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In multiple speaker scenarios, the linearly constrained minimum variance (LCMV)
beamformer is a popular microphone array-based speech enhancement technique, as it
allows minimizing the noise power while maintaining a set of desired responses towards
different speakers. Here, we address the algorithmic challenges arising when applying the
LCMV beamformer in wireless acoustic sensor networks (WASNs), which are a next-
generation technology for audio acquisition and processing. We review three optimal
distributed LCMV-based algorithms, which compute a network-wide LCMV beamformer
output at each node without centralizing the microphone signals. Optimality here refers
to equivalence to a centralized realization where a single processor has access to all
signals. We derive and motivate the algorithms in an accessible top-down framework that
reveals their underlying relations. We explain how their differences result from their
different design criterion (node-specific versus common constraints sets), and their
different priorities for communication bandwidth, computational power, and adaptivity.
Furthermore, although originally proposed for a fully connected WASN, we also explain
how to extend the reviewed algorithms to the case of a partially connected WASN, which
is assumed to be pruned to a tree topology. Finally, we discuss the advantages and
disadvantages of the various algorithms
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1. Introduction

A general problem of interest in the field of speech
processing is to extract a set of desired speech signals from
microphone recordings that are contaminated by inter-
fering speakers or other noise sources in a reverberant
enclosure. By exploiting the spatial properties of the
speech and noise signals, array-processing techniques
can significantly outperform single-channel techniques in
terms of improved interference suppression and reduced
speech distortion, especially in scenarios with non-stationary
noise sources (such as interfering speakers).

A family of array-processing techniques, known as beam-
forming, typically performs a linear filter-and-sum operation
on the microphone signals, where the filters are optimized
according to certain design criteria [1–3]. In classical speech
beamformer (BF) setups, a microphone array is placed
somewhere within the enclosure, preferably close to the
desired speakers (as in mobile phone or personal computer
applications [4]). In this case, the received signal-to-noise
ratio (SNR) and direct-to-reverberant ratio (DRR) are often
sufficiently large, enabling the BF to obtain adequate perfor-
mance. However, in applications where the desired sources
are far away from the array, or if the array contains too few
microphones to obtain the required speech enhancement
performance, it may be useful to add additional microphone
arrays at other places within the enclosure to collect more
data over a wider area.

Recent technological advances in the design of minia-
ture and low-power electronic devices enable the deploy-
ment of so-called wireless sensor networks (WSNs)
[5–7]. A WSN consists of autonomous self-powered
devices or nodes, which are equipped with sensing,
processing, and communicating facilities. The WSN con-
cept is quite versatile and has applications in environ-
mental monitoring, biomedicine, security and surveillance.
In this paper we consider WSNs designed for acoustic
signal processing tasks, often referred to as wireless
acoustic sensor networks (WASNs) [8], where each node
is equipped with one or more microphones. A WASN allows
to deploy a large number of microphone arrays at various
positions, and can be exploited in hearing aids [9–11],
(hands-free) speech communication systems [12–14],
acoustic monitoring [15–20], ambient intelligence [21], etc.

Alongside their numerous advantages, AWASNs intro-
duce several challenges, in particular related to the
limited per-node energy resources, since the finite battery
life constrains the communication and computational
energy usage at each node. These energy limitations,
combined with the fact that each node has access only
to partial data, require special attention when developing
WASN algorithms. These algorithms can be either distrib-
uted, to reduce the wireless data transfer and to share the
processing burden between multiple nodes, or centralized,
where all the data is transferred to a so-called fusion
center (FC) for further processing. A distributed approach
is typically preferred in terms of energy consumption and
scalability (or in absence of a powerful FC), although the
algorithm design is much more challenging, especially
when pursuing a similar performance as in a centralized
procedure.
Please cite this article as: S. Markovich-Golan, et al., Optimal dis
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Distributed BF or speech enhancement algorithms
typically rely on compression techniques to minimize the
data that is exchanged between the nodes. However,
applying straightforward signal compression methods
on the microphone signals (at each node independently)
usually results in a suboptimal BF performance. Moreover,
common speech or audio compression methods introduce
distortion that may destroy important spatial information,
and render the beamforming process useless.

Several distributed BFs or speech enhancement algo-
rithms have been proposed in the literature, ranging from
heuristic or suboptimal methods [12,22–24] to algorithms
for which optimality can be proven [9–11,25–28]. In this
context, ‘optimality’ refers to the fact that the algorithm
obtains the same BF outputs as its centralized counterpart
algorithm, i.e., as if each node would have access to the full
set of microphone signals. In this paper, we confine ourselves
to the review of optimal distributed minimum-variance BF
algorithms where nodes share (compressed) signals and
parameters, and where the general aim is to achieve the
same speech enhancement performance as obtained with a
centralized minimum-variance BF. We mainly focus on the
BF algorithm design challenges, and we disregard several
other (but equally important) challenges, such as synchroni-
zation [29–32], node subset selection [33,34], topology
selection, distortion due to audio compression [22,35,36],
packet loss, input-output delay management [37], etc.

We review three state-of-the-art distributed minimum-
variance BF algorithms, namely the distributed LCMV
(D-LCMV) BF [26], the linearly constrained distributed adap-
tive node-specific signal estimation (LC-DANSE) algorithm
[38], and the distributed generalized sidelobe canceler (DGSC).
Although these algorithms were originally proposed indepen-
dently from each other, they are implicitly related as they are
based on a similar LCMV optimization criterion. However,
despite this common underlying BF design criterion, the
actual relation between the algorithms is not immediately
apparent from the original publications [26,27,38], as they
start from different problem statements and algorithm design
principles. For example, while the generalized sidelobe can-
celer (GSC) can be derived from the linearly constrained
minimum variance (LCMV) BF in a centralized context, there
is currently no analogy in which the DGSC in [27] is derived
from the D-LCMV BF in [26]. In fact, the two algorithms even
have a slightly different communication cost (while theoreti-
cally achieving the same BF solution), and it is unclear where
and why this discrepancy originates.

Therefore, a first goal of this review paper is to provide
a top-down description of these algorithms, in a way such
that they can be described within the same generic frame-
work. This generic framework allows to introduce the
three algorithms in an accessible way, while also revealing
the important similarities between them. The common
framework in which the three algorithms are described
then also explains how they are fundamentally different at
certain crucial points, and we compare the advantages and
disadvantages that result from these differences. Further-
more, we will explain why the DGSC cannot be straight-
forwardly inferred from the D-LCMV BF (as opposed to the
centralized case), and why there is a discrepancy between
them in terms of communication cost.
tributed minimum-variance beamforming approaches for
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Finally, it is noted that the algorithms were originally
proposed for a fully connected WASN. However, the
generic framework in which we describe the three algo-
rithms is very similar to the framework in [25], which has
been extended in [28] to partially connected networks
with a tree topology. Based on this insight, and the fact
that all three algorithms fit in this same framework, we
also briefly explain how they can be extended towards
such a tree-topology network, relying on similar techni-
ques as in [28].

It is noted that, since this paper mainly focuses on
theoretical insights and algorithm descriptions, it does
not include experimental or simulation results. However,
extensive simulation results for the three reviewed algo-
rithms can be found in [26,39] (for D-LCMV), [38] (for
LC-DANSE), and [27] (for DGSC).

The outline of this paper is as follows. In Section 2,
the closed-form and GSC-form of the centralized LCMV BF
are introduced. In Section 3, three distributed minimum-
variance BF algorithms are presented for the case of a
fully connected WASN. These algorithms are then extended
towards a partially connectedWASN in Section 4. In Section 5,
we conclude the paper with a systematic comparison
between the various distributed minimum-variance BFs.

2. Centralized minimum-variance beamforming

In this section we review the centralized LCMV BF as
well as the GSC, where it is assumed that all microphone
signals are available in a central processing unit or FC.

2.1. Problem formulation

We consider a scenario where the sound-waves of S
speakers, some desired and some interfering, are propa-
gating in a reverberant enclosure and picked up by M
microphones. The M � 1 vector yðl; kÞ, containing the M
microphone signals observed in a certain time-frame l and
frequency-bin k, is given in the short-time Fourier trans-
form (STFT) domain by

yðl; kÞ ¼HðkÞ � sðl; kÞþnðl; kÞ ð1Þ
where sðl; kÞ is the S� 1 vector of speech signals, HðkÞ
denotes an M� S mixing matrix, containing the acoustic
transfer functions (ATFs) from each speaker to each
microphone, and nðl; kÞ denotes the noise. In the sequel,
all derivations refer to a single frequency-bin, and are valid
for all other frequency bins, unless stated otherwise. For
the sake of conciseness, we remove the time-frame and
frequency-bin indices l and k, i.e., we write

y¼H � sþn ð2Þ
and treat y, s, and n as stochastic variables. The ATF matrix
is comprised of S columns

H9 ½h1 ⋯ hS� ð3Þ
where hs denotes the M � 1 vector of ATFs relating the sth
speaker and the microphone array, for s¼1,…,S.

