
4804 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 67, NO. 12, DECEMBER 2020

Design of a Refresh-Controller for
GC-eDRAM Based FIFOs

Tzachi Noy , Student Member, IEEE, and Adam Teman , Member, IEEE

Abstract— First-in first-out (FIFO) queues are ubiquitous
building blocks in modern system-on-chips. Big FIFOs are often
realized as static random access memories (SRAMs), and in many
cases account for a significant portion of the area and power con-
sumption of integrated circuits (ICs). Gain-cell embedded DRAM
(GC-eDRAM) technology is an embedded memory alternative to
the pervasive SRAM technology in ICs. It consumes less silicon
area and less power than SRAM, but has the drawback of access
blockage caused by its periodic data refreshing. In this paper we
leverage the unique access patterns implied by the FIFO scheme
to design a FIFO realized with GC-eDRAM. We show that such
a FIFO is functionally indistinguishable from a FIFO realized
with SRAM. The proposed FIFO has no access blockage time
due to refresh, and no data integrity issues, and so can be used as
an out-of-the-box replacement for FIFOs in existing and future
designs, while providing as much as a 2× reduction in both area
and power as compared to SRAM.

Index Terms— First-in first-out (FIFO), embedded dynamic
random access memory (eDRAM), gain-cells (GCs), retention
time, low power, memory availability.

I. INTRODUCTION

F IFO queues are widely used in digital design, and can
be found in any type of application, from networking

and storage to multimedia and AI applications [1]–[4]. The
use case of the FIFOs in these systems is also very broad,
from temporary storage lasting only microseconds to much
longer periods, such as in low-energy edge sensors, which
may need to buffer data for seconds or minutes between
transmissions. For many applications, FIFOs can become so
large that they dominate the area and power consumption of
the system. For example, the first-in first-out (FIFO) comprises
75% of the route area and power for the network-on-chip
based architecture in [5]. While queueing theory and network
calculus methods are applied to find the minimal size to
support all scenarios, in many cases the FIFO size required
to support extreme cases is big, while most of the time it is
not fully utilized [6]. This results in both area and power costs
that could potentially be avoided.

Small FIFOs are usually implemented using flip-flops, but
as FIFOs get bigger, the common practice is to use SRAMs,

Manuscript received December 24, 2019; revised March 31, 2020; accepted
May 25, 2020. Date of publication June 4, 2020; date of current version
December 1, 2020. This work was supported in part by the Kamin Program of
the Israel Innovation Authority under Project 61907, and in part by the Israel
Science Foundation under Grant 996/18. This article was recommended by
Associate Editor I. Kale. (Corresponding author: Tzachi Noy.)

The authors are with the Emerging Nanoscaled Integrated Circuits and
Systems (EnICS) Labs, Faculty of Engineering, Bar-Ilan University, Ramat
Gan 5290002, Israel (e-mail: tzachi.noy@biu.ac.il; adam.teman@biu.ac.il).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2020.2998582

because for big arrays, SRAMs consume less area per bit.
In both implementations, area is proportional to the FIFO
size, since the extra data that needs to be stored requires
extra storage elements to store it. In both flip-flop and static
random access memory (SRAM) implementations, power is
also correlated to FIFO size, due to the fact that these extra
storage elements consume power regardless of the validity of
the data they store.

Embedded DRAM (eDRAM) is an implementation option
that consumes less area and can consume less power than
same size SRAM [7]–[14]. However, eDRAM suffers from
two major drawbacks that cause designers to avoid eDRAMs
and keep using the costly SRAMs. First, standard eDRAM
requires special process steps for fabrication, which make
their integration on many ICs both limited and costly. Second,
eDRAM requires periodic refresh operations in order to retain
the data. During the refresh cycle, the memory is not available
for the system to use. While prior work has shown cases where
eDRAM can be used as an SRAM alternative for implementing
FIFOs [1], [15]–[17], all of these examples eliminated the
refresh mechanism by ensuring that the buffers keep the data
for periods shorter than the retention time of the memory. To
the best of our knowledge, no previous works have proposed
using embedded DRAM (eDRAM) for FIFO implementation,
when the requirements do not allow the refresh mechanism to
be eliminated.

In this paper we address the two aforementioned draw-
backs by introducing a novel approach that enables out-
of-the-box replacement of SRAM with gain-cell embedded
DRAM (GCeDRAM) in a FIFO without affecting the system
performance. gain-cell embedded DRAM (GC-eDRAM) is
a type of eDRAM that is fabricated in a standard logic
technology without the need for special process steps, thereby
overcoming the first drawback. The second drawback is over-
come by applying an algorithmic approach for refreshing the
stored data without disturbing the standard operation of the
FIFO. The period for which the data is stored in the FIFO
is not bounded, as long as the underlying array meets some
criterion for data retention cycles (NDR) to array size ratio.
We show this criterion to be NDR ≥ 3S − 1, where S is the
FIFO size. Functionally, the FIFO is indistinguishable from
an SRAM based FIFO. Furthermore, this criterion should
not be considered a strong limitation on the implementa-
tion, as any practical GC-eDRAM array will meet it by
design.

A hardware controller that implements the proposed refresh
algorithm was implemented and tested within a simulation
framework to verify functionality and compare power under

1549-8328 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Bar Ilan University. Downloaded on December 27,2020 at 12:45:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4922-5564
https://orcid.org/0000-0002-8233-4711

NOY AND TEMAN: DESIGN OF A REFRESH-CONTROLLER FOR GC-eDRAM BASED FIFOs 4805

various workloads and access patterns. In addition to the
straightforward area savings of GC-eDRAM, as compared to
SRAM or flip-flops, the proposed algorithm leads to power
savings of up to 50%, as compared to an SRAM-based
implementation in 28 nm FD-SOI.

Contributions: The main contributions of this paper can be
summarized as follows:
• This paper introduces a GC-eDRAM-based implementa-

tion of a generic FIFO to provide an area and power
efficient alternative to standard SRAM-based implemen-
tations without affecting the system performance.

• This is the first presentation of an eDRAM-based FIFO
that ensures 100% availability, such that it can be directly
swapped with an SRAM-based FIFO without added sys-
tem complexity. We provide a proof for the limits of the
ratio between FIFO size and eDRAM retention time that
will ensure the ability to refresh the memory without data
loss.

• We propose an algorithm for refreshing an eDRAM-based
FIFO that, in addition to ensuring 100% availability, also
minimizes the refresh power consumption of the memory
under worst case access patterns.

The rest of the paper is organized as follows. Section II
provides an overview of FIFOs, eDRAMs, and the motivation
to implement the former with the latter. Section III presents
features of FIFOs, which can be exploited by the refresh
controller in order to guarantee data validity, 100% availability,
and to save power. In Section IV, we present a refresh scheme
and show that every data item is refreshed on time, while the
normal operation of the FIFO is uninterrupted. Section V gives
analytical and experimental results of the proposed algorithms,
and conclusions are drawn in Section VI.

II. OVERVIEW

In this section, we provide a brief introduction to eDRAM
and GC-eDRAM, followed by an overview of FIFOs and the
motivation to implement FIFOs with eDRAM. The section
concludes with an intuitive representation of the state of FIFOs
over time that will be used throughout the manuscript to
demonstrate the behavior of the refresh algorithm.

A. Embedded DRAM and Gain-Cell Embedded DRAM

Broadly speaking, volatile embedded memories can be
divided into two main categories: static random access
memory (SRAM), and embedded DRAM (eDRAM), with
SRAM the unequivocal dominate technology. SRAM uses a
cross-coupled inverter pair to statically retain the stored data
as long as a power supply voltage is provided. eDRAM tech-
nology, on the other hand, stores data in the form of electric
charge on a capacitor and therefore can be implemented with
fewer devices. eDRAM can be further divided into two sub
categories:

1) Conventional, one-transistor, one-capacitor (1T-1C)
eDRAMs, whose basic bitcell is built from a special,
high-density, 3D capacitor and a single access transistor.

2) GC-eDRAM, whose basic bitcell is built from 2–4 MOS
transistors.

Conventional 1T-1C eDRAMs typically require special process
options to build high-density stacked or trench capacitors.
Such process options are only available at an extra manu-
facturing cost and are not readily available for all technology
processes. As opposed to this, GC-eDRAMs are fully compati-
ble with baseline digital CMOS technologies and can easily be
integrated into any system-on-chip (SoC) at no extra cost. In
addition, the GC-eDRAM bit-cell has separate read and write
ports, and so, a GC-eDRAM array is two-ported by nature.
This feature inherently addresses the requirement of many
FIFOs for concurrent read and write operations. While the
motivation for implementing FIFOs with eDRAM is true for
both 1T-1C and GC-eDRAM, as explained hereafter, the logic
compatibility and two-ported nature of GC-eDRAM provide
additional advantages. Therefore, the proposed algorithms will
focus on this technology.

