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Speech Enhancement Using a
Mixture-Maximum Model

David Burshtein Senior Member, IEEEBnd Sharon GannoMember, IEEE

Abstract—We present a spectral domain, speech enhancement The purpose of the paper is to present a spectral domain
algorlthm._The new algorithm is based on a_mlxture model for algorithm, which produces high-quality enhanced speech on
the short time spectrum of the clean speech signal, and on a max- the one hand, and has low computational requirements on the

imum assumption in the production of the noisy speech spectrum. . L .
In the past this model was used in the context of noise robustspeechpther hand. The algorithm is similar to the HMM-based, min-

recognition. In this paper we show that this model is also effec- iImum mean square error (MMSE) filtering algorithm proposed
tive for improving the quality of speech signals corrupted by ad- by Ephraimet al. [4], [5], in the sense that it also utilizes a
ditive noise. The computational requirements of the algorithm can - Gaussian mixture to model the speech signal. However, while
be significantly reduced, essentially without paying performance the previous set of algorithms utilize a mixture of auto-re-

penalties, by incorporating a dual codebook scheme with tied vari- . dels in the ti d . lqorith dels th
ances. Experiments, using recorded speech signals and actual noisdd€SSIVE MOCEIS In the tme domain, our aigorithm models the

sources, show that in spite of its low computational requirements, |0g-spectrum by a mixture of diagonal covariance Gaussians.
the algorithm shows improved performance compared to alterna- In this paper, we follow the MIXMAX approximation, which

tive speech enhancement algorithms. was originally suggested by Nadesal. [15] in the context of
Index Terms—Gaussian mixture model, MIXMAX model, speech recognition, and propose a new speech enhancement
speech enhancement. algorithm. For this purpose, various modifications, adaptations

and improvements were made in the algorithm proposed in
[15] in order to make it a high-quality, low-complexity speech
enhancement algorithm. In [15], the MIXMAX model is used
PEECH quality and intelligibility might significantly {5 gesign a noise adaptive, discrete density, HMM-based,
eteriorate in the presence of background noise, especi@béech recognition algorithm. In [16], we used the MIXMAX
when the speech signal is subject to subsequent processifiggel to design various noise adaptive, continuous density,
such as speech coding or automatic speech recognition. CoNM-based speech recognition systems. In this paper, our
sequently, modern communications systems, such as cellygproach is more similar to the adaptation algorithm presented
phones, employ some speech enhancement procedure ati{h@gs), when the feature vector comprises all the elements of
preprocessing stage, prior to further processing (€.9., SPeg¢d DFT of the frame (instead of the MEL spectrum used in
coding). Speech enhancement algorithms have therefore [gk]). We also discuss the computational complexity of the
tracted a great deal of interest in the past two decades [1]-[14dw speech enhancement algorithm and show how it can be
Speech enhancement algorithms may be broadly classifigdjuced, essentially with no performance penalties. Our study
as belonging to one of the following two categories. The firgt supported by extensive speech enhancement experiments
is the class of time domain, parametric, model-based methqgﬁng speech signals and various actual noise sources.
[6]-{12]. The second class of speech enhancement algorithms isne organization of the paper is as follows. In Section II, we
the class of spectral domain algorithms. A subset of this clasgdgiew the MIXMAX model that was originally suggested by
the popular spectral subtraction-based algorithms, e.g., [1], [1&ladaset al. [15]. In Section IIl, we apply the MIXMAX model
Other spectral domain algorithms include the short time Sp&g-the speech enhancement problem. In Section IV, we compare
tral amplitude (STSA) estimator and the log spectral amplitugge MIXMAX speech enhancement algorithm to alternative en-
estimator (LSAE), both proposed by Ephraim and Malah [2hancement algorithms. The comparison is supported by an ex-
[3], and the hidden Markov model (HMM)-based filtering algoperimental study. In Section V, we discuss the computational

rithms proposed by Ephraiet al.[4], [S]. In general, the com- complexity of the algorithm and show how it can be reduced.
putational requirements of the spectral domain algorithms at@ction VI concludes the paper.

