
Digital Integrated Circuits

(83-313)

Semester B, 2015-16

Lecturer: Adam Teman

TAs: Itamar Levi, Robert Giterman 1

Lecture 6:

SRAM



Why Memory?



3

Semiconductor Memory Classification

Memory Arrays

Random Access Memory Serial Access Memory Content Addressable Memory

(CAM)

Read/Write Memory

(RAM)

(Volatile)

Read Only Memory

(ROM)

(Nonvolatile)

Static RAM

(SRAM)

Dynamic RAM

(DRAM)

Shift Registers Queues

First In

First Out

(FIFO)

Last In

First Out

(LIFO)

Serial In

Parallel Out

(SIPO)

Parallel In

Serial Out

(PISO)

Mask ROM Programmable

ROM

(PROM)

Erasable

Programmable

ROM

(EPROM)

Electrically

Erasable

Programmable

ROM

(EEPROM)

Flash ROM



4

Memory Hierarchy of a Personal Computer

From Pavlov, Sachdev, 2008



Memory Classification

5

Size: 

Bits, Bytes, Words

Timing Parameters: 

read access, write access, cycle time

Function:

Read Only (ROM) – non-volatile

Read-Write (RWM) – volatile (SRAM, DRAM)

NVRWM – Non-volatile Read Write (EPROM, Flash)

Access Pattern:

Random Access, FIFO, LIFO, Shift Register, CAM

I/O Architechture:

Single Port, Multiport

Application:

Embedded, External, Secondary



2
1

3 4 5

6

SRAM Memory 

Architecture
The 6T SRAM 

Bitcell

SRAM Stability SNM Calculation Peripheral 

Circuits



Random Access Chip Architecture

7

Conceptual: linear array
Each box holds some data

But this leads to a long and skinny shape

Let’s say we want to make a 1MB memory:
1MB=220 words X 8 bits=223 bits, each word in a separate row

A decoder would reduce the number of access pins from 220 access pins to 
20 address lines.

We’d fit the pitch of the decoder to the word cells, so we’d have Word Lines 
with no area overhead.

The output lines (=bit lines) would be extremely long, as would the delay of 
the huge decoder.

The array’s height is about 128,000 times larger than its width (220/23).



Square Ratio

8

Instead, let’s make the array square:

1MB=223 bits=212 rows X 211 columns.

There are 4000 rows, so we need a 12-bit 

row address decoder (to select a single row)

There are 2000 columns, 

representing 256 8-bit words.

We need to select only one of the 

256 words through a column address 

decoder (or multiplexer).

We call the row lines “Word Lines” 

and the column lines “Bit Lines”.



Special Considerations

9

The “core” of the memory array is huge. 

It can sometimes take up most of the chip area.

For this reason, we will try to 

make the “bitcell” as small as possible.

A standard Flip Flop uses at least 

10 transistors per bit. This is very area consuming.

We will trade-off 

area for other circuit properties:

Noise Margins

Logic Swing

Speed

Design Rules

This requires special peripheral circuitry.



10

Memory Architecture

Memory Size: L Words of M bits
=2MxL bits

Multiplexing Factor: K

Number of Rows: 2L-K

Number of Columns: Mx2K

Row Decoder: L-K  2L-K

Column Decoder: K  2K



11

Memory Timing: Definitions



1
2

3 4 5

12

The 6T 

SRAM Bitcell
SRAM Memory 

Architecture
SRAM Stability SNM Calculation Peripheral 

Circuits



13

Basic Static Memory Element



14

Positive Feedback: Bi-Stability



15

Writing into a Cross-Coupled Pair



16

How should we write a ‘1’

Option 1: nMOS Access Transistor

Passes a “weak ‘1’”, bad at pulling up 
against the feedback

Option 2: pMOS Access Transistor

Option 3: Transmission Gate

Passes a “weak ‘0’”, bad at pulling 
down against the feedback

Writes well, but how do we read?