The noise n corresponds to all noise sources in the
enclosure (which are not part of s). The noise components
can be classified as: (1) spatially white, thermal noise; (2)
Please cite this article as: S. Markovich-Golan, et al., Optimal dis
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directional, coherent noise; (3) diffuse noise. The covariance
matrix of the noise is denoted as

Rnn9E½n � nH � ð4Þ
where E½�� denotes the expectation operator and ð�ÞH denotes
the conjugate transpose operator. In the sequel, it is assumed
that Rnn has full rank, which is usually satisfied in practice due
to the presence of mutually uncorrelatedmicrophone noise. In
practice, Rnn can be estimated by means of temporal aver-
aging over noise-only segments, thus requiring a detection
algorithm to identify the signal segments during which the
desired speakers are silent. It is noted that the design of a
voice activity detection mechanism is a research topic on its
own, and is outside the scope of this paper.

We assume that the frame length is much larger
than the room impulse response (RIR), such that the
convolution between a RIR and a source signal in the
time domain is (approximately) equivalent to the multi-
plication of the corresponding transformations in the STFT
domain. Furthermore, we assume that the scenario is
quasi-static, hence the noise spectrum and the ATFs are
quasi-time-invariant, i.e., they change at a slow pace (or
not at all).

2.2. Centralized LCMV BF

The problem at hand is to design a BF, w, such that
the output noise power E½jwHnj2� ¼wHRnnw is minimized,
while adhering to linear constraints which main-
tain desired responses for the speech signals. This is
referred to as LCMV. Formally, the optimization criterion
is defined as

ŵ9arg min
w

wHRnnw; s:t: HHw¼ f ð5Þ

where f is an S� 1 vector of desired responses for the
S speech signals. Typically, this vector is binary, where
values of 1 and 0 are assigned to desired and interfering
speakers, respectively. A closed-form solution to (5) can be
derived [1] by using Lagrange multipliers and is given by

ŵ ¼ R�1
nnHðHHR�1

nnHÞ�1f: ð6Þ
Let us consider the signal at the output of the LCMV BF,

denoted as

d9ŵHy: ð7Þ
Substituting (2) into (7), and considering the constraints
in (5), yields

d¼ fHsþŵHn: ð8Þ
From the first term in (8), we see that the response for the
speech signals is controlled by the response vector f,
which extracts desired speakers and suppresses interfer-
ing speakers. Furthermore, if f is binary, the BF also
performs de-reverberation. The remaining degrees of free-
dom are then used for the minimization of the output
noise variance corresponding to the second term in (8).

Note that the construction of a closed-form solution
requires knowledge of the speech signals' ATFs. In practice,
these ATFs are unknown, and estimating them remains a
cumbersome task. However, if we remove the dereverberation
tributed minimum-variance beamforming approaches for
s, Signal Processing (2014), http://dx.doi.org/10.1016/j.
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requirement, and only focus on the first two problems, i.e.,
noise reduction and interfering speakers suppression, it is
possible to use a different constraints matrix H that can be
estimated on-line without the need for an a priori calibration
phase. In [40] (single speaker scenario) and [41] (multiple
speakers scenario), it has been shown that this can be
accomplished by modifying the constraints set in the follow-
ing way. For each desired speaker, one of the microphones is
assigned as a reference microphone, and its corresponding
constraint is modified such that its desired response equals
the ATF corresponding to this reference microphone. The
modified constraints set is therefore

½h1 ⋯ hS�Hw¼
hn

1;r f 1
⋮

hn

S;r f S

2
664

3
775 ð9Þ

or, equivalently

h1

h1;r
⋯

hS

hS;r

� �H
w¼ f ð10Þ

where hs;r denotes the ATF from the sth speaker to its
referencemicrophone and hs=hs;r denotes the relative transfer
function (RTF) of the sth speaker. Various estimation proce-
dures exist for estimating the RTFs, see [42] for a survey on
the topic. Moreover, it can be shown that the estimation of
the RTFs can be relaxed to merely two subspace estimation
problems (one for the desired speakers and one for the
interfering speakers) [43].

For the sake of brevity and ease of notation, in the
sequel, we use the ATFs (assuming these are known, e.g.,
through a prior calibration phase). However, they can be
exchanged with their respective RTFs, as described above,
such that the LCMV BF can be computed without prior
knowledge of the ATFs [41,43].

Finally, it is noted that the LCMV BF for a single-speaker
scenario (S¼1) reduces to the so-called minimum variance
distortionless response (MVDR) BF, which is also a limit case
of the speech distortion weighted multi-channel Wiener
filter (SDW-MWF) [44].

2.3. Centralized GSC

An alternative to the closed-form solution in (6), is the
GSC form [45], depicted in Fig. 1. This structure separates
the BF, w, into two components: (1) the quiescent
response BF, denoted a, which is responsible for maintain-
ing the constraints set; (2) the blocking matrix
(BM) and the noise canceler (NC), denoted B and p
Fig. 1. Block scheme of a GSC-form implementation of the LCMV BF.

Please cite this article as: S. Markovich-Golan, et al., Optimal dis
speech enhancement in wireless acoustic sensor network
sigpro.2014.07.014i
respectively, which are responsible for minimizing the
output noise power. Separating the treatment for speech
signals and noise components is advantageous for several
reasons: (1) in time-varying environments, variations
in the noise field affect only part of the BF; (2) the
constrained minimization of the output noise power is
replaced by a simpler unconstrained minimization, allow-
ing for an efficient implementation based on adaptive
filtering techniques. The GSC is given by

w¼ a�B � p: ð11Þ
The quiescent response BF equals

a9HðHHHÞ�1f ð12Þ
such that HHa¼ f, i.e., a satisfies the constraints set. The
BM is then constructed such that its columns are ortho-
gonal to the columns of H, i.e., HHB¼ 0. Indeed, this
ensures that w as defined in (11) satisfies the constraints
HHw¼ f for any choice of p.

Several methods exist for constructing the BM. For
example, it can be easily verified that HHB¼ 0 when B is
chosen as

B9ðIM�M�HðHHHÞ�1HHÞ
�½IðM� SÞ�ðM� SÞ 0ðM�SÞ�S�T ð13Þ

where I, 0 are the identity matrix and a zeros matrix,
respectively, with noted dimensions. The output of the
quiescent response BF, denoted da, and the so-called noise
reference signals at the output of the BM, denoted u, are
given by

da9aHy ð14aÞ

u9BHy ð14bÞ
such that the GSC BF output is given by substituting (11),
(14a) and (14b) in (7):

d¼ da�pHu: ð15Þ
The NC is designed to suppress the noise components in
the quiescent response BF output da, by subtracting the
optimal linear estimator based on the noise-references u.
A closed-form solution for the NC can be found by
substituting (11) in (5) and minimizing over p, yielding

p̂ ¼ ðBHRnnBÞ�1BHRnna: ð16Þ
A more common approach is to update the NC recursively
by a least mean squares (LMS) algorithm [46]:

p lþ1ð Þ ¼ p lð Þþμ
uðlÞdnðlÞ
λuðlÞ

: ð17Þ

where μ denotes the step size, λu is a recursively updated
normalization factor which approximates the variance of
the noise reference signals:

λuðlþ1Þ ¼ ρ � λuðlÞþð1�ρÞ‖uðlÞ‖2 ð18Þ
and 0oρo1 is a forgetting factor. Although applying a
normalized step-size as above is sub-optimal in terms of
convergence rate, it is a practical method for preventing
divergence of the filters [46]. It is noted that p is typi-
cally only updated during noise-only segments, since the
tributed minimum-variance beamforming approaches for
s, Signal Processing (2014), http://dx.doi.org/10.1016/j.
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Fig. 2. Generic block scheme of a distributed BF that is operated in a fully
connected WASN.
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desired speech component may leak through the BM,
which may result in desired signal cancellation.

3. Distributed minimum variance beamforming in a fully
connected WASN

Let us now consider a WASN with J nodes where the
set of nodes is denoted by J , and where node jAJ
is equipped with Mj microphones. The total number of
microphones is given as M¼∑J

j ¼ 1Mj. The vector of all
microphone signals, y, can be split into J sub-vectors
corresponding to the microphone signals of the individual
nodes:

y¼ ½yT1 ⋯yTJ �T ð19Þ

where ð�ÞT denotes the transpose operator. Similarly to (2),
the microphone signals of node j are modeled as

yj ¼Hj � sþnj ð20Þ

where Hj are the ATFs from the sources s to the micro-
phones of node j, and nj is the noise.

As mentioned in Section 1, a straightforward procedure
for computing an M-channel BF, consists in all nodes
transmitting their microphone signals to a FC (assuming
such a FC is available), followed by one of the centralized
BF techniques from Section 2. However, this results in a
large communication cost and hence a fast battery deple-
tion at the nodes. Furthermore, the FC must have sufficient
processing power to collect and process M microphone
signals.1 If the resulting BF output signal should also be
locally available at the nodes (as it is the case in hearing
aids [9–11]), there is an additional communication cost to
transmit this signal from the FC to the nodes.

