also extended the TREM to deal with a constrained
maximization, encountered in the MoG formulation of the
problem at hand. The recursive, constrained MLE is obtained
by incorporating the Lagrange multiplier method into the
Newton recursion. In fact, the two algorithms differ only
in the estimation of the variances of the MoG and become
identical in the estimation procedure for the probabilities of the
Gaussians. An experimental study demonstrates the capability
of the derived algorithms to track multiple speakers in highly
reverberant environment.

APPENDIX

In this appendix a recursive version of the EM algorithm,
attributed to Titterington [19] is presented.
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Lange [32] suggests utilizing a gradient search method
to perform the maximization in the M-step. Let f(x) be a
function of a vector of variables x. Maximization of f(x) can
be obtained by Newton’s method:

xt = xt−1 −H−1(xt−1) · ∇xf(x)|xt−1 (54)

where H(x) is the Hessian of the function f(x), i.e.
H(xt−1) = ∇2

xf(x)|xt−1
. This method can be adopted

to accelerate the maximization of the M-step in the EM
algorithm:

θ(t) = θ(t−1)−
[
∇2
θQ(θ|θ(t−1))|θ(t−1)

]−1
×∇θQ(θ|θ(t−1))|θ(t−1) . (55)

Titterington [19] proposes a fully recursive scheme by con-
sidering only the current hidden and measured data at each
iteration step, namely Q(θ;θ(t)) is redefined as:

Q(θ|θ(t−1)) , E
{

log (y(t),x(t);θ) |y(t);θ(t−1)
}

(56)

where x(t) is the entire set of hidden data related to time index
t and y(t) is the corresponding observed data. Explicitly, the
Newton’s iterations can be written as:

θ(t) = θ(t−1)

−
[
E
{
∇2
θ log f(y(t),x(t);θ)|θ(t−1) |y(t);θ(t−1)

}]−1
× E

{
∇θ log f(y(t),x(t);θ)|θ(t−1) |y(t);θ(t−1)

}
(57)

where we exchanged the derivative and expectation operations.
This expression may be simplified, by using the Fisher Iden-
tity [17]:

E {∇θ log f(y(t),x(t);θ)|y(t);θ} = ∇θ log f(y(t);θ).
(58)

The inversion of the Hessian matrix is a cumbersome task.
Moreover, it is not guaranteed that the expected Hessian is
an invertible matrix. To mitigate these problems Titterington
further suggests to approximate the expected Hessian by the
FIM of both the observed and the hidden data. Note, that by
this approximation the conditional expectation in the original
expression is replaced by the ordinary expectation operation.
The FIM is a positive definite matrix and is therefore invert-
ible. Hence, by replacing

−E
{
∇2
θ log f(y(t),x(t);θ)|θ(t−1) |y(t);θ(t−1)

}
→ −E{∇2

θ log f(y(t),x(t);θ)|θ(t−1) ;θ(t−1)}
= Iy(t),x(t);θ(t−1) (59)

and using (58) we finally get:

θ
(t)
R = θ

(t−1)
R + γtI

−1
y(t),x(t);θ(t−1) · ∇θ log f(y(t);θ)|

θ
(t−1)
R

(60)

where θ(t)R is the recursive parameter vector. The variable γt
introduces further convergence control to the algorithm. A
convergence proof of the TREM algorithm is provided in [33].
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