Solution: Differential nMOS Write



17

6-transistor CMOS SRAM Cell 

M2 M5

M3

M1

M6

M4

BLBBL

Q QB

WL WL



SRAM Layout - Traditional

18

Share Horizontal Routing (WWL).

Share Vertical Routing (BL, BLB).

Share Power and Ground.

M2 M5

M3

M1

M6

M4

BLBBL

Q QB

WL WL



SRAM Layout – Thin Cell

19

Avoid Bends in Polysilicon and Diffusion

Orient all transistors in one direction.

Minimize Bitline Capacitance. M2 M5

M3

M1

M6

M4

BLBBL

Q QB

WL WL



20

65nm SRAM



21

SRAM Operation: HOLD

M2 M5

M3

M1

M6

M4

BLBBL

Q QB

WL WL



22

SRAM Operation: READ

M3

M2

Q=VDD

BL

QB

WL
Left Side:
Nothing 

Changes…

Right Side:
“nMOS” inverter –

QB voltage rises

M2 M5

M3

M1

M6

M4

BLBBL

Q QB

WL WL

M5

M4

QB=ΔV

BLB

Q

WL



23

SRAM Operation - Read

M1 M4

M6M3

M2 M5

B
L

B
LB

WL WL

QB=‘0’
Q=‘1’

C
B

LB

C
B

L

VDD VDD

M5

M4

QB=ΔV

BLB

Q

WL 4

4

5

5

W
L

CR
W

L



Cell Ratio:

 
2

DSat,n

M5 DD T,n DSat,n
2

V
k V V V V

 
     

 
 

2

M4 DD T,n
2

V
k V V V

 
   

 

     
22 2

DSat,n DD T,n DSat,n DD T,n1V CR V V V CR CR V V
V

CR

     
 



24

Cell Ratio (Read Constraint)

So we need the pull 
down transistor to be 

much stronger than the 
access transistor…

4

4

5

5

W
L

CR
W

L



M5

M4

QB=ΔV

BLB

Q

WL



25

SRAM Operation: WRITE

M2 M5

M3

M1

M6

M4

BLBBL

Q QB

WL WL

Left Side:
Same as during read –

designed so ΔV<VM

Right Side:
Pseudo nMOS 

inverter!

M6

M5

QB=VOLmin

BLB

Q

WL

M2

M1

Q=ΔV

BL

QB

WL



26

SRAM Operation - Write

M1 M2

M6M3

M2 M5

B
L

B
LB

WL WL

QB=‘1’
Q=‘0’

VDD

‘0’

M6

M5

QB=VOLmin

BLB

Q

WL

 
2

DSat,p

M6 DD T,p DSat,p
2

V
k V V V

 
   

  

 
2

M5 DD T,n
2

QB

QB

V
k V V V

 
  

  

   
2

2 p DSat,p

DD T,n DD T,n DD T,p DSat,p

n

2
2

QB

V
V V V V V PR V V V





 
       

  

6

6

5

5

W
L

PR
W

L



Pull-Up Ratio



27

Pull Up Ratio – Write Constraint

6

6

5

5

W
L

PR
W

L



So we need the access 
transistor to be much 
stronger than the pull up 
transistor…

M6

M5

QB=VOLmin

BLB

Q

WL



28

Summary – SRAM Sizing Constraints

Read Constraint

Write Constraint

3 6

3 6

2 5

2 5

W W
L L PUN

PR
W W access

L L

  

1 4

1 4

2 5

2 5

W W
L L PDN

CR
W W access

L L

  

PDN accessK K

access PUNK K

PDN access PUNK K K 



29

Commercial SRAMs

Intel Design Forum 2009



30

4T Memory Cell

Achieve density by removing the PMOS pull-up. 

However, this results in static power dissipation.



