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So, what’s next?

• We’ve basically finished the Front-End of the design process

and we will now start the Back-End:

• To start, we will move between tools with a logical approach

to ones with a physical approach to design implementation.

• Then, we will make a physical foundation for our design 

by drawing up a floorplan.
• This will include making decisions where “big” or “important” pieces

will sit, such as IPs, I/Os, Power grids, special routes, etc.

• After that, we can place our gates taking into account congestion and timing.

• With our flip-flops in place, we can go about designing a clock-tree.

• And finally, we can route all our nets, according to DRCs, timing, noise, etc.

• Before tapeout, we will clean things up, verify, etc.

Definition and Planning

Design and Verification

Logic Synthesis

Physical Design

Signoff and Tapeout

Silicon Validation
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An illustrative view of Physical Design
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Moving from Logical to Physical

• Define design (.v)

• Define design constraints/targets (.sdc)

• Define operating conditions/modes (MMMC)

• Define technology and libraries (.lef)

• Define physical properties (Floorplan)

Physical Design 

Flow
Verilog netlist

SDC constraints

GDSII

Design Import

Floorplan

Placement

CTS

Route

Finish Design
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Moving from Logical to Physical

• During synthesis, our world view was a bit idealistic. 
• We didn’t care about power supplies.

• We didn’t care about physical connections/entities.

• We didn’t care about clock non-idealities.

• Therefore, in order to start physical implementation:
• Define “global nets” and how they connect to physical instances.

• Provide technology rules and cell abstracts (.lef files)

• Provide physical cells, unnecessary for logical functionality:
• Tie cells, P/G Pads, DeCaps, Filler cells, etc.

• Define hold constraints and all operating modes and conditions (MMMC)
• Hold was “easy to meet” with an ideal clock, so we didn’t really check it…

• Set up “low power” definitions, such as voltage domains, 
power gates, body taps, etc.

MV with power gating 
(shut down)
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A bit about 
Multiple Voltage Domains
Often referred to as “Low Power Design” Methodologies
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Multiple Domain Design

• Define power domains

• Create power domain names 

• List of cells connected to 

VDD1, VDD2, GND1,…

• Draw the power domains

• Place macros

• Take into account: 
• Routing congestion

• Orientation

• Manual usually better then Auto

• Place switches

• For the power down domains

core

IP
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ROM

PD1

PD2PD3
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Multiple Domain Design – Level Shifters
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Multiple Domain Design – Power Gating

10

sleep_control (on/off)

V
D

D
V

V
S

S

V
D

D

V
D

D

Global VDD

VVDD1 
domain

VVDD2
domain

VDDVDD

VDD

VDD
Global VDD

VVDD2

VVDD1

VVDD1

VVDD1

VVDD2

VVDD2

VDDVDD

Design Import

Floorplan

Placement

CTS

Route

Finish Design



11 © Adam Teman, 2018

How do we define this?

• Well, we probably will leave that to an advanced course 

or your MSc research…

• But, in general, there is a command format for this.

• Well, actually two.

• Cadence calls theirs CPF (Common Power Format), 

and it’s surprisingly (…confusingly) similar to MMMC.

• Synopsys calls theirs UPF (Unified Power Format), 

and it’s surprisingly similar to SDC.

• I guess neither is very common or unified…

• Luckily for you, we will not talk any more about this right now ☺.

• Instead, we’ll start with the basics of Floorplanning.
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Floorplanning Goals and Objectives

• Floorplanning is a mapping between 
the logical description (the netlist) 
and the physical description (the floorplan). 

• Goals of floorplanning:
• Arrange the blocks on a chip.

• Decide the location of the I/O pads.

• Decide the location and number of the power pads.

• Decide the type of power distribution.

• Decide the location and type of clock distribution.

• Objectives of floorplanning are:
• Minimize the chip area

• Minimize delay

• Minimize routing congestion
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Fullchip Design Overview

• Chip size

• Number of Gates

• Number of Metal layers

• Interface to the outside

• Hard IPs/Macros

• Power Delivery

• Multiple Voltages

• Clocking Scheme

• Flat or Hierarchical?