lower than the computational requirements of the time domain

. INTRODUCTION

algorithms. This property makes spectral domain algorithms at- 1. MIXMAX M ODEL
tractive candidates, especially for low-cost and/or low-power
(e.g., battery operated) applications, such as cellular telephomyt-et z[{] 1 =0, 1, ..., L — 1 be the samples of some speech

signal segment (frame), possibly weighted by some window
Manuscript received December 5, 2000; revised April 21, 2002. The associfiigction, and |etX(@j27Tk/L) denote the corresponding short
editor coordinating the review of this manuscript and approving it for publicg: .
tion was Dr. Dirk van Compernolle. ?|me Fourier transform
D. Burshtein is with the Department of Electrical Engineering—Systems,

L-1
Tel-Aviv University, Tel-Aviv, Israel (e-mail: burstyn@eng.tau.ac.il). somk/ T, ok /T
S. Gannot is with the Faculty of Electrical Engineering, Technion—lsraelX(CJ i ) = Z x[l]e gamli/ k=0,1,..., L—1.
Institute of Technology, Haifa, Israel (e-mail: gannot@siglab.technion.ac.il). 1=0
Digital Object Identifier 10.1109/TSA.2002.803420. Q)

1063-6676/02$17.00 © 2002 IEEE



342 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 10, NO. 6, SEPTEMBER 2002

{e[l M=) 4>‘ DFT ‘ |- |—>‘ log }—> X, Theassumption in the MIXMAX model, suggested by Naetas
) al.[15], isthat we can further approximalg by max(Xy, Yz),
X () that is

L (e

Fig. 1. Front-end signal processing.

Z ~max(X,Y)

where the maximum is carried out component-wise over the el-
ements of the log-spectral vectors.

Let £; r(z), Gr(y) denote the cumulative distribution func-
tions of f; x(x) andgx(y), respectively. Note that

Let X denote the. /2+ 1 dimensional, log-spectral vector with
kth component Xy, defined by

s ¥ g27k/L _ _ .
= loglR(e ) PO L Grly) = /y . e~ (/205 (u—py )? g0
whereK = L/2+1(Xx k = L/2+1,..., L — 1 may be —o0 V2T 0k
obtained using symmetry, i.eX,';? = X _x). The relations be- 1 1 v — iy x
tweenz[l], | X (/2% L)|, £ X (e27%/L) and X}, are shown in =515 erf <7> (5)
Fig. 1. The most common modeling approach of the log spec- V20,
tral vector,X, is realized by an HMM with a state depender\;\,here
mixture of diagonal covariance Gaussians. In this paper, a single
state model is used. The corresponding probability density func- 2 /“ 2
. S ) . erf(u)=— | e dt
tion, f(x) [for simplicity, we avoid the more accurate notation, NZ
fx(x)]. 1s given by is the error function. Similarly
Fe) = afix) =Y e [ firlan) 2 ‘
5 Tk Fi (@) = 1 + 1o <M> (6)
K 2 2 V2oi )
where
The cumulative distribution function of;, given theith mix-
fi (@) =N (@, pi x, oi 1) ture, H; 1(»), is obtained by invoking the statistical indepen-
5 dence ofX andY as follows:
__ exp _E ) ©)
\/ﬁaijk 2037k H; 1(z) =Pr{Z, < z|I =i}
In order to extend the Gaussian mixture model to the case =Pr{Xy <z Vi <z[l =1}

where the speech signal is contaminated by (a possibly colored) = 1(2)Gr(2). @)

additive noise, Nadaat al.[15] proposed the following model.