While the bitcell size of eDRAM is a clear advantage
over SRAM, the stored data is unfortunately compromised
due to leakage currents, which results in the requirement
for a periodic refresh operation. The number of clock cycles
following a write, during which data can be safely retrieved,
is called the data retention cycles and is denoted by NDR.
After this period has passed, reads may yield the wrong value,
with error probability increasing over time. In this work we
consider NDR as a hard limit, such that a row that has not been
written to in the last NDR cycles is considered invalid, and in
order to ensure data validity, any row holding valid data must
be refreshed at least every NDR cycles.

Algorithm 1 describes a naïve approach for refreshing a
GC-eDRAM. NDR and S are constants representing the data
retention cycles and size of the FIFO respectively. The algo-
rithm is described in a software-like style, with one procedure
calling another, such that the execution of the caller is halted
until the callee finishes. While this description is used for
didactic purpose, the implementation of the algorithm is not
intended to run in software on a micro controller, but to
be implemented using simple hardware building blocks, such
as logic gates and flip-flops. In the algorithm description,
an arrow (←) represents an immediate (blocking) assignment,
while a double arrow (⇐) is used to represent a cycle-delayed
(non-blocking) assignment. This enables the representation of
a memory read command, which only retrieves the data on the
following cycle. Therefore, the data read on line 4, is updated
in dout only after the wait statement on line 5.

The algorithm consists of two procedures, the TRIGGER-
INGLOOP and the REFRESHLOOP. The TRIGGERINGLOOP

is an infinite loop, waiting NDR − (S + 1) cycles before it
calls the REFRESHLOOP. It is responsible for the idle periods
between the active-refresh periods, during which the memory
is available to the system. The REFRESHLOOP procedure
carries out the actual refreshing. When REFRESHLOOP is
called, a busy flag is raised, indicating to the system that any
access to the memory is currently blocked. It then reads a
row, writes back the data received on the following cycle, and
continues to read the next row. This is done for all rows, and
after the last row is written, the busy flag is dropped. The
REFRESHLOOP is responsible for the active-refresh-periods,
and it takes S + 1 cycles to complete. The full refresh-cycle

Authorized licensed use limited to: Bar Ilan University. Downloaded on December 27,2020 at 12:45:15 UTC from IEEE Xplore. Restrictions apply.

4806 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 67, NO. 12, DECEMBER 2020

Algorithm 1 Refresh Algorithm for Random Access Memory
1: procedure TRIGGERINGLOOP

2: loop
3: wait NDR − (S + 1) cycles
4: call REFRESHLOOP

1: procedure REFRESHLOOP

2: busy← True
3: for A← 0 to S − 1 do
4: dout ⇐ read(address: A)
5: wait 1 cycle
6: write(address: A, data: dout)
7: wait 1 cycle
8: busy← False

consists of S + 1 active-refresh cycles and NDR − (S + 1)
idle-period cycles, so the full cycle is exactly NDR cycles,
which ensures each data is refreshed on time.

This algorithm is intended for GC-eDRAM, which is
two-ported and allows simultaneous read and write operations.
A single ported eDRAM would require a wait cycle between
writing the current row and reading the next. In this case
the REFRESHLOOP would take 2S cycles, and the triggering
condition in TRIGGERINGLOOP would have to be changed
accordingly.

B. First In - First Out Queues

A first-in first-out (FIFO) queue is an important building
block in any modern SoC. FIFOs are used for many purposes,
such as buffering, flow control, clock domain crossing, and
delay elements, to name a few. A modern SoC can have
anywhere from tens to hundreds of FIFOs with different
features and sizes, in some cases comprising a significant part
of the SoC [18]–[20]. Optimization of this ubiquitous building
block can have dramatic effects.

A FIFO is a hardware queue. Logically, new items join the
FIFO on one end, and leave when they reach the other. These
ends are often referred to as head and tail; however, different
nomenclature exists regarding these terms. We will use tail to
imply the end the items are added to and head for the end
they leave from. When referring to the order of the items,
we start counting from the head of the FIFO towards the tail,
enumerating the item at the head as 1st.

In many hardware implementations of FIFOs, the data items
do not move through the queue in the way that packages
move in the physical world, but rather the FIFO controller
keeps track of where the head and tail of the FIFO are.
For a FIFO with a dedicated buffer this is usually done by
employing a read-pointer that points at the location of the
next item to be read from the buffer (i.e., the head of the
FIFO), and a write-pointer that points at the first available
location to which the next incoming item will be written (i.e.,
the one “just behind” the tail). Every time a write operation
is performed, the write-pointer is incremented, and similarly,
the read-pointer is incremented after every read operation.

Fig. 1. FIFO operation with read-pointer and write-pointer. (a) The FIFO
is EMPTY, both read-pointer and write-pointer point at the same location;
(b) Item A is written to the location pointed to by write-pointer and write-
pointer points to the next location; (c) Item B is written to the new location
pointed to by write-pointer and write-pointer moves again; (d) Item A is
read, read-pointer is incremented; (e) Item C is written; (f) Item D is written;
(g) Item E is written. read-pointer and write-pointer point at the same location
and the FIFO is FULL; (h) Item C is read; (i) Item D is read; (j) Item D is
read out, while at the same time, item F is written. Both read-pointer and
write-pointer are incremented; (k) Item E is read; (l) Item F is read, read-
pointer and write-pointer point at the same location and the FIFO is EMPTY
again.

It is important to note that any given buffer has a finite
definition of the number of entries it has to store items, and
therefore, the FIFO has a finite size. We refer to the maximum
number of items that can fit in the FIFO as “fifo size”, denoted
by S. Once a pointer reaches the last address of the buffer
and has to be incremented, it wraps around and starts over
by pointing to the first address. If at some point, the write-
pointer is incremented so that it points at the same location
as the read-pointer, the FIFO is said to be FULL and no
more data can be written before at least one data item is read.
Note that the write-pointer is not pointing at a free location
in this case, but at the location that will become free after the
next read, when the item stored in this location will leave the
FIFO. In a similar manner, if at some point the read-pointer
was incremented so that it points to the same location as the
write-pointer, the FIFO is said to be EMPTY, and no data
can be read until new data is written. Similarly, in this case,
the read-pointer is not pointing to a location holding valid
data, but to the location that will become the head once an
item will enter the FIFO.

FIFO behavior over time is illustrated in Fig. 1 for a FIFO
of size S = 4. This illustration shows that once an item enters
the FIFO, it never changes location. It shows the cyclic nature
of the pointers and also demonstrates the special cases of
an EMPTY FIFO (Fig. 1a and Fig. 1l) and a FULL FIFO
(Fig. 1g).

Authorized licensed use limited to: Bar Ilan University. Downloaded on December 27,2020 at 12:45:15 UTC from IEEE Xplore. Restrictions apply.

NOY AND TEMAN: DESIGN OF A REFRESH-CONTROLLER FOR GC-eDRAM BASED FIFOs 4807

This view of a FIFO is easily implemented with a
two-ported memory array, with the described read-pointer and
write-pointer driving the read-address and write-address ports
of the memory, respectively. Writing to the FIFO is simply
writing to the location pointed at by write-pointer, and reading
from the FIFO is reading from the location pointed at by
read-pointer.

C. Motivation for Implementing FIFOs With eDRAM

Replacing SRAMs with eDRAMs in integrated circuit
implementations is desired, as in general, an eDRAM is both
smaller and in some cases can consume less power than an
equivalent SRAM [7], [8], [10], [12].

The main drawback of eDRAM compared to SRAM is
the need for periodic refresh operations. In addition to the
associated power overhead, refresh operations cause the mem-
ory to be unavailable to the system for some fraction of the
time. However, as we show in this paper, for the purpose
of implementing a FIFO, a refresh controller can be devised
such that an eDRAM based FIFO is indistinguishable from an
SRAM based one, given the eDRAM array meets the relation
of data retention cycles versus fifo size, NDR ≥ 3S − 1. This
relation is derived and proven in Section IV-C.

An additional feature of FIFOs is that they require concur-
rent read and write operations, which can only be natively
achieved with two-ported memories. While in SRAMs, mak-
ing the array two-ported requires an even larger bit-cell,
the GC-eDRAM bit-cell is two-ported by nature. Hence, area
savings compared to two-ported SRAM are even more signif-
icant. Throughout this manuscript, we refer to a GC-eDRAM
based FIFO, but the same should apply to any flavor of
two-ported eDRAM.

