
Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited;

however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed,

please feel free to email adam.teman@biu.ac.il and I will address this as soon as possible.

Prof. Adam Teman

10 June 2021

Digital Integrated Circuits
(83-313)

Lecture 10:

Arithmetic Circuits

mailto:adam.teman@biu.ac.il

June 10, 2021 Adam Teman,

Lecture Content

2

DataPaths

3

June 10, 2021 Adam Teman,

Multiple functional units

• A complex processor may have multiple functional units working in parallel:

4

Source: Kuchuk, 2003

June 10, 2021 Adam Teman,

Bit-Sliced Design

5

Fetzer, Orton, ISSCC’02

Design for energy efficiency!

bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6

bit 62
bit 63

Data
In

Data
out

Tile identical Processor Elements

Control
R

e
g

is
te

rs

A
d

d
e
r

S
h

if
te

r

M
u

lt
ip

le
x
e
r

Basic Addition

6

June 10, 2021 Adam Teman,

Serial Adder Concept

• At time i, read ai and bi.

Produce si and ci+1

• Internal state stores ci.

Carry bit c0 is set as cin

7
Source: Gate Overflow

June 10, 2021 Adam Teman,

Basic Addition Unit – Full Adder

8

X Y Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

inS x y C  

out in inC xy xC yC  

Kill x y 

Generate x y 

Propagate x y 

inS P C  

out inC G P C    x y 

Cout=MAJ(X,Y,Cin)

June 10, 2021 Adam Teman,

Full-Adder Implementation

• A full-adder is therefore a majority gate and a 3-input XOR:

9

Total: 32 Transistors

Source: CMOS VLSI Design

June 10, 2021 Adam Teman,

Ripple Carry Adder

10

tpd = O(N)tadder = (N-1)tcarry + tsum

• So, it is clear, the Cout output of the

Full Adder is on the critical path.

• Can we exploit this to improve the

design?

 
in

in in out

S A B C

ABC A B C C

   

   

Source: CMOS VLSI Design

June 10, 2021 Adam Teman,

Full-Adder Implementation

11

A B

B

A

Ci

Ci A

X

VDD

VDD

A B

Ci BA

B VDD

A

B

Ci

Ci

A

B

A CiB

Co

VDD

S

28 Transistors

 in in outS ABC A B C C   

out i iC AB AC BC  

2 2

2 2

2

6

6

6

4

4

2 4 2 3 12 4
9

3iCLE
    

 

4 4 4

4

12

12

12

2

2 2 2

3

3

3

2 2

2

4 4

4

4

4

4 4 4 6

6

6

3

3

3222

2

2

2

4

2 4 2 4 6 3
7

3iCLE
    

 

…BUT ~64 stages to propagate

i.e., PEopt=464

G A B

P A B

 

 

G!

P!

K
P

24 Transistors

 in in outS ABC A B C C   

June 10, 2021 Adam Teman,

Exploiting the Inversion Property

12

A B

S

Co
Ci FA

A B

S

CoCi FA

S A B Ci   S A B Ci  =

C
o

A B C
i

   C
o

A B C
i

  =

A3

FA FA FA

Even cell Odd cell

FA

A0 B0

S0

A1 B1

S1

A2 B2

S2

B3

S3

Ci,0 Co,0 Co,1 Co,3Co,2

We saved the
inverter, so PEopt=432

June 10, 2021 Adam Teman,

Sizing the Mirror Adder
• Problem: How can we make a high speed bitslice layout?

• If we upsize each stage according to Logical Effort,

we will have non-identical bitslices.

• Such upsizing will result in huge gates.

• Why not design the adder to inherently achieve optimal Electrical Effort (EFopt=4)?
• Assume everything not on the carry path can be sized like a minimum inverter!

13

4 4 4

4

2 2 2

2

6

6

6

3

3

3

2

2

4

4
Not on the critical path!

June 10, 2021 Adam Teman,

Sizing the Mirror Adder

• Now, let’s try to size the first stage to get EF=4:

• Remember, logical effort is a function of gate topology and not sizing!