Let Y andZ denote the log-spectral vectors of the noise ardere I is the class (mixture) random variable. The density of
noisy speech signals, respectively, andlgt) denote the prob- 7, given theith mixture,h; 1(z), is obtained by differentiating
ability density function ofY'. We assume that the noise is statis¢7), [15]

tically independent of the speech signal. In addition both signals

have zero mean. For simplicity we also assumeghgj can be hi 1(2) = fi, 1 (2)Gr(2) + i 1 (2)gr(2).

modeled by a single diagonal covariance Gaussian (the exten- N . . )

sion to a mixture of Gaussians noise density is straightforward)€ Probability density o/ is hence given by

i.e., h(z) = Z Cihi(Z) = Zci Hhi,k(zk)
@ k

9(v) = o (ww) '
k = Z e [ [1Fix(2)Gr(2) + By n(zi)gn(ze)]- - (8)

where
) Nadaset al. used a probabilistic rule based on (8) to adapt a
gr(y) = 1 exp { — (y — pyv,) 4) discrete density HMM-based speech recognition system in the
V27 oy i, 20% 1 presence of additive noise. In [16] the MIXMAX model is used

o in order to adapt other HMM-based speech recognition sys-
Now, 2[I] = =[I] + y[l]. Due to the statistical independence angbms to noise, including systems that use continuous mixture of
zero mean assumptions we thus have Gaussians and systems that utilize time derivative (delta) spec-
. . . tral features.
|Z(632ﬂ-k/h)|2 ~ |X(632ﬂ-k/h)|2 + |Y(632ﬂ-k/h)|2.
[ll. APPLICATION TO SPEECHENHANCEMENT
Hence
In this paper, we apply the MIXMAX model to the related
Zy, = log(exp(Xy) + exp(Yi)). problem of speech enhancement. In order to obtain an estimate,
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X, to X givenZ, we use the following minimum mean squaré&’he maximization may be carried out by using the expecta-
error (MMSE) estimator: tion—maximization (EM) algorithm [17].

X = B(X |2) szq 2 = 2) ) Let~,, ;, andc,_; be defined by

Tn,i :f(xnv In = L) = Cif(xn |In = L)
whereq(i | Z = z), the class conditioned probability is given by

Al_[l (x — pix)*
: cihi(z) cihi(z) =¢ exp { — g
q(i|Z=2)= = : (10) V2r o, 207 ¢
Wz ~ Tehy(e) ¢ *

. . ! oy = Pr(l, =i|x") = M’V% (14)
X &, the kth component ofX; is the expected value ot o
given the class and the noisy observation. iz "

sz =E{Xy| Zx = 2, I =i} M is the total number of mixtures. Note that ; are the class-

Forlw)hi k(o | Xi = z2) conditioned probabilities. Let;, ;& ando—Z k denote the cur-
/ s 1 (28) dzi  (11) rent values of the model parameters, andEJe]uZ Ky anda K
6 k\k denote the values of the model parameters after the |teration.
whereh; (- | Xy = x1) is the conditional density of, given The EM iteration is given by
I = iandX; = z;. Note that

Pr{Zk < Zk |Xk = a:k} = Pr{Yk < zk}u(zk - a:k) E Qn, 4
~ n=0 .
. . _ _ . G =— t=0,...,M—1 (15)
wherew( ) is the unit step function. Differentiating the last ex- N
pression with respect tey, h; (= | Xx = i) iS obtained. N-1
Now, recalling the Gaussian assumption for,, and invoking 2 O,y
the integration required by (11), we obtain ik = ";,0_1— t1=0,...,M -1
Xiw = 2pin + (g — o wRi k)1 = pix) (12) nzzjo n i
where k=0,...,K -1 (16)
N—-1 N—-1
R g = fi(z)/Fin(2);  Byk = gu(2)/Gr(zn); S i@l — i)Y o i(x})?
~2 _ n=0 _ n=0 ~2
Pik = ; (13) ik = N—1 =T N1 — Mk
' 1+ Ry w/Ri > > Qi
A n=0 n=0
Our estimateX, is calculated using (9), (10), (12), and (13). In i=0...,M—1 k=0,...,K—-1 a7