The location of 

the core, I/O 

areas P/G pads 

and the P/G grid

Core placement 

area

Periphery 

(I/O) area

Rings

Straps

P/G 

Grid

IP

ROM

RAM
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Floorplanning Inputs and Outputs

• Outputs

• Die/block area

• I/Os placed

• Macros placed

• Power grid designed

• Power pre-routing

• Standard cell 

placement areas

• Design ready for 

standard cell placement

• Inputs
• Design netlist (required)

• Area requirements (required)

• Power requirements (required)

• Timing constraints (required)

• Physical partitioning information 
(required)

• Die size vs. performance vs. 
schedule trade-off (required)

• I/O placement (optional)

• Macro placement information 
(optional)

Design Import

Floorplan

Placement

CTS

Route

Finish Design



16 © Adam Teman, 2018

IO Ring

• The pinout is often decided by front-end designers, with input from 

physical design and packaging engineers.

• I/Os do not tend to scale with Moore’s Law

and therefore, they are very expensive 

(in terms of area).

• I/Os are not only needed for connecting 

signals to the outside world, but also to

provide power to the chip.

• Therefore, I/O planning is a critical and very 

central stage in Floorplanning the chip.

• Let’s leave it at that for a bit, and revisit the I/Os a little later…

core

IO
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How do we choose our chip size?
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Design Import
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Utilization

• Utilization refers to the percentage of core area that is 
taken up by standard cells.
• A typical starting utilization might be 70%

• This can vary a lot depending on the design

• High utilization can make it difficult to close a design
• Routing congestion,

• Negative impact during optimization legalization stages.

• Local congestion 
• Can occur with pin-dense cells like multiplexers, so 

utilization is not completely sufficient for determining 
die size.

• Run a quick trial route to check for routing congestion 

• Refine the synthesis or increase routing resources

Low standard-cell 

utilization

High standard-cell 

utilization
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Uniquifying the Netlist

• When moving to the physical domain, the netlist must be unique

• A unique netlist, means that each sub-module is only referenced once.

• In the example, the non-unique netlist cannot optimize instance m1/u1 without 

changing instance m2/u1

• A synthesized netlist must be uniquified before placement 

can begin. This can be done either by the synthesizer or 

during design import.

module amod ();
BUFFD1 u1 ();
endmodule

module bmod ();
amod m1 ;
amod m2 ;
endmodule

Non-unique

bmod

m2m1

u1 u1

module amod1 ();
BUFFD1 u1 ();
endmodule

module amod2 ();
BUFFD1 u1 ();
endmodule

module bmod ();
amod1 m1 ;
amod2 m2 ;
endmodule

Unique

bmod

m2m1

u1 u1
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Hard Macro Placement

• When placing large macros we must consider impacts on routing, 

timing and power. Usually push them to the sides of the floorplan.

• Placement algorithms generally perform better with a 

single large rectangular placement area.

• For wire-bond place power hungry macros away from the chip center.

• After placing hard macros, mark them as FIXED.

Possible 
routing  

congestion 
hotspots
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Placement Regions

• Sometimes, we want to “help” the tool put certain 

logic in certain regions or cluster them together. 

• Place and Route tools define several types of 

placement regions:

• Soft guide – try to cluster these cells together 

without a defined area.

• Guide – try to place the cells in the defined area.

• Region – must place the cells in the defined area, 

but other cells may also be placed there.

• Fence – must place the cells in the defined area and 

keep out all other cells.

Design Import

Floorplan
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CTS

Route

Finish Design
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Placement Blockages and Halos

• Placement blockage halos are areas that 
the tools should not place any cells.

• These, too, have several types:
• Hard Blockage – no cells can be placed 

inside.

• Soft Blockage – cannot be used during 
placement, but may be used during 
optimization.

• Partial Blockage – an area with lower 
utilization.

• Halo (padding) – an area outside a 
macro that should be kept clear of 
standard cells.

Design Import

Floorplan
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CTS

Route

Finish Design

RAM5

Pins are on left 
and right

Keepout margin
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Placement Blockages and Halos
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Routing Blockage

• Similar to placement blockage, 

routing blockage can be defined.