In this section, we discuss three distributed implemen-
tations of the LCMV BF and/or GSC, in which the commu-
nication cost is reduced and in which the computational
cost is shared between the different nodes (removing the
need for a powerful FC). For the sake of an easy exposition,
we first consider the case of a fully connected WASN
in which each node broadcasts compressed signals to all
other nodes.

Fig. 2 shows a generic block scheme of such a dis-
tributed BF implementation. Each node jAJ defines two
important local linear operators: a compression matrix Vj

and a local BF ~W j. The compression matrix Vj fuses the
local microphone signals into a signal with fewer channels,
which is then broadcast to the other nodes in the network.
The local BF ~W j then takes the local microphone signals
and the compressed signals of all other nodes as an input,
and constructs the desired output signal for node j. We
will explain how the compression matrix Vj is updated
from time to time, based on the BF coefficients from ~W j

(indicated by the vertical dashed arrow in Fig. 2).
This paper will describe the three distributed BF algo-

rithms in a way such that these two basic operations
(and the interaction between both) are visible in all three
algorithms, i.e., they all fit in the generic block scheme of
1 It is noted that the computational complexity of LCMV BF and GSC
is OðM3Þ (or OðM2Þ in a time-recursive implementation).
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Fig. 2. This will reveal the similarities and the differences
between the three algorithms, which are not apparent
from the original publications, in particular between the
DGSC and the D-LCMV BF, despite the well-known equiva-
lence between the (centralized) GSC and the LCMV BF (see
Section 2.3).

Based on Fig. 2, we will now introduce some notations
and describe the main operations that are performed at a
node j. The Mj-channel sensor signal yj is compressed into
an Lj-channel signal zj (with LjrMj) using the Mj � Lj
compression matrix Vj (to be defined), i.e.,

zj9VH
j yj ð21Þ

and the samples of zj are then broadcast to all the other
nodes. Since the network is assumed to be fully connected,
each node then has access to the stacked L-channel signal

z9 ½zT1 … zTJ �T , where L¼∑J
j ¼ 1Lj. We also define z� j as the

vector z with zj removed, i.e.,

z� j9 ½zT1 … zTj�1 zTjþ1 … zTJ �T : ð22Þ

Node j has access to the signals yj and z� j, which are
stacked in the signal

~y j9
yj
z� j

" #
: ð23Þ

It is noted that ~y j contains z� j, rather than z, as using the
latter would result in linearly dependent channels in ~y j.
Similarly to (20) and (2), ~y j is modeled as

~y j ¼ ~Hj � sþ ~n j ð24Þ
where (compare with (23))

~Hj9
Hj

Hz;� j

" #
ð25aÞ

~n j9
nj

nz;� j

" #
ð25bÞ

and (compare with (21) and (22))

Hzj 9VH
j Hj ð26aÞ

Hz;� j9 ½HT
z1 … HT

zj� 1
HT

zjþ 1
… HT

zJ �T ð26bÞ
tributed minimum-variance beamforming approaches for
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nzj 9VH
j nj ð26cÞ

nz;� j9 ½nT
z1 … nT

zj� 1
nT
zjþ 1

… nT
zJ �T : ð26dÞ

A node j then applies a local BF ~W j (to be defined) to
the signals in ~y j and generates a local BF output signal

dj9 ~W
H
j ~y j. In the general case, ~W j and dj are a matrix and

a vector, respectively, to also allow for multi-channel BF
output signals. The arrow going from ~W j to Vj in Fig. 2
indicates that Vj depends on the choice of the local BF, as
will be clarified later.

The main questions that are addressed in the sequel
are:
(1)
Pl
sp
sig
Is it possible to obtain the centralized BF output (7) at
each node, as if it had access to all M microphone
signals in y?
(2)
 If so, how can each node jAf1;…; Jg compute a
compression matrix Vj and a local BF ~W j that indeed
generates this BF output (7)?
We will answer both questions for two different cases:
(1)
 The case where each node has a common constraints
set, i.e., each node is interested in the same BF output.
(2)
 The case where each node has a node-specific con-
straints set, i.e., each node computes a different BF
output.
The node-specific constraints set (case 2) allows to, e.g.,
define a different response vector f at each node to extract
a node-specific subset of the S speakers, or to use a
different set of reference microphones to compute the
RTFs in (10). However, if this node-specific problem state-
ment is reduced to a scenario in which the constraints
sets are the same for all nodes (case 1), a much stronger
compression can be achieved, as we will show in
Section 3.1 (for the LCMV BF) and in Section 3.3 (for the GSC).

3.1. Distributed LCMV with a common constraints set

In this subsection, we reduce Vj and ~W j in Fig. 2 to
vector variables vj and ~w j, respectively, i.e., they both have
a single-channel output signal zj and dj, respectively. We
define a partitioning of the centralized LCMV BF ŵ , based
on the subsets of microphone signals corresponding to the
different nodes, i.e.,

ŵ ¼
ŵ1

⋮
ŵ J

2
64

3
75 ð27Þ

such that ŵHy¼∑J
j ¼ 1ŵ

H
j yj. It is then easy to see from Fig. 2

that if we set vj ¼ ŵ j and ~w j ¼ ½ŵT
j j 1 … 1�T , 8 jAJ , the

local BF output signal dj ¼ ~wH
j ~y j will be equal to d¼ ŵHy, i.e.,

the output of the centralized LCMV BF defined by (7). Note
that in this particular setting each node broadcasts a single-
channel signal, i.e., Lj¼1 and L¼ J. This results in a reduction of
the communication cost at node j with a factor Mj, or a
reduction with a factor M=J in total.
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The above shows that the centralized LCMV BF output
can be obtained in all nodes if the vj’s and ~w j’s are
properly chosen. This also indicates that the first Mj entries
(corresponding to the local microphone signals yj at node
j) of the local BF ~w j, should be copied into the compressors
vj, which was already suggested earlier (see also the
dashed arrow in Fig. 2).

In practice, we usually do not have access to the
parameters in (27), since the LCMV BF (5) cannot be
computed a priori if the network-wide noise covariance
matrix Rnn is unknown or if it changes over time. Remark-
ably, it turns out that the optimal setting for vj and ~w j is
automatically obtained by iteratively computing ~w j at each
node jAJ as a local LCMV BF based on ~y j, i.e.,

~w j ¼ arg min
w

wHR ~nj ~nj
w; s:t: ~H

H
j w¼ f ð28Þ

where

R ~nj ~nj
9E½ ~n j � ~nH

j � ð29Þ

The latter covariance matrix can be estimated from ~y j

during noise-only segments. The first Mj entries of the
local BF ~w j are then copied into vj, i.e., setting

vj’½IMj�Mj
0Mj�ðJ�1Þ� ~w j: ð30Þ

In this way, a node jAJ continuously adapts ~w j and vj to
the changes in the vq’s at the other nodes, for qAJ \fjg.
This results in the distributed-LCMV (D-LCMV) BF, which is
defined in Table 1.

In [26], it has been proven that, under some technical
conditions (details omitted), this updating scheme indeed
converges to a stable operation point. In this stable
operation point, the local BF output dj ¼ ~wH

j ~y j for each
node jAJ is then indeed equal to ŵHy, i.e., the centralized
LCMV BF output (31) as if each node had access to all the
microphone signals in y. The technical conditions men-
tioned earlier are usually satisfied in practice if the number
of nodes is substantially larger than the number of sources,
i.e., JcS. As a rule of thumb, we typically require that
JZ2 � S.

Remark 1. It is noted that the algorithm in Table 1 also
requires the updating node q to broadcast the 1� S row
vector Hzq . The other nodes need this information to know
how the constraints matrix H is compressed by the other
nodes. However, this additional communication cost is
usually negligible compared to the transmission of (at least)
N samples of zj, 8 jAJ , in between two updates.

3.2. Distributed LCMV with a node-specific constraints set

In this subsection, we assume that each node aims to
compute a node-specific LCMV BF, where the constraints
set is different for each node, i.e., for node j the (centra-
lized) LCMV BF is defined by

ŵ j9arg min
w

wHRnnw; s:t: HHw¼ f j ð31Þ

where f j is a node-specific desired response vector. The
node index j in the superscript of ŵ j refers to the node-
specific nature of the (centralized) LCMV BF, and we
tributed minimum-variance beamforming approaches for
s, Signal Processing (2014), http://dx.doi.org/10.1016/j.
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Table 1
D-LCMV BF in a fully connected WASN.

Based on the block scheme in Fig. 2, perform the following sequential updating procedure:
(1) Initialization:
� Initialize vj and ~w j , 8 jAJ , with random entries.

� At each node jAJ : set Hzj’vHj Hj (see (26a)) and broadcast the entries of Hzj to all the other nodes.