[16] we usedX in order to design a noise robust speech recog-

nition system and compared it to alternative noise adaptatiofi€rec,, ; are computed using the current values of the param-
methods using the MIXMAX approach. For our present spee€fers.ci, i, k andaik-

enhancement application the reconstructed speech sigfijal, ~ To avoid numerical problems in the calculations, it is recom-

for the current frame is given by mended to use logarithmic arithmetic [15]. Lfgt;} be some
1 given set of real numbers. Then, to evaldate) . ¢, we use
1 L . ; .
il = - Z X(GJka/L)CJQﬂ-lk/L the following relation:
o =0 ' log Z € = Umax + log Z eV Ymax (18)
X (7MY = exp{ Xy} L Z(e72 /L. i 5

Note that the reconstructed phase angle is the original ph#8erévm., = max;<;<x v;. Equation (18) is then used in (8)
angle of the noisy speech, as is usually the case when usaigl (10).
spectral-domain enhancement methods [2]. To further improve the subjective quality of the reconstructed
We assume the availability of a voice activity detector (VAD)sPeech, we found it useful to apply the nonlinear postprocessing
Based on the VAD indications of voice inactivity periods, wénethod that was suggested in the past for spectral subtraction
collect noise statistics, continuously and adaptively. Hence, Wd, [14]. Let v = exp{Xi — Zi}. v is the spectral gain
may assume that the (time varying) probability density of tHén fact, suppression, sincg, < 1) of the kth channel. The
noise,Y, is known. For each frame we obtain an estiniteo  idea is to constrairy, to be above some frequency-dependent

X, based or¥ and on the current density of the noise. thresholdgy. That is, the reconstructed speech is now given by
In order to apply the method a mixture model of the type L1

of (2) needs to be trained. Let the trainjng data cpn;isNof il = 1 Z X(CjQﬂ—k/L)CjQﬂ—lk/L

log-spectrum frames; = (x!, x2, ..., xV). The objective is L~

to setc;, pi 1, o4 1 SO as to maximize the log-likelihood

X(*HIEY = exp{ Xy} £ Z(77M L)

lo lo; X 1
e f(x Z g f(x Xy = max(Zy, + log o, X).
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V. COMPARISON WITH ALTERNATIVE SPEECH All sentences were initially down-sampled from 16 KHz to
ENHANCEMENT ALGORITHMS 8 KHz. In order to apply the HMM MMSE and MIXMAX
glgorithms, it is first necessary to obtain a clean speech model.

related to the HMM-based minimum mean square err Ihis was realized by using a set of additional 30 TIMIT
(MMSE) speech enhancement algorithm that was proposed te_nces (15 females’ .15 males). The perform_ance of both
Ephrainet al. [4], [5]. Both the HMM MMSE and MIXMAX algorithms _essentlally did not change when using a larger
algorithms use the MMSE criterion and both utilize a Gaussiéir?tabase with 50 sentences to train the clean speech model.

mixture model for the speech signal. In addition both need TN PoOStprocessing modification that was outlined in

a clean speech database in order to train a speech mo§g|<_:tion Il was applied both for the HMM MMSE and

However, while the HMM MMSE algorithm employs a mixtureVIIXMAX algorithms using

of auto-regressive models in the time domain, the MIXMAX 035 if0<k<36

enhancement algorithm models the log-spectrum by a mixture 8k = { B (19)

of diagonal covariance Gaussians. Both types of mixture 0.18, if 37 <k < 128.

models have been suggested for speech recognition systems. | . )