D. FIFO Visualization Over Time

The FIFO illustrations of Fig. 1 help introduce the under-
lying mechanisms of a hardware FIFO, depicting the state of
the items in the FIFO and the locations of the read-pointer
and write-pointer. In this illustration, each state is represented
as a separate drawing, which makes it unsuitable for the
depiction of a more complex flow of the FIFO state over
time, as required for analysis of FIFO control algorithms.
For this purpose we present a novel representation in Fig. 2.
By stacking the separate FIFOs that are depicted in Fig. 1,
we get a matrix view that concurrently captures the state of
the FIFO at every time point. The physical entries of the array
are spread horizontally as in Fig. 1, while time is represented
on the vertical axis, starting from the top.

In addition to the age and history of each item, by adding
a number of symbols, this novel representation also provides
the read and write operations that occur over time. The state
of the data in the FIFO is illustrated as follows: an empty cell
represents an entry that holds no valid data; a filled circle (•)
represents an entry being written to; a line represents an entry
holding valid data; and a filled square (�) represents an entry
being read from. The physical location of data items does
not change, and therefore, data items need not be labeled. To
further enhance the state representation of the FIFO, colored

Fig. 2. FIFO state representation over time.

triangles mark the head and the tail of the FIFO, with a red
triangle on the top left corner of the cell marking the head,
and a blue triangle on the bottom right corner representing the
tail.

In the example shown in Fig. 2a, a FIFO of size S = 4
is shown for 12 cycles of operation, starting at some point in
time (cycle i), during which, the FIFO is empty. The empty
state can be immediately recognized, as the topmost row has
four empty cells. The triangles for head and tail are not drawn
in this row because head and tail are meaningless for an empty
FIFO. During cycles i + 1 and i + 2, two items are written.
The first of them is read during cycle i + 3, and the second at
i + 7. During cycle i + 9, both a read and a write are issued,
represented by a square and a circle on the same row.

Implementing a FIFO using dynamic memory requires
periodic refresh of the stored data. A refresh controller may
request additional reads and writes, not required for the normal
operation of the FIFO, but rather for data integrity. We will
refer to these requests as refresh-read and refresh-write, and
for differentiation, we will hereafter refer to the system read
and write requests as fifo-read and fifo-write.

In the proposed visual representation, a refresh-read oper-
ation is depicted with an empty square (�) and a refresh-
write operation with an empty circle (�). Fig. 2(b) shows
an example of a FIFO undergoing refresh operations. The
refresh occurs during the lifetime of an item. It is first refresh-
read and later refresh-written. In the example, the item in
location 1 shows some delay between refresh-read and refresh-
write, the items in locations 2 and 4 experience no delay, and
the item in location 3 only experiences refresh-read, since it is
fifo-read (and therefore, evicted from the FIFO) before being
refresh-written.

Note that during any cycle, only one read operation can
occur – either fifo-read or refresh-read. Similarly, only one
write operation can occur during a given cycle – either fifo-
write or refresh-write. Therefore, in this visualization, at most

Authorized licensed use limited to: Bar Ilan University. Downloaded on December 27,2020 at 12:45:15 UTC from IEEE Xplore. Restrictions apply.

4808 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 67, NO. 12, DECEMBER 2020

Fig. 3. In a FIFO of size S, the number of fifo-read and fifo-write operations
during the lifetime of a specific data item is bounded by S−1. In this example,
S− 1 fifo-reads and fifo-writes of other items occur during the lifetime of the
item in the leftmost column.

one circle and one square (both, either filled or empty) can
appear in a single row.

These visualizations will be used in the following sections
to introduce and demonstrate the properties of the FIFO and
of the proposed refresh controller.

III. FIFO FEATURES EXPLOITABLE BY THE

REFRESH CONTROLLER

In this section, we will describe some features of any finite
FIFO which enables the method we describe in Section IV for
refreshing a FIFO.

A. Bounded Number of Writes and Reads

A FIFO, being an ordered buffer of finite size, bounds the
number of fifo-reads and fifo-writes the system might issue
from the moment a specific item enters the FIFO until it leaves.
An item entering the FIFO at the nth position from head, has
n − 1 items ahead of it in the queue, so it will experience
exactly n − 1 fifo-reads of these items, before being fifo-read
itself. Therefore, an item that filled the FIFO will experience
the most fifo-reads during its lifetime, as compared to other
items. The maximum is, therefore, S − 1 fifo-reads.

Analogously, an item reaching the head of the queue, can
have at most S − 1 items queued behind it – all newer. So an
item might also experience at most S − 1 fifo-writes of other
items during its lifetime.

This bound is visualized in Fig. 3. The number of fifo-reads
and fifo-writes, while the data item in column 1 is valid, are
bounded. The next item to be read after 3 reads is the item
itself and the 3 write operations following the write of the data
item in column 1 make the FIFO FULL. The order and timing
of reads and writes might be different than what is shown
in Fig. 3, but in any case, the nature of the FIFO bounds
the number of reads and writes to S − 1. We will exploit
this fundamental feature of FIFOs to develop a non-blocking
refresh controller in Section IV.

B. Notion of Validity

In SRAMs, much of the power dissipation is due to sta-
tic leakage of the bitcells. In eDRAM, on the other hand,
the leakage of the bitcells that causes the decay in the stored
data is not taken directly into account in power consumption

calculation, because it is the leakage of charges accounted for
in write energy. Most of the power consumption in eDRAM
is due to read and write operations. However, the storage
node leakage indirectly influences the power consumption,
because it necessitates refresh operations. The higher the
bitcell leakage, the more refresh operations are required per
time unit, and hence the higher the power consumption.

In some cases, the size of a FIFO is selected such that
the system is guaranteed to work properly even in extreme
scenarios. However, these scenarios rarely occur, such that
in the average case, the FIFO is far from full. In SRAMs,
the power penalty of a larger array is unavoidable, and is
the direct result of having a larger number of leaky bitcells.
Similarly, in the general case of eDRAMs, the extra rows result
in extra refresh operations, which in turn, increase the power
consumption.

However, in eDRAM based FIFOs, this does not have to
be the case. A FIFO has the notion of which rows hold
valid data items and which do not. Only rows between the
head and the tail (inclusive) hold valuable data that need
to be saved. Therefore, with careful design, the number of
refresh operations can be associated with the average fill
level of the FIFO and not dictated by the overall size of the
memory structure used to implement the FIFO. This can have
a dramatic effect on the power consumption in eDRAM based
FIFOs, as shown in Section V.

We will exploit this intrinsic feature of FIFOs in the algo-
rithm proposed in Section IV in order to reduce the number
of refresh operations. Considering the average fill level of the
FIFO as a measure of ‘informational-work’ done by the FIFO,
we get a better proportionality, in the proposed algorithm,
between electrical energy and actual ‘informational-work’
carried out. The more data the FIFO stores, the more power
it consumes. Analogously, we can consider the size of the
FIFO as ‘potential-informational-energy’; so in SRAM-based
FIFOs, the electrical energy is proportional to the ‘potential-
informational-energy’ and not the ‘informational-work’ that
was actually done. The more data the FIFO is able to store,
the more power it consumes, even when very little is actually
stored.

C. Strict Ordering

The last feature we want to point out is the ordered fashion
of writes and reads in a FIFO. In the general case of a
memory – data items are written and read in a random order.
Therefore, the age of each item is unknown, unless some
timestamp mechanism is used. In a FIFO, on the other hand,
the items are known to be written in an ordered fashion,
so even though the exact age is unknown, the age relations
between the data items are known, including which one is the
oldest. We will exploit this feature as well in the algorithm
proposed in Section IV.

IV. REFRESH ALGORITHM FOR A FIFO

In order to directly swap the SRAM memories used for
FIFO implementation with GC-eDRAM memories, the FIFO
has to adhere to standard interfaces. Specifically, such a

Authorized licensed use limited to: Bar Ilan University. Downloaded on December 27,2020 at 12:45:15 UTC from IEEE Xplore. Restrictions apply.