• Blockage is defined 

for a given layer.

Routing 

blockage

(75,95)

(20,20)
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Guidelines for a good floorplan
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RAM
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Single large 
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routing 

channels
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from corners

RAM 1 RAM 2 RAM 3

RAM 4 RAM 5 RAM 6

RAM 8
RAM 7

Use blockage to 
improve pin 
accessibility

Avoid 
constrictive 
channels

Avoid many pins 
in the narrow 

channel. 
Rotate for pin 
accessibility



A bit about 
Hierarchical Design
Or how do you deal with a really big chip
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Flat vs. Hierarchical Design

If the design is too big, partition it into hierarchies

• Advantages

• Faster runtime, less memory needed for EDA tools

• Faster ECO turn-around time

• Ability to do design re-use

• Disadvantages

• Much more difficult for fullchip timing closure 

(ILMs)

• More intensive design planning needed:
• Feedthrough generation

• Repeater insertion

• Timing constraint budgeting

• etc.

I/O Pad

IP Macro

Block / Tile

Fullchip Design

Blk 1 Blk 2 Blk 3

P&R 

Flow

P&R 

Flow

P&R 

Flow

Fullchip Timing & 

Verification
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Hierarchical Design – Time Budgeting

• Chip level constraints must be mapped correctly to block level 

constraints as I/O constraints

• Interface Logic Models (ILMs) help simplify and speed-up design

IN1

Block Boundary

set_input_delay 1.5 [get_port IN1]

1.5ns

A

B

Clk

X

Y

Original Netlist

A

B

X

Y

Interface Logic Model (ILM)
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Design Import
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Hierarchical Design – Pin Assignment

• Pin constraints include parameters, such as:

• Layers, spacing, size, overlap

• Net groups, pin guides

• Pins can be assigned:

• Placement-based (flightlines) 

• Route-based  (trial route, 

boundary crossings).

• Pin guides 

• Can be used to influence automatic 

pin placement of particular net groups

Partition

Pin guide 1

Pin guide 2

Pins at partition 

corners can make 
routing difficult



30 © Adam Teman, 2018

Hierarchical Design - Feedthrough

• For channel-less designs or designs with limited channel resources

Partition CPartition BPartition A

IN

INOUT

I/O Pin

Feedthrough 

Candidates

Net1

Net2

IN

INOUT

I/O Pin

Net2

Net1 Net1a Net1b

Net2a
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The Chip Hall of Fame

• Speaking about floorplans, this is one of the most 

essential attributes of an FPGA. And it started with 

the:

• Ross Freeman, CEO of Xilinx, bet on Moore’s law

making transistors cheap enough to “waste”.

• Release date: Nov. 1, 1985

• Process: Seiko 2um

• 64 Logic Cells and FFs, 38 I/O pins

• Originally called a “logic cell array” 

and programmed logic was drawn by hand.

• Xilinx was the world’s first fabless IC vendor.

2017 Inductee to the IEEE Chip Hall of Fame

Source:Xilinx

Source:Xilinx
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Power Consumption and Reliability
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Dynamic Power IR-Drop /

Voltage Droop

Fail

Electromigration
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IR Drop

• The drop in supply voltage over the length of the supply line

• A resistance matrix of the power grid is constructed

• The average current of each gate is considered 

• The matrix is solved for the current at each node, 

to determine the IR-drop.

VDD Pad VDD

Minimum
Tolerance

Level

Ideal voltage level

Actual voltage level
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Electromigration (EM)

• Electromigration refers to the gradual displacement of the 

metal atoms of a conductor as a result of the current flowing 

through that conductor.