However, the time domain auto-regressive mixture yields '8 Our implementation the frame lengthis= 256, which cor-
somewhat lower recognition rate, at least when the alternathgSPONds td<" = 129. Hences, is higher for frequencies lower
spectral Gaussian mixture model is applied to the cepstrdfi@n 1125 Hzk = 36). As a result, the subjective quality of
representation [18]. The later model is thus much more popu_l%f?th algorithms |_mp_roved_5|gn|f|cant_ly. Lower threshold values
in modern speech recognition systems. In fact when trainiHBProved the objective criteria, and in particular the amount of

our clean speech model using the auto-regressive spectrum, M€ reduction, but reduced the subjective quality.
quality of the enhanced speech degraded. In both algorithms frame overlapping of 50% was used,

Since the HMM MMSE algorithm employs a mixture of autoSUch that after synthesizing the reconstructed speech, we keep
regressive models in the time domain, it results in a series @Y the L/2 output samples that correspond to the center of
Wiener filters, such that the output signal is a mixture of th@'® frame. The sentences were corrupted by additive noise,
signals produced by these filters. Our estimator is based oN$Ng various types of noise signals, including a synthetic
Gaussian mixture in the log-spectral domain. In this case tAdlité Gaussian noise source, and some noise signals from
MMSE criterion results in a much more complicated solutiod1® NOISEX-92 database [21] resampled to 8 KHz. These
The MIXMAX assumption significantly simplifies the resultinginclude car noise, speech-like noise (synthetic noise with
MMSE estimator. As an alternative to the MIXMAX solution,SP€ech-like spectrum), operation room noise and a factory floor
one may use the MMSE estimator proposed in [19]. This esﬂpi.se..The arT_\pIitude (_)f the factory noise fluctuates in .tir.ne
mator is based on a model for the log-spectrum, and is Signmenodlcally, W|th_a pe_rlod of about 0.5 s. The chargcter.lsncs
cantly more complicated than our MIXMAX estimator. of the factory noise signal, as well as the other noise signals

We compared the MIXMAX algorithm to the HMM MMSE from the NOISEX-92 database used throughout this paper, are

algorithm using both objective and subjective listening tes@hown in Fig. 2.

In our implementation of the HMM MMSE algorithm a single yarious SNRs were used in the experiments. We assume_d the

HMM state is used. However, in our experience this model is §%istence of a reliable VAD. Later we note on this assumption.

effective as a multistate HMM, provided that sufficiently many€nce, prior to speech enhancement we estimated the noise

mixtures are used. This is due to the fact that the informatifidrameters using some independent segment from the noise

provided by temporal acoustic transitions is marginal compar&gUrce. The duration of this segment was set to 250 ms. When

to the spectral information. Consequently, itis sufficient to use*§ing the MIXMAX algorithm, the noise parametersy,

mixture of Gaussians model which assumes independence frdffl oy, » are estimated using the standard empirical mean and

one frame to the other. This simplifying assumption is also us¥@fiance equations. When using the HMM MMSE algorithm,

by state-of-the-art speaker recognition systems [20]. In fact/f€ employed the Blackman-Tukey method for spectrum

is also straight-forward to extend our MIXMAX algorithm to€Stimation.

a multistate HMM. In order to compare MIXMAX and HMM Our objective set of criteria comprises total output SNR, seg-

MMSE on equal terms, both were implemented using a singRental SNR and Itakura—Saito distance measure. These distor-

state HMM and with varying number of mixtures. tion measures are known to be correlated with the subjective
It has been noted in the past [13] that the performance Rfrception of speech quality [22].

the simple nonlinear spectral subtraction algorithm proposed byThe total output SNR is defined by

Boll [1] is inferior to the HMM MMSE algorithm. Therefore

The MIXMAX speech enhancement algorithm is closel

we do not provide a detailed comparison with Boll’s algorithm. Zt: 2?[t]
For comparison with time-domain algorithms, we used the pre- SNR= S ELERGIE (20)
viously proposed KEM algorithm [6]. Essentially, this algo- 7

rithm iterates between LPC parameters estimation and Kalman

filtering. wherez[t] andi[t] are the reference (e.g., clean) and test (e.g.,
To test the performance of the various algorithms we usedhanced) speech signals, and where the time summations are

50 sentences from the TIMIT database (25 females, 25 malas)er the entire duration of the signals. Prior to the application of
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Fig. 2. Sonograms of the car, speech-like, operation room, and factory noise signals.