NOY AND TEMAN: DESIGN OF A REFRESH-CONTROLLER FOR GC-eDRAM BASED FIFOs 4809

Algorithm 2 REFRESHLOOP for FIFO
1: procedure REFRESHLOOP

2: refresh-pointer ← read-pointer
3: refresh-buffer-valid← False
4: ˜A← 0
5: loop
6: if !fifo-read then
7: ˜A← ˜A + 1
8: ˜A← min(˜A, 2φ + S − 4)
9: if fifo-read && read-pointer == refresh-pointer then � refresh-pointer points to a location being read

10: refresh-pointer← refresh-pointer+ 1
11: refresh-buffer-valid← False
12: if refresh-pointer == write-pointer then � stop when refresh-pointer catches up with write-pointer
13: break from loop

14: if refresh-buffer-valid && !fifo-write then � valid data in buffer and no fifo-write
15: write(address: refresh-pointer, data: refresh-buffer)
16: refresh-pointer← refresh-pointer+ 1
17: refresh-buffer-valid← False
18: if refresh-pointer == write-pointer then � stop when refresh-pointer catches up with write-pointer
19: break from loop

20: if !refresh-buffer-valid && !fifo-read then � no data pending to be written and no fifo-read
21: refresh-buffer⇐ read(address: refresh-pointer)
22: refresh-buffer-valid← True
23: wait 1 cycle

standard interface does not include a “busy” state that tells
the system that the memory is undertaking refresh operations.
Therefore, the naïve algorithm, presented for simplicity in
Algorithm 1, cannot support out-of-the-box replacement of
SRAM with GC-eDRAM. In this section, we will introduce a
control algorithm that provides this behavior, meaning that the
system is never stalled by the algorithm, while it still ensures
that all items are guaranteed to be refreshed on time.

Similar to the naïve refresh algorithm for random access
memory (Algorithm 1), the proposed algorithm is composed
of two procedures. The TRIGGERINGLOOP, is an infinite loop,
just like that of Algorithm 1, and is responsible for the idle-
periods, during which no refresh is applied. The TRIGGER-
INGLOOP is essentially waiting for the right time to trigger
the REFRESHLOOP procedure. The REFRESHLOOP, similar
to the same name procedure in Algorithm 1, is responsible
for the active-refresh period.

There are two main differences between the naïve algorithm
for random-access memory and the one proposed hereafter
(Algorithm 2 and Algorithm 3). First, in the random-access
case, the refresh-controller blocks the access to the memory
for the system during the active-refresh periods using the busy
flag. In contrast, the proposed algorithm gives precedence to
the system over the refresh-controller, such that the refresh
controller reads only on cycles the system does not, and
writes only on cycles that the system does not. Therefore,
there is no need for a busy flag, making it compatible with a
standard SRAM interface. The second difference is that in the
refresh algorithm for the random-access memory, the refresh
is deterministic. The duration of all active-refresh periods is
known and constant and takes S + 1 cycles. The idle periods

Algorithm 3 Triggering Loop for FIFO
1: procedure TRIGGERINGLOOP

2: ˜A← 0
3: loop
4: if φ = 0 then
5: ˜A← 0
6: wait 1
7: else
8: if ˜A + φ + S ≥ NDRT then
9: call REFRESHLOOP

10: else
11: if !fifo-read then
12: ˜A← ˜A + 1
13: wait 1 cycle

in that algorithm are also known and constant, and so the full
cycle is known and constant. In the FIFO refresh algorithm,
on the other hand, neither is constant. Both the active-refresh
period and the idle periods change according to the specific
pattern of system accesses to the FIFO. Therefore, the refresh-
algorithm must consider the access patterns in order to ensure
refresh on time, without disturbing the system.

Pseudo-code for the REFRESHLOOP and TRIGGER-
INGLOOP procedures, which comprise the proposed
FIFO refresh-algorithm, is provided in Algorithm 2 and
Algorithm 3, respectively. The code is written in software-like
style, similar to Algorithm 1, but is to be implemented in
hardware. S is the FIFO size and the arithmetic of all pointers
is modulo S. φ is the fill level of the FIFO. fifo-write,

Authorized licensed use limited to: Bar Ilan University. Downloaded on December 27,2020 at 12:45:15 UTC from IEEE Xplore. Restrictions apply.

4810 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 67, NO. 12, DECEMBER 2020

write-pointer, fifo-read, read-pointer and φ are references to
the FIFO controller signals and represent the respective final
values for the current clock cycle. The proposed algorithm
employs a buffer (refresh-buffer) for temporary storage of
the data to be refreshed, which enables the insertion of a
multi-cycle delay between reading out and writing back the
data. As in Algorithm 1, simple arrows (←) are used for
immediate assignments, and double arrows (⇐) are used for
delayed assignments of data read from memory, in which
the the variable on the left hand side is updated on the cycle
following the read command.

˜A is a global variable, meaning that the same variable is
accessible from both the REFRESHLOOP and the TRIGGER-
INGLOOP, and the final value in the inner loop is observable by
the outer loop. Similarly, FIFO fill level φ is accessible from
both loops, but is updated by the FIFO controller according
to fifo-writes and fifo-reads. We defer detailing the meaning
and usage of ˜A and φ to the TRIGGERINGLOOP description
in Section IV-D.

In order to prove that refresh-on-time is guaranteed without
blocking the system, we will first analyze the REFRESHLOOP

of Algorithm 2, assuming that the TRIGGERINGLOOP contin-
uously calls the REFRESHLOOP every time a refresh cycle
is finished. We will refer to this variant of the algorithm as
the “constant-refresh algorithm”, and we will subsequently
show that it can be expanded into the TRIGGERINGLOOP

of Algorithm 3, while maintaining the refresh-on-time and
non-blocking constraints.

A. The REFRESHLOOP Procedure

The goal of the REFRESHLOOP procedure, presented in
Algorithm 2, is to sequentially read out the FIFO items
between the read-pointer and the write-pointer and write them
back into the FIFO. The refresh-buffer is used to temporarily
store a single data item until it is written back. The status of
the refresh-buffer is tracked by the refresh-buffer-valid flag in
Algorithm 2; TRUE if the buffer holds data that needs to be
refresh-written, and FALSE otherwise.

The basic operation of the REFRESHLOOP is to read out
an item from the FIFO and store it in the empty buffer when
the system is not reading from the FIFO, and similarly to
write the buffered item back to the FIFO when the system
is not writing to the FIFO. These two operations are covered
by the if statements on line 20 and line 14 of Algorithm 2,
respectively, applying a read and/or write operation, if these
conditions apply.

The refresh-pointer is incremented in two cases. Either,
the data from refresh-buffer was written (line 16), or the
location pointed by the refresh-pointer was read, so it need
not be refreshed (line 10). In both cases, the increment is
followed by refresh-buffer being invalidated (lines 11, 17),
and a check whether the new refresh-pointer is equal to write-
pointer (lines 12, 18) – a condition indicating all items were
refreshed, in which case the REFRESHLOOP ends.

Note that the updates applied to the global variable ˜A
(lines 4, 7, and 8) are used by the TRIGGERINGLOOP, and
will be explained in Section IV-D.

B. Correctness of the REFRESHLOOP Algorithm

An algorithm that solves the problem in hand has to have
two properties:

1) It must not change the normal operation of the FIFO.
2) It must ensure that all valid items are refreshed on time.

The proof of the first property is straightforward; write is
applied only under the condition that there is no write request
by the FIFO controller and read is applied only under the
condition that there is no read request. Additionally, data-out
arrives at the FIFO controller unmodified on the cycle follow-
ing a fifo-read, while the values of the data-out bus during the
cycles following the refresh-reads are ignored by the FIFO
controller, because it did not request to read. Therefore, from
the perspective of the FIFO controller, the refresh controller
is transparent, proving the first property.

As for the second property, it is easy to show cases where
no refresh controller, even blocking ones, can satisfy the
requirement. An array of size S with NDR == S/2, for
example, cannot be used to realize a reliable memory, since
the time it takes to refresh the array is longer than its retention
time. Any refresh scheme needs to have a lower bound on NDR
of the underlying memory, or otherwise, it cannot guarantee
data integrity.

In the following subsection, we will calculate the upper
bound on the age of any item in the FIFO for the proposed
algorithm. That is, we will calculate the longest time any
data item can endure in the FIFO, from the time it is either
fifo-written or refresh-written, until it is fifo-read or refresh-
written, during the active-refresh period. This upper bound on
the age of any item is also the lower bound on NDR for this
refresh scheme, for which its data integrity can be guaranteed,
because it assures that no data in the FIFO can expire. This
means that the second property above (i.e., all valid data items
are refreshed on time) is true, if NDR is equal to or greater
than this age upper bound.

C. Upper Bound on Item Age in Constant-Refresh Algorithm

In the general case, where NDR might be greater than the
bound or when the FIFO is not full, the TRIGGERINGLOOP

will add delay cycles between the end of one REFRESHLOOP

and the beginning of the next in order to save power. This,
we will show later, but for the sake of calculating the bound
for NDR, we use the constant-refresh algorithm, where the
REFRESHLOOP is triggered back-to-back by the TRIGGER-
INGLOOP.