31

Multi-Port SRAM

Two Port SRAMDual Port SRAM



1
3

2 4 5

32

SRAM 

Stability
SRAM Memory 

Architecture
The 6T SRAM 

Bitcell

SNM Calculation Peripheral 

Circuits



33

Static Noise Margin - Hold



34

Static Noise Margin - Hold

1. Plot both VTCs on the same graph
2. Find the maximum square that 

fits in the VTC.
3. The SNM is defined as the side of 

the maximum square.

M4

M6

Q QB

M1

M3

Q QB



35

Static Noise Margin - Read

What happens during Read?

We can’t ignore the access transistors anymore…

Vin

Vout

M1 M4

M6M3

M2 M5

B
L

B
LB

WL WL

Q QB

C
B

L

C
B

LB

VDD VDD

M4

M5M6

Q
QB

M1

M2M3

QB Q



36

Static Noise Margin - Read

Q

QB

SNM

M1

M2M3

QB Q

M4

M5M6

Q
QB



37

Static Noise Margin - Write

What happens during Write?

The two sides are now different.

M1 M2

M6M3

M2 M5

B
L

B
LB

WL WL

QB
Q

VDD

‘0’

M4

M6

Q
QB

M5

M1

M2M3

QB Q

Q

QB QB

Q



38

Static Noise Margin - Write

M4

M6

Q
QB

M5

M1

M2M3

QB Q

QB

Q

WSNM

If there is a stable 
point here, the 
wrong data is 

written!



39

Alternative Write SNM Definition

Write SNM depends on the cell’s separatrix, therefore alternative definitions 

have been proposed.

For example, add a DC Voltage (VBL) to the 0 bitline and see how high it can 

be and still flip the cell.

M1

M2M3

QB Q

M4

M6

Q
QB

M5

VBL

QB

Q

VBL=0
VBL=VDD



Dynamic Stability

40



1
4

2 3 5

41

SNM 

Calculation
SRAM Memory 

Architecture
The 6T SRAM 

Bitcell

SRAM Stability Peripheral 

Circuits



Simulating SNM

43

Problem:

How can we calculate SNM with SPICE?

Some options:

Insert DC sources at Q and QB

But where exactly do we connect them?

Draw Butterfly Curves

But how do we find the largest squares?

To run Monte Carlo Simulations we should 

have an easy way of calculation.



Simulating SNM

44

First let’s define the graphical solution:

The diagonals of all the squares are on lines parallel to Q=QB.

We need to find the distance 

between the points where these 

intersect the butterfly plot.

The largest of these distances 

is the diagonal of the maximum 

square in each lobe.

Multiply this by cos45

and we get the SNM.

Easy, right?



Changing Coordinates

45

What if we were to turn the graph?



Changing Coordinates

46

If we were to use new axes, we could just subtract the graphs.

This gives us the distances between the intersections with the Q=QB

parallels.

Now all we have to do is

find the maximum of the 

subtraction.

(Don’t forget to multiply by cos45)



Changing Coordinates

47

The required transformation is:

Now let’s define some function as F1

Substituting y=F1(x) gives:

1 1

2 2

1 1

2 2

x u v

y u v

 

  

 1

1

1 1
2

2 2

y F x

v u F u v



 
   

 



Changing Coordinates

48

What we did is turn some function (F1) 45 degrees
counter clockwise.

This can easily be implemented with the following circuit:

What is F1?

It could be the VTC of Vin=Q, Vout=QB…



Changing Coordinates

49

But what about the “mirrored” VTC?

This needs to first be mirrored with respect to the v axis and then 

transformed to the (u,v) system.

If we call the second VTC F2, then the operation we need is:

22
2 2

v u
v u F

 
    

 



Final SNM Calculation

50

Now we need to:

Make a schematic of our SRAM 

cell with two pins: Q and QB.

Create a coordinate changing circuit 

for each of the transformations.

6T Cell
Q QB

BL WL BLB

6T Cell
Q QB

BL WL BLB

Q2 QB2

Q2 QB2

GND

GND

VDDVDD

VDDVDD

Transformation 1
u

F1(in) F1(out)

v1

Transformation 2
u

F2(in) F2(out)

v2

DC Sweep

DC Sweep

Q1 QB1

v1

QB2 Q2

v2



Final SNM Calculation

51

Now, connect F1 to QQB, and F2 to QBQ.