� Initialize the updating node as q’1.
(2) At the updating node q:
� Collect N new noise-only observations of ~yq such that a reliable estimate of R ~nq ~nq can be computed.

� Construct ~Hq according to (25a).
� Update the local LCMV BF ~wq as in (28).
� Update vq’½IMq�Mq 0Mq�ðJ�1Þ� ~wq .

� Update Hzq’vH
q Hq and broadcast the entries of the updated matrix Hzq to all other nodes.

(3) q’ðq mod JÞþ1.
(4) Return to step 2.

Remark: It is noted that the above procedure only describes the updating process for the compressors vj and local BFs ~w j, which happens in a
sequential fashion (one node at a time). On top of that, the nodes continuously exchange signals and produce local BF outputs (in parallel),
according to the signal flow illustrated in Fig. 2.
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denote ŵ j
q as the component of ŵ j that is to be applied to

the microphones of node q (similar to (27)).
Note that, since f j in (31) is allowed to be different at

each node jAJ , an interfering speaker for one node can
be a desired speaker for another node and vice versa.
Furthermore, when considering (9), this node-specific
definition of f j also allows each node to choose its own
set of reference microphones. This can also be viewed as if
each node uses a different H defined by different RTFs, as
in (10). This allows to estimate the speech signals as they
impinge on the node's local (reference) microphones,
rather than on a reference microphone in another node,
which has two advantages:
(1)
Pl
sp
sig
In some applications, e.g., in binaural hearing aids
[9–11] or in localization tasks [47], it is important to
preserve the microphone-specific localization cues of
the desired speakers in the local BF outputs.
(2)
 It alleviates the requirement to transmit a (shared)
reference microphone signal between nodes to com-
pute (10) at each node.
For the sake of an easy exposition, we will assume here
that H is the same for all nodes (as in (9)), i.e., it either
contains the actual ATFs, or the RTFs defined by one set of
S reference microphones. For more details on the case
where H is defined by node-specific RTFs, we refer to [38].

We actually consider a generalization of (31), in which
each node j has Kj different BF outputs, such that ŵ j

becomes an M � Kj matrix Ŵ
j
, and fj becomes an S� Kj

desired response matrix Fj, where each column defines a
different LCMV BF. The problem (31) can then be general-
ized to

Ŵ
j
9arg min

W
TrfWHRnnWg; s:t: HHW¼ Fj ð32Þ

where Trf�g denotes the trace operator. An interesting case
occurs when we choose Kj ¼ S, 8 jAJ . Note that this is
without loss of generality (w.l.o.g.), i.e., if KjoS, node j can
define S�Kj additional (auxiliary) LCMV BFs, from which
the outputs are then merely discarded. From the closed-
form solution (6) with f replaced with Fj, it can be seen
ease cite this article as: S. Markovich-Golan, et al., Optimal dis
eech enhancement in wireless acoustic sensor network
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that the solutions at all the nodes are then the same up to
S� S transformation matrices, i.e.,

8 j; qAJ : Ŵ
j ¼ Ŵ

q
Ajq ð33Þ

with Ajq ¼ ðFqÞ�1Fj (assuming Fj is invertible, 8 jAJ ).

Similarly to (27), we partition the matrix Ŵ
j
into J sub-

matrices, i.e., Ŵ
j ¼ ½Ŵ jT

1 … Ŵ
jT
J �T such that Ŵ

j H
y¼∑J

q ¼ 1

Ŵ
j H
q yq. From (33), it is then seen that the solution space

can be parameterized as

8 jAJ : Ŵ
j ¼

Ŵ
1
1Aj1

Ŵ
2
2Aj2

⋮

Ŵ
J
JAjJ

2
6666664

3
7777775
: ð34Þ

Therefore, based on Fig. 2, if we set Vj ¼ Ŵ
j
j and

~W j ¼ ½Ŵ jT
j j AT

j1 … AT
jðj�1Þ A

T
jðjþ1Þ … AT

jJ �T , 8 jAJ , the local

BF output signal dj will be equal to dj ¼ Ŵ
jH
y, i.e., the

output of the centralized LCMV BF defined by (32). Note
that in this particular setting each node broadcasts a signal
with Lj ¼ S channels. If SoMj, this results in a reduction of
the communication cost.

The above shows that the node-specific LCMV BF out-
put can be obtained in all nodes if the Vj’s and ~W j’s are
properly chosen. Again, this also indicates that the first Mj

rows (corresponding to the local microphone signals yj
at node j) of the local BF ~W j, should be copied into the
compressors Vj.

Since the parameters in (34) are unknown in practice
and may vary over time, we have to design an updating
procedure to compute them. Similarly to the case of the
D-LCMV algorithm, it turns out that the optimal setting for
Vj and ~W j is automatically obtained by iteratively comput-
ing ~W j at each node jAJ as a local LCMV BF based on ~y j,
i.e., (compare (28)–(30))

~W j ¼ arg min
W

TrfWHR ~nj ~nj
Wg; s:t: ~H

H
j W¼ Fj ð35Þ
tributed minimum-variance beamforming approaches for
s, Signal Processing (2014), http://dx.doi.org/10.1016/j.
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and then setting

Vj’½IMj�Mj
0Mj�ðJ�1ÞS� ~W j: ð36Þ

This results in the so-called linearly constrained distrib-
uted adaptive node-specific signal estimation algorithm
(LC-DANSE)2 algorithm [38], which is essentially equiva-
lent to the algorithm in Table 1, except for the fact that the
vector variables vj and ~w j now become matrix variables Vj

and ~W j, and the fact that ~W j is computed according to (35)
instead of (28).

In [38], it has been proven that this updating scheme
indeed converges to a stable operation point. In this stable

operation point, the local BF output dj ¼ ~W
H
j ~y j for each

node jAJ is then indeed equal to ðŴ jÞHy, i.e., the node-
specific LCMV BF output (31) as if node j had access to all
the microphone signals in y. Despite the fact that the
descriptions of the D-LCMV BF and LC-DANSE are almost
identical, their dynamics and convergence proofs are
actually very different (except if S¼ Lj ¼ 1).

It is noted that the possibility to define node-specific
BFs in the LC-DANSE algorithm comes at a price, namely an
increased communication cost compared to the D-LCMV
BF, in particular in scenarios where the number of con-
straints S is large. Yet, the increased communication cost
also yields several other advantages:
(1)
2

algo
algo
the
LCM

3

com
ence

Pl
sp
sig
The local BF input signal ~y j has MjþS � ðJ�1Þ channels,
compared to Mjþ J�1 channels in the D-LCMV BF.
Although this increases the computational complexity
of the local BF, it significantly increases the degrees of
freedom per update at each node, which typically
results in a much faster overall convergence.
(2)
 Convergence to the centralized LCMV BF is always
guaranteed, whereas the D-LCMV algorithm requires
some technical conditions to be satisfied.
(3)
 If RTFs are used to define H in the D-LCMV BF, all
nodes should in principle use the same reference
microphone, requiring an additional communication
cost.3 This is not required in the LC-DANSE algorithm if
node-specific reference microphones are used.
Remark 2. Similar to the D-LCMV algorithm, the LC-DANSE
algorithm requires the updating node q to broadcast the S� S
matrix Hzq , which yields an additional communication cost
that is usually negligible compared to the transmission of the
samples of the zj signals (see Remark 1). Furthermore, if RTFs
are used in the constraints sets of the LC-DANSE algorithm,
~Hq can be (re-)estimated directly from the signals in ~yq,
without the need to broadcast Hzq after each update (details
omitted) [38].
The distributed adaptive node-specific signal estimation (DANSE)
rithm was initially proposed as an unconstrained noise reduction
rithm [25]. The LC-DANSE algorithm can be viewed as an extension of
DANSE algorithm to also include linear constraints, resulting in an
V approach.
For the sake of completeness, it is noted that this additional

munication cost can be circumvented by introducing virtual refer-
s [39].

ease cite this article as: S. Markovich-Golan, et al., Optimal dis
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Remark 3. The algorithm in Table 1 is adaptive in a block-
based fashion, i.e., a single time-recursive update is per-
formed for each new block of N samples. Due to the
sequential updating rule, only one node is allowed to
update in each block, i.e., a node can only update once
after every J � N samples collected at its microphones.
This may result in a slow tracking or adaptation speed
if the WASN has many nodes. If all the nodes were to
update simultaneously (once after every N samples), it is
explained in [38] that some memory in the update of Vq

has to be added, i.e.,

Vq’ð1�αÞVqþα½IMq�Mq 0Mq�ðJ�1ÞS� ~Wq ð37Þ

with 0oαo1. If the relaxation parameter α is sufficiently
small (usually α¼ 0:5 is a good choice), the LC-DANSE
algorithm also converges when nodes update simulta-
neously [38]. This typically allows the WASN to adapt
more swiftly to changes in the acoustic environment.
Another (complementary) way to improve the tracking
performance at each node is to let ~W j, 8 jAJ , update on a
per-sample basis, which does not change the long-term
dynamics of the algorithm as long as Vj is still updated on
a per-block basis [48].