An item starts aging once it is written, no matter if it
was fifo-written or refresh-written and continues until the data
item is either fifo-read or refresh-written. Once a fifo-read is
applied, the item is ‘popped’ from the FIFO and the stored
data has no valid value. Following a refresh-write, on the other
hand, the data is still valid and therefore, its age is reset and the
aging process is restarted. The refresh controller has no control
over when the item will be fifo-read, so it has to refresh all
items before they expire.

Let us first examine the refresh pattern when not interrupted
by fifo-reads and fifo-writes. Fig. 4a shows such a case. Note
that in cycle i , location 2 is the head of the FIFO while

Authorized licensed use limited to: Bar Ilan University. Downloaded on December 27,2020 at 12:45:15 UTC from IEEE Xplore. Restrictions apply.

NOY AND TEMAN: DESIGN OF A REFRESH-CONTROLLER FOR GC-eDRAM BASED FIFOs 4811

Fig. 4. fifo-write to refresh-write delay.

location 1 is the tail, so the refresh cycle starts by refresh-
reading the head and ends with refresh-writing the tail during
cycle i + 4. Also note that the item that was fifo-written
during the first cycle has no immediate influence on the
refresh pattern, because fifo-write has effect only when refresh-
buffer-valid is TRUE (line 14 in Algorithm 2), but the initial
value of refresh-buffer-valid is FALSE (line 3). This write
does eventually influence the refresh cycle, because otherwise,
the REFRESHLOOP would have ended one cycle earlier.

Adding a single fifo-read during cycles i +1 to i+3 would
have delayed the refresh-read in those cycles, and eventually
all subsequent refresh operations would be delayed by one
cycle. This is demonstrated in Fig. 4b. It shows the same FIFO
access pattern as in Fig. 4a with an extra fifo-read at cycle
i + 2, and the resulting refresh access pattern is elongated
by one additional cycle. Interestingly, adding the fifo-read at
cycle i + 1, instead, would eliminate one fifo-write, but would
still have the same effect on subsequent refresh operations,
as shown in Fig. 4c. Similarly if a fifo-write was added to the
pattern of Fig. 4c during cycles i + 3 to i + 5, the refresh-
write and refresh-read would have been delayed on that cycle
and for all subsequent refresh operations. This is demonstrated
in Fig. 4d.

Note how a fifo-read only delays the refresh-read that would
otherwise occur during the same cycle, while fifo-write delays
both refresh-read and refresh-write. This is due to the fact
that when a write is pending (refresh-buffer-valid == TRUE),
refresh-read is blocked. Note also, that both fifo-read and
fifo-write delay subsequent refresh operations by one cycle;
however, fifo-write adds a new item, delaying the end of the
REFRESHLOOP by an additional cycle.

Another way to think of it is as a game between the FIFO-
controller (playing black), and the refresh-controller (playing

Fig. 5. Examples of maximal fifo-write to refresh-write delays.

white). Every turn, The black selects whether to read and/or
to write (following the rules of a FIFO), and the white has
to respond. If there exists a strategy for the white to refresh
every item on-time for any play the black might choose, then
we have a valid solution to the suggested problem. In the
strategy suggested in the algorithm, from the moment an item
is fifo-written until it is refresh-written, there can be at most S
refresh-read and S refresh-write operations. With the black
doing nothing, this process takes S + 1 cycles, as shown
in Fig. 4a. Note that Fig. 4a represents the longest period
from fifo-write to refresh-write with black doing nothing.
Our assumption that the refresh-controller is constantly in the
active-refresh period means it is always refreshing something,
and the longest period from fifo-write to refresh-write is when
the refresh-pointer is farthest from write-pointer. But the black
can add fifo-reads and fifo-writes, each delaying by at most one
cycle. As shown above in Section III-A, the black can add at
most S− 1 fifo-reads and S− 1 fifo-writes before fifo-reading
this item. So the time from fifo-write to refresh-write, might
be elongated by no more than 2(S − 1) cycles. Fig. 5 shows
some examples of patterns achieving such a maximal delay.

We have found the maximum time from fifo-write to refresh-
write, but similar considerations apply for the time between
consecutive refresh-writes. The fifo-write during the first cycles
in all examples of Fig. 4 and Fig. 5, can be replaced by
refresh-write, and still the refresh pattern will fit the algorithm.
Note that this refresh-write (that was swapped for the fifo-
write) finishes a previous REFRESHLOOP, but, as explained
with the constant-refresh algorithm, the next REFRESHLOOP

begins during the following cycle.
To summarize, our considerations above apply to all data

items in the FIFO in a constant active-refresh mode, from
the time they are fifo-written or refresh-written until they are
refresh-written or fifo-read. We found an upper bound on the
age of any item in the FIFO during the active-refresh period.

Let An be the age of the nth item in the FIFO, then we can
write:

An ≤ (S + 1)+ 2(S − 1) = 3S − 1. (1)

Authorized licensed use limited to: Bar Ilan University. Downloaded on December 27,2020 at 12:45:15 UTC from IEEE Xplore. Restrictions apply.

4812 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 67, NO. 12, DECEMBER 2020

Therefore, the suggested constant refresh algorithm meets
the second property of refreshing all items before they expire
for FIFOs of size S, and NDR adheres to the bound:

An ≤ 3S − 1 ≤ NDR. (2)

This means that using the suggested algorithm, an array of
size S, which can retain data for (at least) 3S − 1 cycles, can
always be used to implement a FIFO of size S.

D. The TRIGGERINGLOOP Procedure

The previous subsections presented and analyzed the
REFRESHLOOP algorithm in a constant-refresh variant of the
algorithm, where the outer TRIGGERINGLOOP was simplified.
It was assumed to trigger the next REFRESHLOOP imme-
diately after finishing the previous one. We now present an
energy-efficient TRIGGERINGLOOP algorithm that delays the
initialization of the refresh until the latest possible time to
lower the refresh frequency and thereby save power, while
still guaranteeing data validity.

The TRIGGERINGLOOP algorithm, presented in
Algorithm 3, makes use of the two global variables that
we disregarded until now: φ and ˜A. φ is the number of valid
items in the FIFO in the current cycle, including any new
data item that is written by the FIFO controller during the
current cycle. ˜A is a representation of the age of the oldest
item in the FIFO. The proposed algorithm, delays the refresh
until ˜A + φ + S ≥ NDRT. The validity of the algorithm with
this delay will be proven in the next subsection.

E. Analysis of the TRIGGERINGLOOP Procedure

The TRIGGERINGLOOP has two objectives: (1) to trigger
the REFRESHLOOP so it will ensure data integrity, and (2) to
save power by postponing the triggering of the REFRESHLOOP

as much as possible. To prove (1) we will find a sufficient
condition for the triggering cycle of the REFRESHLOOP which
ensures data integrity. In order to save power (objective (2)),
the TRIGGERINGLOOP calls the REFRESHLOOP at the very
last possible cycle, i.e., when the inequality is met with
equality.

When an active-refresh period ends, items are ordered by
age, because all items in the FIFO were refresh-written during
this period, and refresh-writes are ordered. During the idle
period, the order is kept, because newer items are added in
order. Due to the fact that ages are integers, during the idle
period we can put an upper bound on An , the age of the nth

item, given A1, the age of the oldest. We will mark this bound
as A�

n:

An ≤ A1 − (n − 1) � A�
n. (3)

Let MS,φ(n) be the maximal time from REFRESHLOOP start,
with a fill level of φ, until refresh-write (or fifo-read) of the
nth item for a FIFO of size S. To ensure the data integrity
of the nth item, it is sufficient to trigger the REFRESHLOOP,
while the following condition is met:

MS,φ(n)+ A�
n ≤ NDR. (4)

Fig. 6. REFRESHLOOP in a non-full FIFO.

MS,φ(n) is strictly increasing in n, because items are refreshed
in order. Additionally, MS,φ(n) is integer, so we can write:

MS,φ(n − 1) ≤ MS,φ(n)− 1, (5)

and from the definition in (3), we have:
A�

n−1 − 1 = A�
n . (6)

Adding (6) to both sides of (5) provides:
MS,φ(n − 1)+ A�

n−1 ≤ MS,φ(n)+ A�
n. (7)

As previously mentioned, (4) is a sufficient condition for
starting a REFRESHLOOP such that the nth item is refreshed
on time. Its left hand side is non-decreasing, as in (7). Hence,
triggering the REFRESHLOOP, such that the last item is
refreshed on time (n = φ), ensures that all items in the FIFO
are refreshed on time. Accordingly, we can write a sufficient
condition for all items to be refreshed on time:

A�
φ + MS,φ(φ) ≤ NDR. (8)

MS,φ(φ) in (8) is the maximal time from the moment a
REFRESHLOOP begins for a FIFO of size S with φ valid data
items, until all those items are refresh-written (or fifo-read). To
calculate MS,φ(φ) we will use the same method we previously
used in (1) to calculate the bound on the age of items in the
constant-refresh algorithm. If no FIFO operations are issued,
refreshing φ data items takes φ + 1 cycles. Otherwise, there
can be at most φ − 1 fifo-reads before the φth item is to be
refreshed, and at most S − 1 fifo-writes. This is demonstrated
in Fig. 6a and Fig. 6b for φ = 3 and φ = 5, respectively,
given a FIFO of size S = 6.