• Therefore, we can temporarily size the first stage as a minimum sized inverter,

giving us:

• So to get EF=4:

• But what is CL,Cout?

14

4 2
2

3
CinLE


 

, ,

,

4

2
Cin L Cout L Cout

FA Cin

Cin Cin EF

LE C C
EF

C C



  

4 4 4

4

2 2 2

2

6

6

6

3

3

3

2

2

4

4

Cin

CL,Cout

June 10, 2021 Adam Teman,

Sizing the Mirror Adder

• What is CL,Cout?

• Obviously, we have the second stage…

• But don’t forget the next full adder!

• So CL,Cout is:

• And now, we can find Cin using the EF constraint we found:

15

,

4

2 21
L Cout

Cin

Cin EF

C
C

C


  
, 6 6 9 21L Cout Cin CinC C C     

14

7

14

7

4 4 4

4

2 2 2

2

6

6

6

3

3

3

2

2

4

4

Cin

CL,Cout
Cin, i+1

4 4 4

4

2 2 2

2

6

6

6

3

3

3

2

2

4

4

June 10, 2021 Adam Teman,

Subtraction

• To subtract two’s complement, just remember that:

• So, to subtract:

• Invert one of the operands.

• Add a carry in to the first bit.

• Therefore, to provide an adder/subtractor:

• Add an XOR gate to the B-input

• Use the sub/add selector to the XOR and carry in.

16

1x x   1A B A B   

Faster Adders

June 10, 2021 Adam Teman,

Carry-Skip (Carry Bypass) Adder

18

M Sections of (N/M) Bits Each

 skip p/g carry bypass sum1 1
N

t t t M t t
M

 
      

 

Carry
propagation

Setup

Bit 0–3

Sum

M bits

tsetup

tsum

Carry
propagation

Setup

Bit 4–7

Sum

tbypass

Carry
propagation

Setup

Bit 8–11

Sum

Carry
propagation

Setup

Bit 12–15

Sum

 N
M



June 10, 2021 Adam Teman,

Carry-Select Adder

19

Let’s guess the answer for

each value of the carry.

select p/g carry mux sum

N
t t t M t t

M
    

0

1

Sum Generation

Multiplexer

1-Carry

0-Carry

Setup

Ci,0 Co,3 Co,7 Co,11 Co,15

S0–3

Bit 0–3 Bit 4–7 Bit 8–11 Bit 12–15

0

1

Sum Generation

Multiplexer

1-Carry

0-Carry

Setup

S4–7

0

1

Sum Generation

Multiplexer

1-Carry

0-Carry 0-Carry

Setup

S8–11

0

1

Sum Generation

Multiplexer

1-Carry

Setup

S12–15

N-bit input with M CSA blocks

 N
M



June 10, 2021 Adam Teman,

Square Root Carry Select

20

sqrt p/g carry mux sum2t t Mt Nt t     2N

June 10, 2021 Adam Teman,

Carry Lookahead Adder – Basic Idea

• Problem – Cout,k takes approximately k gate delays to ripple.

• Question – can we calculate the carry without any ripple?

21

AN-1, BN-1A1, B1

P1

S1

• • •

• • • SN-1

PN-1
Ci, N-1

S0

P0
Ci,0 Ci,1

A0, B0

out, out, 1 out, 1

out, 1 1 out, 2

out, 1 1 1 0 0 in,0

(, ,)

()

((()))

k k k k k k k

k k k k k k

k k k k k

C f A B C G P C

C G P G P C

C G P G P P G PC

 

  

 

   

    

      

Co,3

Ci,0

VDD

P0

P1

P2

P3

G0

G1

G2

G3

i i iG A B 

i i iP A B 

June 10, 2021 Adam Teman,

Tree Adders (Logarithmic CLA)

• Can we reduce the complexity of calculating Pi, Gi ?