3.3. Distributed GSC

In this subsection, we derive a distributed GSC in which
each node can update its parameters on a per-sample basis
to swiftly adapt to changes in the scenario. In Sections 3.1
and 3.2, we have described two block-adaptive distributed
LCMV BF algorithms, in which each iteration involves the
computation of a local LCMV BF ~W j. This seems to imply
that a distributed GSC can be straightforwardly obtained
by replacing this local LCMV BF by a local GSC implemen-
tation, and by updating both ~W j and Vj on a per-sample
basis. However, after each update of Vj in LC-DANSE
or D-LCMV, node j broadcasts an updated version of the
compressed constraints matrix Hzj ¼VH

j Hj (see Remarks 1
and 2), and this leads to an extremely high communication
cost if Vj is updated on a per-sample basis.

To avoid this, we need to find a way to ensure that
the network-wide constraints are always satisfied in the
local BF of each node, without the need to transmit
Vj�dependent parameters between nodes. To this end,
we again abandon the node-specific preferences (each
node uses the same constraints set, as in Section 3.1),
and set Lj¼1, i.e., vj and ~w j are assumed to be vector
variables and each node only broadcasts a single-channel
signal zj ¼ vHj yj.

First, it is observed that, if we ensure4 HH
j vj ¼ 1=J � f,

8 jAJ , then the sum of all the zj's in Fig. 2 can be viewed
as the output of a BF that satisfies the constraints, i.e., if we
choose

~w j ¼ ½vTj 1 … 1�T : ð38Þ
4 For the sake of an easy exposition, we assume here that MjZS and
Hj is full rank. In the derivation of the DGSC in the sequel, this is
guaranteed by introducing additional broadcast signals, referred to as
‘shared signals’.

tributed minimum-variance beamforming approaches for
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then the local BF output dj ¼ ~wH
j ~y j will always correspond

to the output of a network-wide BF that satisfies the
constraints. In this case, the nodes do not have to know
each other's compressed Hj matrix to locally satisfy the
network-wide constraints. Rather than using the D-LCMV
update rule (28) to update ~w j, a new update rule can then
be defined according to the above strategy:

~w j ¼ arg min
~w

~wHR ~nj ~nj
~w

s:t: � HH
j v¼ 1

J
f

� ~w ¼ ½vT 1 … 1�T : ð39Þ
Note that the optimization in (39) is actually performed
over the vector variable v. The solution of (39) can be
implemented as a local GSC structure in all nodes 8 jAJ ,
without the requirement to transmit Hzj after each update,
as will be explained later.

However, when using ~w j and vj defined by (38)
and (39) in Fig. 2 (for all jAJ ), it follows from the first
constraint in (39) that the noise variance of the local BF
output dj ¼ ~wH

j ~y j can never be smaller than

min
w

wHRnnw ð40Þ

s:t:

HH
1 0 ⋯ 0

0 HH
2 ⋮

⋮ ⋱ 0
0 … 0 HH

J

2
666664

3
777775w¼ 1

J

f
f
⋮
f

2
6664

3
7775: ð41Þ

Note that the constraints matrix has dimension ðS � JÞ �M,
which means that w only has M�S � J degrees of freedom
left to minimize the objective function (40). This, of course,
is highly sub-optimal compared to the M�S degrees of
freedom utilized in the centralized LCMV (5) or in the NC
path of the GSC form.

However, this loss of degrees of freedom can be
compensated for by providing each node with S additional
input signals, referred to as shared signals. Each node will
use these shared signals together with its local micro-
phone signals to compute a local GSC which are then
combined to eventually result in the so-called DGSC [27],
as explained next.

3.3.1. DGSC definition
The S shared signals will be provided by one or more

nodes in the WASN. Denote by rj the shared signals
broadcast by node j. This is an Sj�channel signal, where
0rSjrS. Note that Sj ¼ 0 means that rj is an empty vector
such that node j does not broadcast any shared signals. The
channels of rj are linear combinations of the microphone
signals at node j, which can be formulated as

rj9DH
j yj ð42Þ

where Dj is an Mj � Sj matrix (to be defined). We use
a similar notation as for the zj�signals (compare with
(21)–(22)), i.e.,

r9 ½rT1 ⋯ rTM �T ð43Þ
Please cite this article as: S. Markovich-Golan, et al., Optimal dis
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and the S�Sj shared signals that are constructed by all
nodes other than j are denoted

r�j9 ½rT1 ⋯ rTj�1 rTjþ1 ⋯ rTJ �T : ð44Þ

Define the extended input vector at node j by stacking yj
and r� j, resulting in an Mj9MjþS�Sj dimensional vector

y j9 ½yTj rT� j�T ð45Þ

where the ð�Þ notation has a similar meaning as the ~ð�Þ
notation in (23). Similar to (24), the extended input signals
are modeled as

y j ¼Hj � sþn j ð46Þ

where the extended input ATF matrix and noise at node j
are defined as (compare with (25a) and (25b))

Hj9
Hj

Hr;� j

" #
ð47aÞ

n j9
nj

nr;� j

" #
ð47bÞ

respectively, with

Hrj 9DH
j Hj ð48aÞ

Hr;� j9 ½HT
r1 … HT

rj� 1
HT

rjþ 1
… HT

rJ �T ð48bÞ

nrj 9DH
j nj ð48cÞ

nr;� j9 ½nT
r1 … nT

rj� 1
nT
rjþ 1

… nT
rJ �T : ð48dÞ

The DGSC block scheme is given in Fig. 3, which
extends the original block scheme in Fig. 2. When compar-
ing both figures, we see that the compression vector vj is
now denoted as v j since it operates on the extended input
y j, such that the broadcast signal zj is

zj9vH
j y j ð49Þ

and the input ~y j to the local BF ~w j is

~y j9 ½yT
j zT�j�T : ð50Þ

Although the transmission of the shared signals results
in a higher communication cost, it can be shown (see [27]
for a complete proof) that this approach provides sufficient
additional degrees of freedom at each node such that the J
local GSC implementations of

~w j ¼ arg min
~w

~wHR ~nj ~nj
~w

s:t: � H
H
j v j ¼

1
J
f

� ~w ¼ ½vT
j 1 … 1�T ð51Þ

in nodes j¼1,…,J working in parallel achieve the same
output noise variance as a centralized GSC. The final
output of the DGSC is given by summing all the com-
pressed output signals, i.e.,

d9 ∑
J

j ¼ 1
zj ð52Þ
tributed minimum-variance beamforming approaches for
s, Signal Processing (2014), http://dx.doi.org/10.1016/j.
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Fig. 3. High-level block scheme of the DGSC algorithm.

Fig. 4. Low-level block scheme of v j and ~W j blocks in the DGSC
algorithm at the jth node.
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d¼ ~wH
j ~y j: ð53Þ

Similar to (11), the v j�part of the local BF ~w j at node j
(see (51)) corresponds to a GSC, i.e.,

v j9a j�Bjpj ð54Þ
where a j, B j, and p j are the quiescent response BF, the BM
and the NC filter, respectively. The quiescent response BF
and the BM are computed from the extended constraints
matrix Hj (compare with (12) and (13)):

a j9HjðH
H
j HjÞ�1f ð55Þ

and

B j9 ðIMj�Mj
�HjðH

H
j HjÞ�1H

H
j Þ

�½IðMj �SÞ�ðMj �SÞ 0ðMj � SÞ�S�T : ð56Þ

The output of the quiescent response BF, denoted za;j, and
the noise reference signals at the output of the BM,
denoted uj, are given by

za;j9aH
j y j ð57aÞ

u j9B
H
j y j: ð57bÞ

As in the centralized GSC (see (17)), the NC can be updated
recursively by an LMS algorithm:

p j lþ1ð Þ ¼ pj lð Þþμ
u jðlÞdnðlÞ
λu;jðlÞ

ð58Þ

where μ is the step size, λu;j is a recursively updated
normalization factor which approximates the variance of
the noise reference signals by

λu;j lþ1ð Þ ¼ ρ � λu;j lð Þþ 1�ρ
� �M�S

Mj�S
‖u j‖2 ð59Þ

and ρ is a forgetting factor. It is assumed that the variances
of the noise reference signals in u j are equal in all nodes,
hence the total variance of the actual M�S noise reference
signals in u is approximated by the variance at the jth
node multiplied by the factor ðM�SÞ=ðMj�SÞ. It is impor-
tant to note here that the adaptive NC filters are controlled
by d as defined in (52) and (53), i.e., the output signal
Please cite this article as: S. Markovich-Golan, et al., Optimal dis
speech enhancement in wireless acoustic sensor network
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of the local BF ~w j defined in (38). It is also shown in [27]
that such J concurrent LMS updates are equivalent to a
single centralized LMS update, alleviating the need for
a coordinate-descent control mechanism and improving
convergence time. An intuitive explanation for the latter is
that the LMS update is inherently parallel, and performed
for different filter components independently, given the
error signal. A low-level block-diagram of the v j and ~w j

blocks in the DGSC is depicted in Fig. 4. It is noted that the
compressed signal zj can also be extracted from the GSC
inside the ~w j block, i.e., in principle the compression
vector v j does not have to be constructed explicitly (it is
here merely added for the sake of consistency with the
generic block scheme in Fig. 2).