Run a DC Sweep on u from –VDD/√2 to VDD/√2

This will present the butterfly curves 

turned 45 degrees.

6T Cell
Q QB

BL WL BLB

6T Cell
Q QB

BL WL BLB

Q2 QB2

Q2 QB2

GND

GND

VDDVDD

VDDVDD

Transformation 1
u

F1(in) F1(out)

v1

Transformation 2
u

F2(in) F2(out)

v2

DC Sweep

DC Sweep

Q1 QB1

v1

QB2 Q2

v2



Final SNM Calculation

52

Now just:

Subtract the bottom graph from the top one.

Find the local maxima for each lobe.

The smaller of the local maxima 

is the diagonal of the largest square.

Multiply this by cos45 for the SNM

   
2 0 0 2

1
min max 1 2 ,max 1 2

2 u u
SNM v v v v

    

    
 



Read/Write SNM

53

How about Read SNM:

Use the exact same setup.

Connect BL and BLB to VDD.

Connect WL to VDD.

Run the same calculation.

And Write SNM.

Now connect one BL to GND.

This is trickier, so you’ll have to play around with the 

calculation.

There are other options for WM calculation.



Testbench Setup – Read/Write

54

Transformation 1
u

F1(in) F1(out)

v1

Transformation 2
u

F2(in) F2(out)

v2

DC Sweep

DC Sweep

Q1 QB1

v1

QB2 Q2

v2

Transformation 1
u

F1(in) F1(out)

v1

Transformation 2
u

F2(in) F2(out)

v2

DC Sweep

DC Sweep

Q1 QB1

v1

QB2 Q2

v2

6T Cell
Q QB

BL WL BLB

6T Cell
Q QB

BL WL BLB

Q2 QB2

Q2 QB2

VDDGND

VDDGND VDD

VDD

6T Cell
Q QB

BL WL BLB

6T Cell
Q QB

BL WL BLB

Q2 QB2

Q2 QB2

VDD

VDDVDD

VDD

VDD

VDD

Read Testbench:

Write Testbench:



1
5

2 3 4

55

Peripheral 

Circuits
SRAM Memory 

Architecture
The 6T SRAM 

Bitcell

SRAM Stability SNM Calculation



Major Peripheral Circuits

56

Row Decoder

Column Multiplexer

Sense Amplifier

Write Driver

Precharge Circuit



Row Decoders

57

A Decoder reduces the number of select signals by log2.

Number of Rows: N

Number of Row Address Bits: log2N



Standard Decoder Design:

Each output row is driven by an AND gate with k=log2N inputs.

Each gate has a unique combination of address inputs (or their inverted values).

For example, an 8 bit row address has 256 8-input AND gates, such as:

NOR Decoder:

DeMorgan will provide us with a NOR Decoder.

In the previous example, we’ll get 256 8-input NOR gates:

Row Decoders

58

0 7 6 5 4 3 2 1 0WL A A A A A A A A

255 7 6 5 4 3 2 1 0WL A A A A A A A A

0 7 6 5 4 3 2 1 0WL A A A A A A A A       

255 7 6 5 4 3 2 1 0
WL A A A A A A A A       



How should we build it?

59

Let’s build a row decoder for a 256x256 SRAM Array.

We need 256 8-input AND Gates.

Each gate drives 256 bitcells

We have various options:

Which one is best?



1
5

2 3 4

60

Peripheral 

Circuits
SRAM Memory 

Architecture
The 6T SRAM 

Bitcell

SRAM Stability SNM Calculation

Logical Effort of a Decoder



Reminder: Logical Effort

61

 ,pd i pINV i it t p EF  , 1

,

i in i

i i i i

in i

b C
EF LE f LE

C


  

,1

L
i i

in

C
PE F LE B LE b

C
      

N N
opt i iEF PE F LE b   

log log
opt optopt EF EFN PE F LE B   

   N

pd pINV i i pINV it t p EF t p N PE      



Problem Setup

62

For LE calculation we need to start with:

Output Load

Input Capacitance

Branching

What is the Load Capacitance?