(20), z[t] andZ[t] are scaled to have unit energy over the entitdOISEX-92 database [21], including car noise, operation
sentence. room noise and the speech-like noise. In Figs. 3 and 4, we

Segmental SNR is usually defined by the mean value of tpeovide results for the case where postprocessing [(19)] was
individual SNR measurements [using (20)] over the frames applied at the output of both the HMM MMSE and MIXMAX
the sentence. Segmental SNR is known to be more strongly calgorithms. When postprocessing is not applied the objective
related with subjective quality, and is similar in that sense to tlogiteria tend to improve for both algorithms. However the
performance of the Itakura—Saito distance measure [22]. Hoiwprovement is usually more significant for the MIXMAX
ever, total output SNR is more robust to the presence of low eadgorithm such that the gap between these algorithms slightly
ergy regions (frames), or to frames for which the energy{df- increases. For example, for a factory noise signal and input
Z[t] is small. To increase the robustness of the segmental SSRR of 12.5 dB, the output SNR of HMM MMSE is 14.5 dB
measure and to eliminate outliers (which are due to the reas¢ssme as with postprocessing). The output SNR of MIXMAX
outlined above) we used the median value of the individual SNR 16.1 dB (15.8 dB when postprocessing is used). When the
measurements instead of using their mean. Likewise, we hawput SNR is 0.5 dB, the output SNR of HMM MMSE is 5.7 dB
modified the standard definition of the Itakura—Saito distan¢8.4 dB when postprocessing is used), while the output SNR of
measure by replacing the mean value with median averagindVIXMAX is 6 dB (2.7 dB when postprocessing is used).

Figs. 3 and 4 show the total SNR, segmental SNR andIn Fig. 5, we present the sound sonograms of the clean,
Itakura—Saito (IS) distance measure of the HMM MMSHKoisy, HMM MMSE enhanced and MIXMAX enhanced
MIXMAX, and KEM algorithms, for the case where 20speech, when using an operation room noise source at an SNR
Gaussian mixtures are used, for a factory noise source dedel of 9 dB. The reconstructed speech produced by both
white Gaussian noise, respectively. All three distance measuaggorithms is characterized by an almost equal noise reduction.
consistently show an advantage to the MIXMAX algorithmHowever, the MIXMAX output is less distorted compared
Similar trend was observed for other noise sources from tteethe HMM MMSE output. These results were verified by
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Fig. 3. Comparison between MIXMAX, HMM MMSE, and KEM algorithms (factory noise, 20 mixtures).

informal listening tests using several listeners. Although thEhe results of this experiment were essentially the same as those
noise reduction of MIXMAX and HMM MMSE is about the provided in Fig. 3. This shows that in spite of the fact that non
same, the quality of the enhanced MIXMAX signal is superiasf these algorithms considers the effect of the channel, they all
to that of HMM MMSE over the entire SNR range examinedseem to be insensitive to channel mismatch.

In particular, it seems that at low SNRs the MIXMAX output Our algorithm needs to be trained using some clean speech
respects the unvoiced part. The distortion of the speech pdatabase. To assess the sensitivity of the algorithm to the lan-
duced by the KEM algorithm is low, but its noise reduction iguage of this database, we tested the enhancement algorithm on
inferior. Speech samples can be found in [23]. Dutch sentences (both male and female) taken fromAtine-