3.3.2. Shared signals construction
Several approaches exist for the construction of the

shared signals r. The only limitation is that the covariance
matrix of the noise components in r has full rank (i.e. rank S),
and that the stacked S� S matrix ½HT

r1 … HT
rJ �T has full rank.

In [27] it is suggested to use a subset of the microphone
signals as shared signals. Note that r will have a full rank
noise covariance matrix if each microphone is used at most
once as a shared signal.

As mentioned in previous sections, ATFs are usually
unknown, and a common approach is to use RTFs instead.
In this case shared signals can also serve as a common set
of reference microphone signals to compute RTFs at each
node. Therefore, in order to make the estimation proce-
dure of RTFs more robust, the microphone signals with
highest SNRs are chosen.

3.3.3. Summary
The DGSC is a distributed version of the GSC satisfying a

common constraints set, where each node implements a
local GSC. The DGSC has several desirable properties: (1) in
time-varying environments, variations in the noise field
affect only part of the BF; (2) it has a reduced computa-
tional cost when low-complexity LMS updating is used;
(3) it satisfies the constraints set at each of the local GSCs,
which alleviates the need to broadcast compressed con-
straints matrices (or to locally re-estimate the RTFs from ~y j
tributed minimum-variance beamforming approaches for
s, Signal Processing (2014), http://dx.doi.org/10.1016/j.
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during the convergence of the algorithm). However, in
order to maintain sufficient degrees of freedom for con-
vergence to the optimal BF, we require S additional broad-
cast signals (the shared signals). Therefore, a total of JþS
single-channel broadcast signals are required by the algo-
rithm (compared to J single-channel signals in the D-LCMV
[26]).
Fig. 5. Example of a network with a tree topology.
4. Distributed minimum variance beamforming in a
WASN with a tree topology

In this section, we explain how the distributed BF
algorithms of Section 3 can be extended to operate in a
WASN where each node can only communicate with a
subset of (nearby) nodes. An ad hoc network topology
defined by, e.g., a nearest-neighbor criterion, typically
contains many cycles in the network graph, i.e., paths
through the network that start and end in the same node.
Although such cycles are usually not a problem in (itera-
tive) distributed parameter estimation algorithms [49–51],
they typically cause major problems in distributed signal
estimation or spatial filtering algorithms, such as the
distributed BF algorithms presented in Section 3. The
signal fusion process in a distributed BF consists of a
distributed linear filter-and-sum operation, which hap-
pens in a non-iterative5 fashion. Cycles in the network
graph introduce feedback paths and causality issues in this
non-iterative signal fusion process, and may change the
dynamics of the algorithm in an uncontrollable fashion [28].

One way to deal with this issue is to use an iterative
signal fusion procedure from the family of distributed
parameter estimation algorithms, such as gossip or con-
sensus iterations [52,53]. However, such an approach
inevitably transforms the in-network signal fusion process
into an iterative process, which results in a large and non-
scalable per-node communication cost which grows with
the network size. In order to avoid the latter, we use the
approach of [28] where the feedback problem is managed
by means of topology control. In this case, it is assumed
that the network has been pruned to a spanning tree, i.e.,
we remove links in the network until there are no cyclic
paths anymore (without disconnecting any nodes from
the network), which eventually results in a tree topology,
as the one depicted in Fig. 5. Although constructing an
arbitrary spanning tree in an ad hoc network is not
difficult, it becomes a cumbersome problem if the span-
ning tree has to satisfy a specific optimality criterion, e.g.,
to minimize the network delay, the overall transmission
energy, etc.

In this section, we will demonstrate that a tree topol-
ogy allows to extend the distributed BF algorithms of
Section 3 to a partially connected network, in which the
per-node communication and computation cost is fully
scalable, i.e., independent of the network size. We first
explain in Section 4.1 how the DGSC can be applied in a
5 Despite the fact that the BF coefficients are estimated iteratively,
the actual fusion of the signal samples is indeed a non-iterative process
since each sample is only transmitted once. The latter is important to
obtain a scalable per-node communication cost.
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WASN with a tree topology, since this is the easiest case.
We then describe a similar extension for the node-specific
case (the LC-DANSE algorithm) in Section 4.2. Although
the D-LCMV algorithm can also be extended in a similar
fashion, we will not include this in this paper, except for a
brief reflection in Section 4.3.

In the sequel, we denoteN j as the set of neighbors of node
j, i.e., the nodes that are connected to node j. For example, in
Fig. 5, we have N 6 ¼ f4;5;7g. The nodes with a single
neighbor are referred to as leaf nodes (the light-colored nodes
in Fig. 5). The root of the tree is defined as the node for which
the distance (in number of hops) to the furthest leaf node is
minimal (node 4 in Fig. 5). Note that some trees may have two
root nodes, e.g., the sub-tree consisting of the nodes
f1;2;3;4;8;9g in Fig. 5 has both node 3 and 4 as roots. Each
non-root node j has a unique father node fj, i.e., the neighbor
in N j that is closest to the root node, and its other neighbors
in N sons;j ¼N j\ff jg are referred to as sons. In the tree of Fig. 5,
node 3 has two sons (N sons;3 ¼ f1;2g) and its father is node 4,
i.e., f 3 ¼ 4. The root node has no father (only sons), except if
there are two root nodes, in which case the two root nodes
are both each other's father.

We use the notation zj-f j to denote a dedicated signal
that is transmitted from node j to its father fj, and we use
zj-sons to denote a signal that is broadcast by node j to all
of its sons in N sons;j.

4.1. Distributed GSC

In the fully connected DGSC (see Section 3.3 and Fig. 3
in particular), the samples of two signal sets are broadcast:
(1) the shared signals in r, which are broadcast from their
‘owning’ nodes to all other nodes; (2) the compressing GSC
output zj of each node jAJ .

4.1.1. Shared signals exchange
In the DGSC, each node should have access to all S

shared signals. In a tree topology, this dissemination
process can be conveniently organized without any central
coordination:
�

trib
s, S
For all jAJ : if rj is non-empty, node j forwards a
sample of rj to each of its neighboring nodes nAN j

whenever a new sample is available from the local
microphone signals.
uted minimum-variance beamforming approaches for
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�

Fig. 6. LC-DANSE block scheme for a node of a WASN with a tree
topology.
If node j receives a sample of one of the shared signals
in r from a neighbor qAN j, it forwards this sample to
the other neighbors in N j\fqg.

It can be easily seen that this will eventually result in a
communication cost of S single-channel signals per node.
The only exceptions are the leaf nodes, since a leaf node j
does not have to forward any shared signals, except for the
shared signal rj that actually originates at node j (note that
rj is empty at most nodes).

4.1.2. In-network fusion of local BF outputs
If all nodes have access to all S shared signals, then the

only remaining problem is to provide each node with the
summed signal d¼∑J

j ¼ 1zj (see (52)). Indeed, the signal d
is used to update the NC in each node's local GSC (see
Fig. 4), and it also corresponds to the network-wide BF
output.

The tree topology actually defines a natural order in
which the nodes should fuse their local BF output signals
zj such that each node eventually obtains the summed
signal d. This results in an inwards (fusion) and outwards
(diffusion) signal flow [28]:
1.
tree
pol

P
s
s

Fusion flow: The fusion flow begins at the leaf nodes,
which transmit a sample of their local GSC output
signal zj as defined in (49) to their father, i.e., leaf node
j transmits zj-f j ¼ zj to node fj. When node fj has
received the samples from all of its sons it sums them
together with the corresponding samples of its own
local GSC output signal zf j and transmits the result to its
own father. This process continues until the aggregated
results reach the root node6 (node 4 in Fig. 5), which
then finally computes the corresponding sample of d.
This fusion process can be formalized as

zj-f j 9zjþ ∑
qAN sons;j

zq-j: ð60Þ

The final fused output is given by the signal

d9zrþ ∑
qAN r

zq-r ð61Þ

where r is the root of the tree.

2.
 Diffusion flow: The diffusion flow is initiated at the root

node, which broadcasts zr-sons9d to its sons, which
then also broadcast a copy zj-sons9d to their sons, etc.,
such that all nodes eventually have access to d.

From the above procedure, it is clear that the per-node
communication cost is doubled compared to a fully con-
nected scenario since a node jAJ has to broadcast two
signals: the fusion signal zj-f j , and the diffusion signal
zj-sons. Again, the leaf nodes form an exception, as they
have no sons and hence do not have to transmit zj-sons.