22

1:0 1 0 1:0 1 1 0

out,1 1:0 1:0 in,0

P P P G G P G

C G P C

    

  

3:2 3 2 3:2 3 3 2

out,3 3:2 3:2 ,2in

P P P G G P G

C G P C

    

  

3:0 3:2 1:0 3:0 3:2 3:2 1:0

out,3 3:0 3:0 in,0

P P P G G P G

C G P C

    

  

i i iG A B 
i i iP A B 

 2logO Ntree p/g 2 AND/OR sumlogt t N t t    

inS P C 

out inC G P C  

June 10, 2021 Adam Teman,

Tree Adders (Logarithmic CLA)
• Many ways to construct these CLA or tree adders, based on:

• Radix: How many bits combined in each gate

• Tree Depth: How many stages of logic to the final carry (>=logradixN)

• Fanout: Maximal logic branching in tree

23

June 10, 2021 Adam Teman,

Manchester Carry-Chain Adder

24 Dynamic Circuit

C
oC

i

G
i

P
i

V
DD





Static Circuits

P
i + 1

G
i + 1



C
i

Inverter/Sum Row

Propagate/Generate Row

P
i

G
i



C
i - 1

C
i + 1

V
DD

GND

CCRR

RC
NN

RCt

ij

i

j

j

N

i

iP



















 



, where

2

)1(
69.0

69.0
11

G
2



C
3

G
3

C
i,0

P
0

G
1

V
DD



G
0

P
1

P
2

P
3

C
3

C
2

C
1

C
0

The Computer Hall of Fame

• The home computer that 80s kids learned

how to play games on and program with:

• Introduced in Dec. 1982 for $595. Continued selling until 1992!

• 8-bit, 1 MHz, 64KB RAM, 16KB ROM

• Ran BASIC as it’s interface.

• The highest selling single computer model of all time.

• It has been compared to the Ford Model T for its role in

bringing a new technology to middle-class households

via creative and affordable mass-production.

• Considered the computer that provided the foundation

for the development of open-source software (freeware)

Source:
http://www.gondolin.org.uk

Source: wikipedia

Basic Multiplication

27

June 10, 2021 Adam Teman,

Grade School Multiplication

28

1 2 3 4

X 1 2

June 10, 2021 Adam Teman,

Multiplication using serial addition

29

1 0 1 0 1 0

X 1 0 1 1

Multiplicand

Multiplier

1 0 1 0 1 0

1 0 1 0 1 0

0 0 0 0 0 0

+ 1 0 1 0 1 0

1 1 1 0 0 1 1 1 0

Partial
Products

Result

June 10, 2021 Adam Teman,

Binary Multiplication

30

multiplicand

multiplier

partial

product

array

double precision product

N

2N

N can be formed in parallel

June 10, 2021 Adam Teman,

Serial Shift and Add

• Concept:

• Multiplying by ‘1’ is copying the multiplicand

• Multiplying by ‘0’ is a row of zeros

• Select multiplicand or zeros

according to multiplier bit

• Add to result

• Shift multiplier and accumulated result

31

   2

adder
for RCA

serialt O N t O N  

June 10, 2021 Adam Teman,

Array Multiplier

32

• Calculate the final product in

a single combinatorial calculation

(=potentially one cycle)

June 10, 2021 Adam Teman,

Array Multiplier Implementation

• Stack 2-input Adders:

Y0

Y1

X3 X2 X1 X0

X3

HA

X2

FA

X1

FA

X0

HA

Y2X3

FA

X2

FA

X1

FA

X0

HA

Z1

Z3Z6Z7 Z5 Z4

Y3X3

FA

X2

FA

X1

FA

X0

HA

Z2

Z0

June 10, 2021 Adam Teman,

Many Critical Paths

34

     mult AND carry sum1 2 1t t M N t N t        

 O N M 

June 10, 2021 Adam Teman,

Can we do it better?

Source: CMOS VLSI Design

June 10, 2021 Adam Teman,

Carry-Save Multiplier

36

 mult AND carry merge1t t N t t   

 2logO N N 

June 10, 2021 Adam Teman,

Multiplier Floorplan

37

SCSCSCSC

SCSCSCSC

SCSCSCSC

S
C

S
C

S
C

S
C

Z0

Z1

Z2

Z3Z4Z5Z6Z7

X0X1X2X3

Y1

Y2

Y3

Y0

Vector Merging Cell

HA Multiplier Cell

FA Multiplier Cell

X and Y signals are broadcasted

through the complete array.