Authorized licensed use limited to: Bar Ilan University. Downloaded on December 27,2020 at 12:45:15 UTC from IEEE Xplore. Restrictions apply.

NOY AND TEMAN: DESIGN OF A REFRESH-CONTROLLER FOR GC-eDRAM BASED FIFOs 4813

Accordingly, the maximum time required by the
REFRESHLOOP to finish refreshing all items that were
in the FIFO when it started is:

MS,φ(φ)=(φ + 1)+ (φ − 1)+(S − 1)= 2φ+S− 1. (9)

As expected, the more items in the FIFO, the longer it could
take to complete the REFRESHLOOP. Note that the right hand
side of (1) is a special case of (9), with φ = S:

An ≤ MS,S(S) = 3S − 1. (10)

So with MS,φ(φ), we know that data integrity is guaranteed by
triggering the REFRESHLOOP while the following condition
is met:

A1 + φ + S ≤ NDR. (11)

And the algorithm uses the complimentary condition for
triggering the REFRESHLOOP, substituting A1 with ˜A :

˜A + φ + S ≥ NDR. (12)

We now want to show ˜A is an upper bound on A1. ˜A is a
global variable, updated in both the TRIGGERINGLOOP and
the REFRESHLOOP. In the TRIGGERINGLOOP (Algorithm 3),
˜A is set to 0 every time the FIFO is empty (φ = 0). When
the FIFO is not empty, ˜A is incremented on every cycle that
a fifo-read is not issued. This behavior ensures that ˜A is
maintained as an upper bound on the age of the oldest item
(A1), as explained below.

During the TRIGGERINGLOOP, the oldest item in the FIFO
is that at the head of the FIFO. Once an item is written into
the FIFO, ˜A starts tracking the age of the first item written,
since it is incremented on every cycle. Once a fifo-read is
applied, the oldest data item is evicted from the FIFO, and
therefore, the oldest item is the next item, which is now at
the head of the FIFO. ˜A should now track the age of the new
head item, but since the system does not store a time stamp
for each FIFO item, there is no information about the age of
the new head item, other than that it is newer than the previous
(now evicted) head. Therefore, to maintain the bound of the
age of the oldest data item in the FIFO, we have to assume
the worst case where the new head was written one cycle
after the previous head. Conclusively, keeping the value (not
incrementing) ˜A on a fifo-read cycle, is sufficient for ˜A to act
as upper bound for the true value of A1.

In the REFRESHLOOP, ˜A is set to zero on entrance, and
is incremented in a similar manner on cycles during which
fifo-read is not issued, but is never incremented above 2φ +
S−4 (line 8 in Algorithm 2). This maximal value of ˜A in the
REFRESHLOOP arises from considerations similar to the ones
above. We know that the oldest item during REFRESHLOOP

can be at most 2φ + S − 4 cycles old.
We have shown that ˜A is an upper bound for A1. This

implies that triggering condition in the TRIGGERINGLOOP,
is sufficient to guarantee data integrity according to (11),
so that the proposed algorithm, consisting of TRIGGER-
INGLOOP and REFRESHLOOP, guarantees data integrity.

F. Refresh Controller Overhead Estimation

In order to estimate the overhead of the proposed algorithm,
we implemented the algorithm as part of a FIFO controller
described in Verilog HDL. The hardware implementation,
much like the algorithm above, consists of four storage entities,
(1) refresh-pointer, (2) refresh-buffer, (3) age counter (˜A), and
(4) state tracking registers. In terms of area overhead, it can
easily be observed that the refresh pointer scales according
to log(S), the refresh buffer scales with the FIFO width (W),
and the age counter scales with log(NDR). The state tracking
registers, which are used to track the advancement through the
algorithm, are unaffected by the dimensions of the FIFO. So
while for a FIFO of size S and width W , the memory array
roughly scales according to O(W × S), the refresh controller
area overhead grows much slower, at a rate of O(W+log(S)).1

To perceive this relative to an actual FIFO, we synthesized
an example FIFO of size S = 128 and width W = 64. The area
of the synthesized controller had a 239 NAND2 equivalent gate
count, which is 0.7% of the area of a synthesized SRAM in
the target technology. Even if the GC-eDRAM array was 50%
smaller than the compiled SRAM, the overhead would still
be under 1.5%, which is presumably quite low and the power
energy would be very small, as well. With area savings of as
much as 50% as compared to an SRAM based FIFO [7], this
overhead is indeed worthwhile. Furthermore, as noted above,
as the FIFO grows larger, the area (and associated power)
overhead of the refresh controller grows at a much smaller
rate than the memory array, and therefore, becomes even more
negligible. In contrast, for smaller FIFOs the overhead of the
refresh controller is more significant, but this is in-line with
the general scaling of memories, where for small memories the
periphery becomes dominant. Accordingly, very small FIFOs
are generally implemented using flip-flops and not SRAM.

V. ANALYTICAL AND EXPERIMENTAL RESULTS

The power consumption of an SRAM based FIFO can be
written as:

PS = PS
LEAK + λF(ES

R + ES
W). (13)

This term consists of two parts: leakage power, PS
LEAK, which

is a constant independent of the access pattern of the system
to the FIFO, and dynamic power, which is dependent on
the number of writes per second λF , where F is the clock
frequency and λ is the ratio of cycles in which fifo-writes are
issued. Note, that the number of fifo-writes and the number
of fifo-reads are equal for a FIFO, because what goes in must
eventually come out. The number of fifo-writes per second
multiplied by the energy of a single write (ES

W) and a single
read (ES

W) thus results in the access pattern dependent part of
the power consumption.

For a GC-eDRAM based FIFO with a refresh controller,
another term is required to account for the refresh operations.
This extra term is dependent on λW and λR, the ratio of cycles
with refresh-write and refresh-read operations, respectively.
Therefore, we get:

PD = PD
LEAK+λF(ED

R+ED
W)+F(λR ED

R+λW ED
W). (14)

1Note that NDR does not increase with FIFO size.

Authorized licensed use limited to: Bar Ilan University. Downloaded on December 27,2020 at 12:45:15 UTC from IEEE Xplore. Restrictions apply.

4814 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 67, NO. 12, DECEMBER 2020

Fig. 7. Test setup for measuring λR and λW . λ, collected on the top, is the
rate of arrivals to the FIFO. λR and λW , collected at the bottom, are the rate
of refresh-reads and refresh-writes, respectively.

Fig. 8. Stimuli generator for the constant-rate input, constant-rate output
scenario. fifo-reads and fifo-writes occur on the same cycles at which the
phase accumulator overflows.

The values of λW and λR are dependent on the exact
sequence of refresh operations. Different arrival and depar-
ture sequences to and from the FIFO, yield different refresh
sequences, which result in different values for λW and λR ,
and hence different energy consumptions. In order to analyze
the performance of the proposed refresh controller, we will
analyze a subset of the space of all possible access sequences
at a time. Arrival and departure patterns can be categorized
as in queuing theory. For a specific arrival and departure pair,
λR and λW can be calculated as a function of λ, and so the
total energy consumption for the GC-eDRAM based FIFO
can be expressed in terms of λ, for a specific arrival and
departure pattern. While λ can be analytically derived from
the arrival distribution, the refresh operations are dependent
on the exact state of the REFRESHLOOP, and can only be
analytically derived for very specific scenarios. For the general
case, we used a test setup as shown in Fig. 7, where we
monitor λR and λW as a function of λ, for specific stimuli.

We will start by analyzing a simple deterministic case.
In order to generate a periodic and deterministic pattern,
we generate the read and write requests by the system from the
overflow indication of a fixed point phase accumulator [21].
The rate λ, is therefore controlled by the phase increment.
Reads and writes are requested by the system at the same rate
and on the same cycles in this configuration. This setup is
shown in Fig. 8. With this simple setup, we can analytically
derive λW and λR in terms of λ and φ (the FIFO fill level),

and hence, express the power of a GC-eDRAM based FIFO
as a function of these parameters.