An interesting observation is that the convergence
speed of the DGSC is the same in a tree topology and in
6 For the sake of an easy exposition, we assume in the sequel that the
has a unique root node. However, all results can be easily extra-

ated to trees with two root nodes.
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a fully connected topology. Indeed, the topology has no
impact on the local GSCs at the individual nodes, but only
on the way signals are exchanged between nodes.
4.2. Distributed node-specific LCMV

Similar to the DGSC, we can also modify LC-DANSE for
node-specific LCMV BF to operate in WASNs with a tree
topology. However, this is not as straightforward as in the
case of DGSC, and we will only briefly touch upon this
topic here. The main idea is identical to the extension of
the (unconstrained) DANSE algorithm for a tree topology,
and therefore we refer to [28] for a more detailed deriva-
tion and analysis.

Although the algorithmic aspects at each node are
almost identical for a fully connected topology and a tree
topology, the main difficulty is the description of the signal
flow through the network. To explain this, we first have to
introduce some new notation, which is partly visualized in
Fig. 6, showing a generic block scheme for a single node of
a WASN with a tree topology. The details of this block
scheme will be explained in the sequel. Similarly to the
LC-DANSE algorithm in a fully connected WASN, we
assume w.l.o.g. that Lj ¼ Kj ¼ S.

Similarly to the case of DGSC in Section 4.1, a node jAJ
will broadcast a fusion signal zj-f j to its father fj, and a
diffusion signal zj-sons to its sons (note that these signals
are now S-channel signals). The fusion signals are trans-
mitted first (starting at the leaf nodes). The fusion flow
progresses towards the root, until the latter has received
the fusion signals from all of its neighbors. Finally, the root
node fuses these received signals with its own microphone
signals and initiates the diffusion flow.

We denote zsons;j as the vector stacking all the (fusion)
signals zq-j that node j receives from its sons qAN sons;j.
The fusion signal that node j then transmits to its father is
defined as (see Fig. 6 and compare with Fig. 2)

zj-f j 9VH
j

yj
zsons;j

" #
ð62Þ

i.e., it consists of a compressed version of its Mj micro-
phone signals and the fusion signals from its sons, where
the compression matrix Vj is yet to be defined. Since the
father node is always excluded, the recursive definition
tributed minimum-variance beamforming approaches for
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(62) can be initiated at the leaf nodes, where zsons;j
is empty.

To create the diffusion signal zj-sons, node j needs the
diffusion signal zf j-sons that is broadcast by its father fj.
However, since zf j-sons is a diffusion signal, it consists of a
linear combination of all the fusion signals throughout the
network, including the signal zj-f j that node j has injected
in the fusion flow. It can be shown that this feedback
component causes convergence issues in the LC-DANSE
algorithm and should therefore be removed from zf j-sons

before processing this signal at node j [28]. Let zfather;j
denote the signal that node j obtains after removing this
feedback component from zf j-sons (we will later explain
how this can be done, i.e., ignore the ‘RFC’ block for now
in Fig. 6).

Node j now has access to three different sets of signals that
it can use as an input for a local BF: its own Mj microphone
signals yj, the stacked signals in zsons;j, and the signal zfather;j,
where the latter is yet to be defined. We can then re-define
the multi-channel signal ~y j as (compare with (23))

~y j9

yj
zsons;j
zfather;j

2
64

3
75: ð63Þ

Similar to the fully connected case, we use all these locally
available signals in ~y j as the inputs for a local BF ~W j, which
produces Kj ¼ S output channels dj.

As shown in Fig. 6, the diffusion signal that node j
broadcasts to its sons is obtained by compressing the
signal ~y j into an S-channel signal with a compression
matrix Uj, i.e.,

zj-sons9UH
j ~y j: ð64Þ

Let Um;n denote the sub-matrix from Um that node m
applies to the fusion signal zn-m from its son nAN sons;m,
then it can be shown that, if we define zfather;j, as

zfather;j9zf j �UH
f j ;j
zj-f j ; 8 jAJ ; ð65Þ

then zfather;j will not contain any feedback component
originating from the earlier transmitted fusion signal
zj-f j [28]. This is referred to as receiver feedback cancela-

tion7 (RFC), which requires a minor additional parameter
exchange between neighboring nodes (to share the values
of Uf j ;j).

Let us revisit (33), which highlights the fact that the
centralized LCMV BFs of node j and q are identical up to an
S� S transformation matrix equal to Ajq ¼ ðFqÞ�1Fj, which
has lead to the parametrization (34). Consider the parti-
cular choice

Vj ¼ ½Ŵ jT
j jAT

j;sons�T ð66Þ

Uj ¼ ½VT
j jAT

jf j
�T ð67Þ

~W j ¼Uj ð68Þ
7 An equivalent alternative, referred to as transmitter feedback
cancelation, has also been proposed in [28], but it has the drawback that
it does not support broadcast transmission.
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with Aj;sons denoting the stacked matrix containing all the
Ajq’s with qAN sons;j. When using this particular choice,
8 jAJ , and by carefully analyzing the signal flow in the
tree as defined above (and based on Fig. 6), it can be
verified that dj is equal to the output signal WjHy of the
network-wide BF

Wj ¼

Ŵ
1
1Aj’1

Ŵ
2
2Aj’2

⋮
Ŵ JJAj’J

2
666664

3
777775 ð69Þ

where Aj’q is the result of the multiplication of several
Amn’s, i.e.,

Aj’q9At1q � At2t1 � At3t2…AjtN ð70Þ

with ðq; t1;…; tN ; jÞ being the ordered set of nodes that
defines the shortest path through the tree from node q
to node j. For example, considering the tree in Fig. 5,

then A1’6 ¼A46 � A34 � A13. Since Ajq ¼ Fq
� ��1Fj, we find

that AqlAjq ¼Ajl. Using this result in (70), it is seen that
Aj’q ¼ Ajq, such that (69) becomes equal to (34), and
hence the network-wide BF (69) becomes equal to the

centralized LCMV BF, i.e., Wj ¼ Ŵ
j
, 8 jAJ .

Similarly to the fully connected case, we have now proved
that there exists a choice for the compression matrices Vj, Uj,
and the local BFs ~W j, 8 jAJ , such that the output dj at each
node jAJ is equal to the output of the corresponding
centralized BF Ŵ

j
. However, since this particular optimal

choice is unknown a priori, the LC-DANSE algorithm has to
iteratively compute the optimal parameter settings. This
happens in a very similar fashion as in the LC-DANSE
algorithm for a fully connected WASN:
�

trib
s, S
The local BFs ~W j are again defined as the LCMV BFs
computed from ~y j (see (35)).
�
 The compression matrices Vj and Uj contain copies of
the local BF coefficients, i.e.,

Vj’ ~W j;� f j ð71Þ

Uj’ ~W j ð72Þ
where ~W j;� f j is equal to ~W j, but the coefficients
corresponding to the input signal zfather;j are removed.

This results in the LC-DANSE algorithm for a tree topology,
as described in Table 2. It is noted that the compressed
constraints matrices ~Hj are defined slightly differently
compared to (25a) in the fully connected case. In a tree
topology, the sub-matrix of ~Hj that corresponds to the
received signal from node qAN j is defined by the same in-
network signal fusion process that generates the signal
that node j receives from node q (details omitted, see
also [26]). Note that this modification is irrelevant if the
constraints matrices are defined by node-specific RTFs,
since they are then directly estimated from the local inputs
in ~y j, as in [38] (see also Remark 2).

Using a similar convergence proof as in [28], it can be
shown that the local BF outputs dj converge to the output
uted minimum-variance beamforming approaches for
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Table 2
LC-DANSE in a WASN with a tree topology.

Based on the block scheme in Fig. 6, perform the following sequential updating procedure:
(1) Initialization:

� Initialize Vj , Uj and ~W j, 8 jAJ , with random entries.
� Set q’1.

(2) At the updating node q:
� Collect N new noise-only observations of ~yq such that a reliable estimate of R ~nq ~nq

can be computed.

� Generate ~Hq (details omitted).

� Update the local LCMV BF ~Wq as in (35).

� Update Vq’ ~Wq;� f q .

� Update Uq’ ~Wq .
(2) q’j with jAN q .
(3) Return to step 2.

Remark:For the sake of an easy exposition, this algorithm description does not describe the process for updating the compressed constraints matrices
~Hq . On top of this updating procedure for the per-node coefficient updates, the nodes continuously exchange signals and produce local BF outputs
(in parallel), according to the signal flow illustrated in Fig. 6.
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signals of the centralized node-specific LCMV BF outputs
defined by (32), assuming that the node updating order is
defined by a path through the network (see also step 3 in
the algorithm). Note that the latter is a sufficient require-
ment for convergence, but it is not necessary.

Remark 4. Similar to the DGSC, the in-network signal flow
of LC-DANSE can happen in a data-driven fashion without
any central coordination. Indeed, the three blocks in Fig. 6
denoted by Vj, Uj, and ~W j only generate an output sample
whenever they have a sample available at each of their
input channels. If each node uses this data-driven ‘firing’
rule, then the fusion and diffusion flow will automatically
emerge.