So far we assumed an ideal VAD. In order to test the signiferdam Free Universitgatabase. First we used the TIMIT data-
icance of this assumption we repeated the experiments withase (English) for the training stage (thus, there was a language
simple energy based VAD. While tested with the factory noisaismatch between the training and the enhancement stages). In
source, the application of the VAD did not impose any signifihe second experiment, we used Dutch sentences for both the
cant degradation in performance, both in objective and subjeé@ining and enhancement stages. For example, for a background
tive measures. Note, that while in high SNR levels the simpspeech noise signal at input SNR of 9.8 dB, the output SNR
VAD performance is very good, it might collapse in the lowof the MIXMAX algorithm trained with English database and
SNR region. However, we found that in this SNR range, artgsted on Dutch sentences was 9.2 dB (degradation) and while
corrupted speech segment might be used by the enhancenteied with Dutch database the output SNR was 11.9 dB. For
algorithm, since the noisy signal is dominated by the noise. input SNR of 0.8 dB the output SNR for English training was

To assess the sensitivity of the various algorithms to chanriep dB and for Dutch training it increased to 2 dB. The HMM
mismatch, we repeated the experiments for the factory nol@SE algorithm is more sensitive to language mismatch in
summarized in Fig. 3 with the NTIMIT database, which is theerms of the objective criteria. Subjective listening shows that
same database as TIMIT except that a telephone channel is tEdtbugh some degradation due to language mismatch probably
(training was performed with the standard TIMIT databasegxists, it is certainly not significant.
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Fig. 4. Comparison between MIXMAX, HMM MMSE, and KEM algorithms (white Gaussian noise, 20 mixtures).
V. REDUCED-COMPLEXITY MIXMAX E NHANCEMENT that we are using logarithmic arithmetic. By (18) we have for
v > U
. Inthis section,_we discuss the complexity of the glgorithm and log(e"! + ¢¥2) = vy + 9(va — v1) 1)
its memory requirements. We then suggest some improvements
and simplifications that were found useful. wherey(u) = log(1+¢*). Assuming that)(u) is realized by a

The algorithm processes the data block-widg,2 new table, (21) isimplemented by two additions and one table lookup
samples are produced from each input block of dizeThe (TLU). We also assume that (6) and (5) are calculated using a
algorithm comprises the following computational stagesable for the functionp(u) = log(1/2 + 1/2erf(u/v/2)). The
spectral analysis, class-conditioned probability calculatiotgtal number of operations to implement this stage is dominated
filtering, and synthesis. Under the assumptionfofand M by 7K M additions,2K M multiplications an®K M TLUSs.
sufficiently large, the computational complexity of these stagesFiltering: To computef(i, 1 We use (12) and (13). To calcu-
is as follows. latep; ;. we use a table form of the functigifu) = 1/(1+¢").

Spectral Analysis and Synthesim the spectral analysis The number of operations is dominated bi A/ additions,
stage, we compute the log-spectrum and phase. The compgtEA/ multiplications andK’M TLUs. Finally, we use (9) to
tional complexity is dominated by a DFT of a block bfreal constructX in X M additions and< M multiplications.
numbers. The corresponding number of real multiplications is The total number of operations required by the MIXMAX al-
2K log, K, the number of real additions 8 log, K. In the gorithm is summarized in Table I (recall that the computational
spectral synthesis stage, we convert the log-spectrum and phasaplexity in Table | is per output sample, while previously we
back to the time domain. The computational complexity is tHested the complexity per frame, i.e., py2 ~ K output sam-

same as that for the spectral analysis stage. ples). We note that the computational burden imposed by the
Class Conditioned Probability CalculationTo com- HMM MMSE is also a sum of two terms, where the first is pro-
pute ¢(i|Z = =), the class conditioned probabilities forportional tolog, K and the second is proportional to the number

i = 1,..., M we use (10), (8), (3), (4), (6), and (5). Recalbf mixtures,.
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Fig. 5. Sonograms of the clean, noisy, HMM MMSE enhanced and MIXMAX enhanced speech in operation room environment at SNR level of 9 dB.