Fig. 9 shows analytical results of power (refresh rate) as a
function of λ, for several values of φ. Fig. 9a and Fig. 9b plot
λR and λW , respectively, while Fig. 9c plots the total power
as compared to a reference SRAM. For creating these plots
a FIFO of size S = 128 and NDR = 800 was chosen as it
provides a clear visual representation, however in a typical
case, NDR (which is frequency dependent) is expected to
be much higher. The periodic nature of fifo-reads and fifo-
writes cause the whole system to have a periodic steady-state
behavior with periodic refresh cycles. The time of a refresh
cycle in this context is the time from the beginning of one
active-refresh period to the next.

The periodic stimuli cause both the active-refresh period and
the idle-period to be of almost constant duration, with small
deviations due to the differences between the internal state of
the controller and the current phase of the accumulator. Over
many refresh cycles, the whole system shows a true periodic
behavior, which is both an integer number of periods of the
stimuli, and an integer number of refresh-cycles. The periodic
nature allows us to write λR as a ratio NR/NC , where NR is
the number of refresh-reads in one full refresh-cycle, and NC

is the number of cycles in one full refresh cycle.
We will first analyze the case of λ = 0, where no data items

enter or leave the FIFO. In this case, the refresh controller will
require φ refresh-reads in order to refresh the whole FIFO
once, so we can write:

NR |λ=0 = φ. (15)

The time from the beginning of one refresh cycle to the next
is NDR − S − φ, because no fifo-reads are issued in our case
and ˜A is incremented on every cycle, so NC = NDR − S − φ
cycles. This means that for a FIFO with λ = 0, the percentage
of cycles with fifo-reads is given by:

λR |λ=0 = φ

NDR − S − φ
. (16)

As λ increases, both NR and NC increase. NR is increased
because the number of refresh-reads per refresh cycle
increases, as new items arriving during the active-refresh
period will be refreshed as well. Note, however, that as
λ increases, the rate of the refresh decreases. The refresh
controller operates on cycles the FIFO controller does not,
so the rate of refresh in the active-refresh period is 1− λ and
will be hereafter denoted as λ̄. Let n be the number of cycles
it will take the refresh controller to refresh from head to tail
(active-refresh stage). The refresh pointer advances at a rate
of λ̄, and it has to refresh both the items already in the FIFO
at the beginning of the active-refresh stage (φ) and the ones
arriving during the stage (λn). Obviously, for λ ≥ 1

2 , refresh
will never end, but for the case of λ < 1

2 we can write:
λ̄n = φ + λn. (17)

We can then rearrange (17) to get the number of cycles it will
take:

n = φ

1− 2λ
, (18)

Authorized licensed use limited to: Bar Ilan University. Downloaded on December 27,2020 at 12:45:15 UTC from IEEE Xplore. Restrictions apply.

NOY AND TEMAN: DESIGN OF A REFRESH-CONTROLLER FOR GC-eDRAM BASED FIFOs 4815

Fig. 9. Power as a function of arrival rate for several fill levels compared to SRAM.

and therefore express NR as a function of λ :

NR |λ< 1
2
= λ̄n = λ̄φ

1− 2λ
. (19)

NC is also affected by the change in λ. For low values of
λ, the triggering condition is the same, but the rate at which
˜A is incremented is slower. Recall that ˜A is only incremented
on cycles with no fifo-read, so it too is incremented at a rate
of λ̄. We can therefore write:

N (1)
C =

(NDR − S − φ)

λ̄
, (20)

and now combine (19) and (20) to calculate λR :

λ
(1)
R =

NR

NC
= λ̄2φ

(1− 2λ)(NDR − S − φ)
. (21)

This calculated value of λR perfectly matches the simulation
results graphs for small values of λ (Fig. 9a). As λ increases,
the active stage takes longer to complete. At the point where
˜A becomes 2φ + S − 4 during the active-refresh period,
the limiting condition of the REFRESHLOOP (Algorithm 2)
kicks in and ˜A stops incrementing until the active stage ends.
In that case, (20) does not hold anymore. We can calculate
NC for this case as the sum of the cycles of the active-refresh
period and the number of cycles of the idle period. We already
found the number of cycles of the active-refresh period in (18).
The number of cycles for the idle period is the number of
cycles it takes for ˜A to count from 2φ+ S−4 to NDR− S−φ
at a rate of λ̄ :

N (2)
C = φ

1− 2λ
+ (NDR − S − φ)− (2φ + S − 4)

λ̄

N (2)
C = φ

1− 2λ
+ NDR − 2S − 3φ + 4

λ̄
. (22)

So for this region, we can write:

λ
(2)
R =

NR

NC
= λ̄2φ

λφ+(1− 2λ)(NDR−2S−3φ+ 4)
. (23)

The third region is for λ ≥ 1
2 . For these cases, the active-

refresh phase never ends because λ ≥ λ̄. This means that for
this region, refresh-reads will be issued on every cycle with
no fifo-read, so we can write:

λ
(3)
R = λ̄. (24)

Fig. 9b shows similar results for λW . Regions (1) and (2)
are similar to the results for λR . The same arguments apply;
for λ < 0.5; every item refresh-read is refresh-written, except
for, in some cases, the very last item, so λW ≤ λR , but the
difference is negligible. For region (3), λW = 0. The data
items that are being refresh-read, are always fifo-read on the
next cycle in case λ ≥ 0.5, so no item is ever refresh-written.
This is again a result of the strict timing of reads and writes
done in this example.

Fig. 9c shows the total power consumption for SRAM
and GC-eDRAM according to (13) and (14). Power num-
bers for both SRAM and GC-eDRAM are based on 28 nm
FD-SOI implementations taken from [12].2 For most fill levels,
the power consumption is better for GC-eDRAM than for
SRAM. Only for very low values of λ with high fill levels,
the power consumption of SRAM based FIFO is slightly
better. On the other hand, for higher values of λ, the power
savings of GC-eDRAM based FIFOs become significant. In
fact, once λ > 0.5, which is a highly-probable scenario for
extensive periods in many FIFOs, the buffered data is read out
before a refresh operation is required, essentially nullifying the
drawbacks of using a dynamic memory implementation.

The scenarios discussed so far were synthetic, in order to
simplify the mathematical analysis. To demonstrate more real-
istic scenarios, simulations with random inter-arrival and ser-
vice times (G/G/1) were run. The results are shown in Fig. 10a
for the case of φ = 64. The red line shows the analytic results
for the deterministic case discussed above. The light green and
light blue dots show the measured λR and λW (respectively)
over 100,000 random simulations. The green and blue lines
show the sliding median windows over the samples. The shape
of the graph for the random case is similar to the shape of the
deterministic case. At λ = 0 both have the same value, because
in this case, the random and the deterministic scenarios are the
same. Both graphs rise with increasing rate as λ is increases
until they reach some maximum, at which point they start to
decrease as λ grows. Note that in the deterministic case, λW

dropped abruptly to zero at λ = 0.5 (see Fig. 9b) since at this
point any item refresh-read was fifo-read on the following

2 PS
LEAK = 9.07 nW; ES

READ = 0.255 pJ; ES
WRITE = 0.498 pJ

PD
LEAK = 3.29 nW; ED

READ = 0.133 pJ; ED
WRITE = 0.263 pJ

Authorized licensed use limited to: Bar Ilan University. Downloaded on December 27,2020 at 12:45:15 UTC from IEEE Xplore. Restrictions apply.

4816 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 67, NO. 12, DECEMBER 2020

Fig. 10. Simulation results for 100,000 random access patterns with φ = 64.

cycle, so it had no time to be refresh-written. When a random
access is applied, the trend of fewer refresh-write operations
continues, but in this case, some items do get refresh-written,
due to the stochastic nature, and so a non-zero level of λW is
maintained.

The average power consumption of the FIFO was measured
from the simulations used to plot Fig. 10a and is shown
as a function of λ in Fig. 10b. In this plot, the SRAM
power increases linearly with arrival rate, as expected. The
GC-eDRAM power follows a similar trend for low values
of λ – albeit with 20%–30% lower power consumption than
SRAM. However, once λ surpasses 0.4, the GC-eDRAM
power increases at a much lower rate, resulting in higher power
savings compared to SRAM, reaching as much as 50% at
λ = 1.

VI. CONCLUSION

First-in First-out queues are a fundamental building block
in integrated circuits, and often account for large amounts
of silicon real-estate and system power-consumption. Gain-
cell embedded DRAM is a high-density, low-power embedded
memory solution, which is further compatible with FIFO
implementation, as it is inherently two-ported and can lead to
power savings proportional to the actual ‘informational-work’

that is done by the FIFO. In this paper, we propose a control
algorithm to ensure that GC-eDRAM refresh operations are
hidden from the external user, thereby enabling out-of-the-
box replacement of SRAM or flip-flops with GC-eDRAM
in FIFOs. The algorithm correctness was shown, including
the extraction of bounds for FIFO size versus retention time
of the GC-eDRAM array to ensure data integrity. The pro-
posed algorithm was implemented in a hardware controller
and simulated under both deterministic and random access
patterns, showing close correlation between the analytical and
the measured behavior of the FIFO providing as much as 50%
power savings, as compared to an SRAM implementation in
a 28 nm FD-SOI technology.