Remark 5. In addition to the fact that a tree topology allows
for nearest-neighbor communication, which reduces the per-
node communication energy, there is a second advantage.
The tree topology reduces the number of input channels at
each node, and therefore also the per-node computational
complexity (which typically grows cubically with the num-
ber of inputs). The algorithm actually becomes fully scalable,
since the per-node computational complexity only depends
on the number of neighbors, but not on the total number of
nodes J (unlike in the fully connected case). However, this
comes at a cost: the reduction in degrees of freedom at each
node reduces the convergence speed and hence the adapta-
tion speed of the algorithm.

4.3. Distributed LCMV with a common constraints set

Similar to the LC-DANSE algorithm, the D-LCMV algo-
rithm can be adapted to a tree topology, allowing to
further reduce the number of transmission signals by
removing the node-specific preferences (we refer to [26]
for further details). However, due to the substantial reduc-
tion in the number of degrees of freedom at each node, in
particular at the leaf nodes, the D-LCMV algorithm often
gets stuck in sub-optimal operation points (unless S¼1). In
[26], a number of possible cures for this issue are proposed
(for the case where S41 but small), but these are beyond
the scope of this paper.
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5. Discussion

In this paper we have addressed the problem of extract-
ing a set of desired speech signals from microphone record-
ings that are contaminated by interfering speakers or other
noise sources in a reverberant enclosure. We have focused on
BF methods based on the LCMV criterion, which is widely
used and well suited for both single and multiple speaker
scenarios. Rather than utilizing a single microphone array
configuration, we have considered a WASN consisting of J
microphone arrays or nodes, which are (arbitrarily) distrib-
uted over a reverberant enclosure with S speakers. Such
distributed microphone array configurations may yield a
significant performance improvement, since they enable
better coverage of the enclosure. Consequently, it is more
likely that each source will be close to one node, allowing it
to be recorded with higher SNR and DRR, which is crucial for
a better noise reduction performance.

Starting from a generic formulation of distributed BFs in a
fully connected WASN, we have described three diffe-
rent distributed LCMV BFs, namely D-LCMV, LC-DANSE and
DGSC. The generic formulation, depicted in Fig. 2, consists of a
compression matrix Vj and a local BF ~W j. The compression
matrix fuses the local microphone signals into a signal with
fewer channels, which is then broadcast to the other nodes in
the network. The local BFs then take the local microphone
signals and the compressed signals of all other nodes as an
input, and construct the desired output signals.

Although based on a common design criterion, the
presented distributed BFs differ substantially in a number
of aspects, which are summarized next.

Node-specific vs. common constraints: LC-DANSE con-
siders a general case where the constraints set is different
at each node, i.e., each node can extract a node-specific set
of desired speakers, possibly based on node-specific refer-
ence microphones to preserve the localization cues. Alter-
natively, the D-LCMV algorithm and the DGSC consider a
special case where all nodes share a common constraints
set, resulting in a reduced communication cost in a multi-
speaker scenario. In either case, all nodes collaborate
to accomplish either node-specific goals, or a common
shared goal.
tributed minimum-variance beamforming approaches for
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Table 3
Comparison of the number of broadcast channels in the three surveyed
BF algorithms.

Fully connected
topology

Tree topology

Algorithm Per node Total Non-leaf
node

Leaf node Total

LC-DANSE S J � S 2S S o2J � S
D-LCMV 1 J 2 1 o2J
DGSC 1þSj JþS 2þS 1þSj o J � ð2þSÞ
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Adaptivity: The LC-DANSE and D-LCMV algorithms are
based on the closed-form LCMV solution with a time-
recursive block-based update rule, whereas DGSC utilizes
the GSC formwith a time-recursive per-sample update rule
(note that a sample here corresponds to a single frame in
the STFT domain). The latter allows to adapt more swiftly
to changes in the scenario, but hampers the use of burst
transmission over the wireless link, which may result in a
larger communication overhead. However, it is noted that
the NCs can also be updated on a per-block basis if burst
transmission is desired.

Communication cost: The communication cost of all three
algorithms is summarized in Table 3. The LC-DANSE algo-
rithm requires Lj ¼ S channels to be broadcast per node, or
L¼ J � S channels in total. The DGSC and D-LCMV reduce the
communication cost significantly to Lj¼1 channel per node,
or L¼ J channels in total (þS shared signals in the case of
DGSC), but they do not allow for node-specific constraints
sets.

The speech signal components in the compressed broad-
cast signals (the zj’s) of the LC-DANSE and D-LCMV algo-
rithm do not satisfy the desired responses defined by f.
Consequently, the actual responses vary between iterations
(before convergence), and require either re-estimating or
transmitting the Hzq matrices. Opposed to that approach,
the speech signal components in the compressed broadcast
signals of the DGSC are indeed constrained to satisfy the
desired responses in f. While alleviating the need to re-
estimate or transmit the varying responses, applying these
additional constraints results in a loss of degrees of free-
dom, which DGSC recovers by broadcasting S additional
shared signals (together with J compressed single-channel
signals, this yields a total of JþS channels). Omitting these
additional constraints, which exist in the DGSC but not in
the D-LCMV algorithm, allows the D-LCMV to achieve a
substantial reduction in the communication cost (J channels
versus JþS channels). Another benefit stemming from the
constrained responses in the transmitted signals of the
DGSC is the separate treatment of speech signals and noise.
Thus, changes in noise spectrum only affect the NC filters of
the GSC-form.

To give an idea about the required data-rate over the
wireless channels, assume a scenario with S¼2 target
sources and J¼4 nodes, each equipped with Mj¼5 micro-
phones which are sampled at a rate of fs¼16 kHz, and with
16 bit accuracy. In this case, we find that the average bit
rate (averaged over all nodes) is equal to 1.28 Mbit/s per
node when all the signals were to be centralized in a
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fusion center. On the other hand, based on Table 3, the
average bit rate is 512 kbit/s for LC-DANSE, 256 kbit/s for
the D-LCMV BF, and 384 kbit/s for the DGSC (for the same
speech enhancement performance as in the centralized
case). Although the LC-DANSE algorithm is more expensive
in communication cost, it allows for node-specific BF
outputs. It is noted that, for the case of partially connected
networks, the difference in communication cost between
the centralized algorithm and the distributed algorithms
becomes even larger, as the former requires to relay all the
data through the network to a fusion center, which is
highly non-scalable.

Convergence speed: Although not treated in this paper,
it is noted that substantial differences exist in terms of the
convergence of the different algorithms. LC-DANSE typi-
cally converges quite fast, often within 2 � J iterations,
i.e., after two updating rounds such that each node has
updated twice. When considering the closed-form imple-
mentation based on estimates of the noise covariance
matrix using sample-batches of size N, the LC-DANSE
convergence time increases linearly with the batch size
N, which introduces a trade off between convergence
speed and estimation accuracy. Indeed, a smaller N results
in more frequent updates (and hence faster convergence),
but poorer estimation of the noise covariance matrix.
Roughly speaking, the LC-DANSE algorithm converges
after ð2ð1�cÞJNBÞ=f s seconds, where fs is the sampling
rate, B is the STFT block length, and cA ½0;1Þ is the
percentage of overlap between consecutive STFT blocks.

Further signal compression based on the D-LCMV
algorithm results in a slower convergence (depending on
the number of speakers) due to a reduction of the per-
node degrees of freedom [26,39]. An exception to this rule
is the single-speaker case, for which LC-DANSE and
D-LCMV are equivalent (up to a node-specific scaling)
and hence obtain the same convergence time. The DGSC
is updated on a per-sample basis, and its convergence time
is controlled by the step-size μ and the forgetting factor ρ.
The DGSC obtains a similar convergence time as the
centralized GSC [27].

It is important to note that, for all three algorithms,
the convergence speed has no impact on the total com-
munication cost, since each iteration is performed on a
different signal segment, i.e., the same block of samples is
never transmitted more than once. Therefore, the conver-
gence speed only has an impact on the adaptation or
tracking performance.

Extension to a tree topology: We have also briefly
described how the above algorithms can be extended to
operate in a partially connected WASN, which requires
that the network be pruned to a tree topology to remove
cycles in the network. Such partial connectivity roughly
increases the per-node communication cost by a factor 2
(except for leaf nodes). However, the nodes then only have
to exchange data with their neighbors, which may result in
a reduced transmission energy. Furthermore, the per-node
computational complexity in the LC-DANSE and D-LCMV
algorithm will be significantly reduced (see Remark 5),
be it at the cost of a reduced convergence speed due
to the smaller number of degrees of freedom per node.
The computational complexity and the convergence speed
tributed minimum-variance beamforming approaches for
s, Signal Processing (2014), http://dx.doi.org/10.1016/j.
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remain the same in the case of DGSC, since each node in
the tree topology requires access to exactly the same
signals as in a fully connected topology.
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