TABLE | performed on several channels at the same time (e.g., in a com-
TOTAL NUMBER OF OPERATIONS PEROUTPUT SAMPLE munication center). In this case it is also important to reduce the
FOR THEMIXMAX A LGORITHM . . .

number of operations as much as possible in order to reduce the

Multiplications | 4log, K + 6M size and cost of the required hardware. Thus, we are motivated

to reduce the computational requirements of the algorithm and
make it closer to the complexity of spectral subtraction algo-
Table lookups 3M rithms. In the rest of this section, we show how this goal can be

achieved.

Additions 6log, K + 13M

The memory requirement is dominated by thE M cells
required to storey; » ando; .

Our algorithm can be easily implemented using a low cost In this case, the same mixture model (2) is used, except that
DSP chip (e.g., folX = 128, M = 20 and a sampling rate the variance of théth spectral component is now independent
of 8 kHz, Table | shows that the total number of operatior the mixture
per second is less than 4 million). However, in some appli-
cations, such as cellular communications, the DSP chip is re@i,k =o0x  Vi=0,...., M -1 k=0,..., K -1
sponsible for a variety of tasks including speech coding and the . . M1 )
receive—transmit modem. In such applications the speech &hat is, the varianceso; .}, * are tied together. The EM
hancement task should consume only a small fraction of the tof&fation is now described by (15), (16), and by the following
computational resources. By reducing the number of operatidifi/ation that replaces (17):
per second we also reduce the power consumption of the DSP, Me1 N—1
which may be limited in some applications, such as cellular tele;z _ % Z Z On, i (2 — fii 1)? E=0

A. Tied Variances

k K_].-

phony. In some applications, the speech enhancement should be

R
=0 n=0
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Fig. 6. Comparison between the performances of several codebook configurations in factory noise.
Tied variances enable a more compact representation, thasnds taX, and letj denote the mixture index that corresponds

when tying is applied, onl¥ variance parameters are requiredio I'. The class conditioned density &, is
(instead of K M), thus lowering memory requirements. B
fi, i k(@) = N(zw, pin + 155 o).

B. [?ual Codebook Sf:heme wi,1 1S the mean value that corresponds to tie component
Given the speech signal samples of the current frafijé = of the ith mixture of X. Similarly, ;¢ is the mean value that
0,..., I — 1 (possibly weighted by some window function).corresponds to thgth mixture of[". Note that we assume a tied
we define variances model. Denote kf;, the total number of mixtures
P that correspond t&X. Similarly, denote by\{,, the total number
I = log Z 22[1] of mixtures that correspond 1o. The density ofX is
=0 M, M
_ IF (%) = 9 -
X = log |X(e2™E) T = X; - T f(x)= 7z:;jzzzlczcjfw(x) = Z:zj:czcj E[f1717k(37k)

k=0,...,K—1 _ N
wherec;, c]g» are the mixture components that correspon&Xto

X =[Xo, X1, .., Xiea]” and[ respectively.
ok TN . We estimatep; = (i o, fti 1y -0 pi, k—1)F 1 =
j2nk/ L % t, 09 » Ly 7 ) .
whereX{(c ) is defined by (1). Hence 0,...,M; — 1 by clustering the gain normalized spec-
Xp=Xp + 1. trum X, using a K-means algorithm. We then estimal%

4 =20,..., My — 1 by clustering the gaind,. ¢; is obtained
I andX are the (logarithmic) gain and gain normalized speas a by-product of the K-means algorithm, by calculating the
trum of the frame, respectively. We assume separate mixtuedative frequency of gain normalized spectrum vectors, classi-
models toX;, andI". Let: denote the mixture index that corre-fied as belonging to théth mixture. ¢f is obtained similarly,
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by calculating the relative frequency of gains classified gmrameters (thus minimizing the memory and computational
belonging to thejth mixture. Finally, the variancess, are requirements of the algorithm), essentially without paying
obtained using performance penalties.
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