()
SCSCSCSC

SCSCSCSC

SCSCSCSC

S
C

S
C

S
C

S
C

Z0

Z1

Z2

Z3Z4Z5Z6Z7

X0X1X2X3

Y1

Y2

Y3

Y0

Vector Merging Cell

HA Multiplier Cell

FA Multiplier Cell

X and Y signals are broadcasted

through the complete array.

()

Half Adder

Full Adder

Vector

Merging Cell

X and Y signals are broadcast

through the complete array

Faster Multipliers

June 10, 2021 Adam Teman,

Booth Recoding

• Multiplying by ‘0’ is redundant.

• Can we reduce the number of partial products?

• Based on the observation that

• We can turn sequences of 1’s

into sequences of 0’s. For example: 0111=1000-0001

• So we can introduce a ‘-1’ bit and recode the multiplier:

• For example, the number 56

39

1

0

2 2 1
n

i n

i





 

June 10, 2021 Adam Teman,

Radix-2 Booth Recoding

• Parse multiplier from left to right

• For each change from 0 to 1, encode a ‘1’

• For each change from 1 to 0, encode a ‘-1’

• For bit 0, assume bit i=-1 is a 0

• Example: 0011 0111 0011 = 0x373

40

0 1 0 1 1 0 0 1 0 1 0 1  

0 1 0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0 1

 0x 484

0x 111

 0x 373



June 10, 2021 Adam Teman,

Modified (Radix-4) Booth Recoding
• Radix-2 Booth Recoding doesn’t work for parallel hardware implementations:

• A worst case (010101010101010) doesn’t reduce the number of partial products.

• Variable length recoders (according to the length of ‘1’ strings)

cannot be implemented efficiently.

• Instead, just assume a constant length recoder.

• First apply standard booth recoding.

• Next encode each pair of bits:

• This can be summarized in a truth table:
41

Partial Product Selection Table

Multiplier Bits Recorded Bits

000 0

001 + Multiplicand

010 + Multiplicand

011 +2 × Multiplicand

100 -2 × multiplicand

101 - Multiplicand

110 - Multiplicand

111 0

June 10, 2021 Adam Teman,

Modified (Radix-4) Booth Recoding

• For example, let’s take our previous example:

• 0011 0111 0011 = 01 0-1 10 0-1 01 0-1

• This comes out: 1 -1 2 -1 1 -1.

• We could have done this by using the table:

• 0 0 1 1 0 1 1 1 0 0 1 1

• To implement this we need pretty simple hardware:
42

Source:

CMOS VLSI Design

June 10, 2021 Adam Teman,

Tree Multipliers

• Can we further reduce the multiplier

delay by employing logarithmic (tree)

structures?

43

PP1 PP2 PP3 PP4 PP5

+

CLA

Result

PP6 PP7 PP8

+ +

+ +

PP0

+

+

June 10, 2021 Adam Teman,

Wallace-Tree Multiplier

44

FA

FA

FA

FA

y0 y1 y2

y3

y4

y5

S

Ci-1

Ci-1

Ci-1

Ci

Ci

Ci

FA

y0 y1 y2

FA

y3 y4 y5

FA

FA

C
C S

Ci-1

Ci-1

Ci-1

Ci

Ci

Ci

June 10, 2021 Adam Teman,

Wallace-Tree Multiplier

45

June 10, 2021 Adam Teman,

Wallace-Tree Multiplier

46

6 5 4 3 2 1 0 6 5 4 3 2 1 0

Partial products First stage

Bit position

6 5 4 3 2 1 0 6 5 4 3 2 1 0

Second stage Final adder

FA HA

(a) (b)

(c) (d)

H

A

June 10, 2021 Adam Teman,

Pipelining Multipliers

• Pipelining can be applied to most multiplier structures:

47

June 10, 2021 Adam Teman,

Further Reading

• Rabaey, et al. “Digital Integrated Circuits” (2nd Edition)

• Elad Alon, Berkeley ee141 (online)

• Weste, Harris, “CMOS VLSI Design (4th Edition)”

48