• Transfer of electron momentum

• Can result in catastrophic failure do to either 

• Open : void on a single wire

• Short : bridging between to wires

• Even without open or short, 

EM can cause performance degradation

• Increase/decrease in wire RC
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Design Import
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Power Distribution

• Power Distribution Network functions

• Carry current from pads to transistors on chip

• Maintain stable voltage with low noise

• Provide average and peak power demands

• Provide current return paths for signals

• Avoid electromigration & self-heating wearout

• Consume little chip area and wire

• Easy to lay out

More (Wider) Power Lines:

• Less Static (IR) drop

• Less Dynamic (dI/dt) drop

• Less Electromigration

More (Wider) Power Lines:

• Fewer (signal) routing 

resources 

(i.e., higher congestion)

B
U

T
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Power Distribution Challenge

• Assume we have a 1mm long power rail in M1.

• Square resistance is given to be 0.1 ohm/square

• If we make a 100nm wide rail, 

what is the resistance of the wire?

• Now, given a max current of 1mA/1um, due to 

Electromigration, what is the IR drop when 

conducting such a current through this wire?

• So what do we do?

• Make the power rails as wide and as thick as possible!

3

9
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100 10

m
R R L W

m

−

−
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

max

4 3
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1mA
100nm 0.1mA
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I

IR I R −

=  =
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Hot Spots

• We generally map the IR drop of a chip using a color map to 

highlight “hot spots”, where the IR drop is bad.

Design Import
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Finish Design

Initial IR Drop Mapping After adding a single wire!

Source: 

Cadence
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Power and Ground Routing

• Each standard cell or macro has power and ground 

signals, i.e., VDD (power) and GND (ground)

• They need to be connected as well

• Power/Ground mesh will allow multiple paths 

from P/G sources to destinations

• Less series resistance

• Hierarchical power and ground meshes

from upper metal layers to lower metal layers

• Multiple vias between layers

• You can imagine that they are HUGE NETWORKS!

• In general, P/G routings are pretty regular

• P/G routing resources are usually reserved

Design Import
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Route
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Standard Approaches to Power Routing

• Power Grid
• Interconnected vertical and horizontal power bars.

• Common on most high-performance designs. 

• Often well over half of total metal on upper thicker layers 

used for VDD/GND. 

• Dedicated VDD/GND planes. 
• Very expensive. 

• Only used on Alpha 21264, Dropped on subsequent Alphas.

• Simplified circuit analysis. 

• Some thoughts/trends:
• P/G I/O pad co-optimization with classic physical design 

• Decoupling capacitors to reduce P/G related voltage drop

• Multiple voltage/frequency islands make the P/G problem 

and clock distributions more challenging.
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Power Grid Creation

• Tradeoff IR drop and EM versus routing resources
• Require power budget

• Initial power estimation

• Average current, max current density

• Need to determine
• General grid structure (gating or multi-voltage?)

• Number and location of power pads (per voltage)

• Metal layers to be used

• Width and spacing of straps

• Via stacks versus available routing tracks

• Rings / no rings

• Hierarchical block shielding

• Run initial power network analysis to confirm design

Mx

Mx-1

Mx-2

Mx

Mx-1

Mx-2

Power lines

Signal routing area
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Power Grid Creation – Macro Placement
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performance and 
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Summary – Floorplanning in Innovus

• Floorplanning is very specific to each design and can

include many commands, but the general flow is:

• Initialize Design:
• Define Verilog netlist, MMMC (timing, SDC, extraction, etc.), 

LEF, IO placement

• Specify floorplan
• Define floorplan size, aspect ratio, target utilization

• Place hard macros
• Absolute or relative placement

• Define halos and blockages around macros

• Define regions and blockages
• If necessary, define placement regions 

and placement blockage

• If necessary, define routing blockage
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Summary – Floorplanning in Innovus

• Define Global nets
• Tell the tool what the names of the global nets (VDD, GND) 

are and what their names are in the IPs.

• Create Power Rings
• Often rings for VDD, GND are placed around the chip 

periphery, as well as around each individual hard IP.

• Build Power Grid
• Connect standard cell ‘follow pins’

• Build power stripes on metal layers

• Make sure power connects to hard IPs robustly

• Assign Pins
• If working on a block (not fullchip), assign pins to the 

periphery of the floorplan.

Design Import
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Init Design

Specify Floorplan

Place Hard Macros
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Main References

• IDESA

• Rabaey

• CMOS VLSI Design

• EPFL Tutorial

• Experience!