ACKNOWLEDGMENT

The authors would like to thank Dr. O. Keren for her
invaluable assistance and contribution to the manuscript.

REFERENCES

[1] K. Lee, S.-J. Lee, and H.-J. Yoo, “A practical method to use eDRAM
in the shared bus packet switch,” in Proc. Global Telecommun. Conf.
(GLOBECOM), vol. 3, Nov. 2002, pp. 2303–2307.

[2] S. Sariga and C. Nandagopal, “An area efficient network on chip
architecture using high performance pipelines FIFO technique,” in Proc.
IEEE Int. Conf. Electr., Instrum. Commun. Eng. (ICEICE), Apr. 2017,
pp. 1–5.

[3] F. Hassen and L. Mhamdi, “A scalable multi-stage packet-switch for data
center networks,” J. Commun. Netw., vol. 19, pp. 65–79, Feb. 2017.

[4] W. Choi, K. Choi, and J. Park, “Low cost convolutional neural network
accelerator based on bi-directional filtering and bit-width reduction,”
IEEE Access, vol. 6, pp. 14734–14746, 2018.

[5] P. Ou et al., “A 65nm 39GOPS/W24-core processor with 11Tb/s/W
packet-controlled circuit-switched double-layer network-on-chip and
heterogeneous execution array,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 56–57.

[6] C. Soviani and S. A. Edwards, “FIFO sizing for high-
performance pipelines,” in Proc. Int. Workshop Logic Synth. (IWLS),
May 2007. [Online]. Available: http://www.iwls.org/iwls2007/,
doi: 10.7916/D8RB7F0B.

[7] P. Meinerzhagen, A. Teman, R. Giterman, N. Edri, A. Burg, and
A. Fish, Gain-Cell Embedded DRAMs for Low-Power VLSI Systems-
on-Chip. Cham, Switzerland: Springer, 2018.

[8] A. Teman, P. Meinerzhagen, A. Burg, and A. Fish, “Review and
classification of gain cell eDRAM implementations,” in Proc. IEEE 27th
Conv. Elect. Electron. Eng. Israel, Nov. 2012, pp. 1–5.

[9] R. Giterman, A. Teman, P. Meinerzhagen, L. Atias, A. Burg, and A. Fish,
“Single-supply 3T gain-cell for low-voltage low-power applications,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 1,
pp. 358–362, Jan. 2016.

[10] A. Teman, G. Karakonstantis, R. Giterman, P. Meinerzhagen, and
A. Burg, “Energy versus data integrity trade-offs in embedded high-
density logic compatible dynamic memories,” in Proc. Design, Autom.
Test Eur. Conf. Exhib. (DATE). San Jose, CA, USA: EDA Consortium,
2015, pp. 489–494.

[11] N. Edri, P. Meinerzhagen, A. Teman, A. Burg, and A. Fish, “Silicon-
proven, per-cell retention time distribution model for gain-cell based
eDRAMs,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 2,
pp. 222–232, Feb. 2016.

[12] R. Giterman, A. Fish, A. Burg, and A. Teman, “A 4-transistor nMOS-
only logic-compatible gain-cell embedded DRAM with over 1.6-ms
retention time at 700 mV in 28-nm FD-SOI,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 65, no. 4, pp. 1245–1256, Apr. 2018.

[13] R. Giterman, A. Fish, N. Geuli, E. Mentovich, A. Burg, and A. Teman,
“An 800-MHz mixed-VT 4T IFGC embedded DRAM in 28-nm CMOS
bulk process for approximate storage applications,” IEEE J. Solid-State
Circuits, vol. 53, no. 7, pp. 2136–2148, Jul. 2018.

[14] R. Giterman, R. Golman, and A. Teman, “Improving energy-efficiency
in dynamic memories through retention failure detection,” IEEE Access,
vol. 7, pp. 27641–27649, 2019.

Authorized licensed use limited to: Bar Ilan University. Downloaded on December 27,2020 at 12:45:15 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.7916/D8RB7F0B

NOY AND TEMAN: DESIGN OF A REFRESH-CONTROLLER FOR GC-eDRAM BASED FIFOs 4817

[15] G. Kang, W. Choi, and J. Park, “Embedded DRAM-based memory cus-
tomization for low-cost FFT processor design,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 25, no. 12, pp. 3484–3494, Dec. 2017.

[16] Y. S. Park, D. Blaauw, D. Sylvester, and Z. Zhang, “Low-power high-
throughput LDPC decoder using non-refresh embedded DRAM,” IEEE
J. Solid-State Circuits, vol. 49, no. 3, pp. 783–794, Mar. 2014.

[17] W. Choi, G. Kang, and J. Park, “A refresh-less eDRAM macro with
embedded voltage reference and selective read for an area and power
efficient Viterbi decoder,” IEEE J. Solid-State Circuits, vol. 50, no. 10,
pp. 2451–2462, Oct. 2015.

[18] P. P. Pande, C. Grecu, A. Ivanov, and R. Saleh, “Design of a switch for
network on chip applications,” in Proc. Int. Symp. Circuits Syst. (ISCAS),
vol. 5, May 2003, p. 5.

[19] P. Wielage, E. J. Marinissen, M. Altheimer, and C. Wouters, “Design
and DfT of a high-speed area-efficient embedded asynchronous FIFO,”
in Proc. Design, Autom. Test Eur. Conf. Exhib., Apr. 2007, pp. 1–6.

[20] A. Sheibanyrad, A. Greiner, and I. Miro-Panades, “Multisynchronous
and fully asynchronous NoCs for GALS architectures,” IEEE Design
Test Comput., vol. 25, no. 6, pp. 572–580, Nov. 2008.

[21] H. Hikawa and S. Mori, “A digital frequency synthesizer with a phase
accumulator,” in Proc. IEEE . Int. Symp. Circuits Syst., vol. 1, Jun. 1988,
pp. 373–376.

Tzachi Noy (Student Member, IEEE) received the
B.Sc. and M.Sc. degrees in electrical engineer-
ing from Bar-Ilan University, Ramat-Gan, Israel,
in 2007 and 2019, respectively. He is currently pur-
suing the Ph.D. degree in electrical engineering with
the Emerging Nanoscaled Intergrated Circuits and
Systems (EnICS) Labs, Bar-Ilan University, under
the supervision of Dr. A. Teman. His research inter-
ests include EDA optimization heuristics, hardware
implementations for low-power machine learning
applications, design of very large-scale integration

circuits, and high-performance computer architectures.

Adam Teman (Member, IEEE) received the Ph.D.
degree in electrical and computer engineering
from Ben-Gurion University (BGU), Be’er Sheva,
in 2014 under a Kreitman Fellowship. He worked
as a Design Engineer with Marvell Semiconductors
from 2006 to 2007, with an emphasis on Physi-
cal Implementation. From 2014 to 2015, he was
a Post-Doctoral Researcher with the Telecommu-
nications Circuits Lab (TCL), École Polytechnique
Fédérale de Lausanne (EPFL), Switzerland, under a
Swiss Government Excellence Scholarship. In 2015,

he joined the Faculty of Engineering, Bar-Ilan University (BIU) in 2015 as
a Tenure Track Senior Lecturer at the Department of Electrical Engineering
and as the Co-Director of the Emerging Nanoscaled Integrated Circuits and
Systems (EnICS) Labs Research Center. He has authored over 80 scientific
articles and 8 patent applications, and has participated in over 15 IC tapeouts.
He is the coauthor of the recently published book Gain-Cell Embedded
DRAMs for Low-Power VLSI Systems-on-Chip, available from Springer. His
research interests include embedded memories, energy efficient circuit design,
hardware for artificial intelligence, hardware acceleration, and methodologies
for physical implementation. Dr. Teman is a member of the technical and
review boards of several conferences and journals. He has been honored with
Teaching Excellence recognitions at both BGU and BIU and has received
multiple awards for outstanding research, including the Wolf Foundation
Scholarship and the Intel Prize. Since 2020, he has been awarded the Krill
Prize for outstanding young researchers and the BIU Rector’s prize for
outstanding research. He is an Associate Editor with the Microelectronics
Journal.

Authorized licensed use limited to: Bar Ilan University. Downloaded on December 27,2020 at 12:45:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