256 bitcells on each Word Line

Let’s ignore the wire for now…

What is the Input Capacitance?

Let’s assume our address drivers

can drive a bit more than a bitcell, so:

256WL Cell WireC C C  

, _ 4in addr driver CellC C 



Problem Setup

63

What is the Branching Effort?

Lets take another look 

at the Boolean expressions:

We see that half of the signals use Ai and half use Ai!

So each address driver drives 128 8-input AND gates, but only one is on the 

selected WL path.

0 7 6 5 4 3 2 1 0

255 7 6 5 4 3 2 1 0

WL A A A A A A A A

WL A A A A A A A A





_

; 127

127
128

on path nand off path nand

on path off path nand nand
add driver

on path nand

C C C C

C C C C
B

C C

  

  
  



Number of Stages

64

Altogether the path effort is:

The best case logical effort is

So the minimum number of 

stages for optimal delay is:

That’s a lot of stages! 

13

256
128

4

8 2

WL Cell
i

address Cell

C C
LE B F LE b LE

C C

LE k LE

      

   

1LE 

13

13

3.6

2

log 2 7opt

PE

N



 



So which implementation should we use?

65

The one with the minimum Logical Effort:

 10 3 1

10 3;

8 1 9

LE

p

  



  

 2 5 3

10 3

4 2 6

LE

p

  



  

     4 3 5 3 4 3 1

80 27;

2 2 2 1 7

LE

p

    



    

 
3

4 3

2.37;

2 3 1 3 9

LE

p

 



    



New optimal number of Stages

66

So now we can calculate 

the actual path effort:

We could add another inverter or two 

to get closer to the optimal number of stages…

13

3.6

2.37 2 19.418

log 7.7

i i

opt

PE F b LE

k

N PE

   

  

 



Implementation Problems

67

Address Line Capacitance:

Our assumption was that Cin,addr_driver=4Ccell.

But each address drives 128 gates, resulting in a really long wire with high 

capacitance.

This means that we will need to buffer the address lines, and probably ruin 

our whole analysis...

Bit-cell Pitch:

Each signal drives one row of bitcells.

How will we fit 8 address signals into this pitch?



Predecoding - Concept

68

Solution:

Let’s look at two decoder paths: W254, W255

We see that there are many “shared” gates.

So why not share them?

For instance, we can use the purple output 

for both gates…



Predecoding - Method

69

How do we do this?

If we look at the final Boolean expression, 

it has combinations of groups of inputs.

By grouping together a few inputs, 

we actually create a small decoder. 

Then we just AND the outputs of all the “pre” decoders.

For example: Two 4:16 predecoders

   0 1 3 4 5 6 7 8

0 0 0 255 15 15 254 15 14

, , , ; , , , ;

; ; ;

D dec A A A A E dec A A A A

W D E W D E W D E

 

     



Predecoding - Example

70

Let’s look at our example:

What is our new branching effort?

As before, each address drives half the lines of the small decoder.

Each predecoder output drives 256/16 post-decoder gates.

Altogether, the branching effort is:

Same as before!

 

 

0 1 3 4

5 6 7 8

, , ,

, , ,

D dec A A A A

E dec A A A A





0 0 0

255 15 15

254 15 14

W D E

W D E

W D E

 

 

 

_
16 256 128

2 16addr driver predecoderB b b    



Predecoding - Solution

71

Why is this a better solution?

Each Address driver is only driving four gates 

less capacitance.

We saved a ton of area by “sharing” gates.

We can “Pitch Fit” 2-input NAND gates.



Another Predecoding Example

72

We can try using four 2 input predecoders:

This will require us to use 256 4-input NAND gates.



How do we choose a configuration?

73

Pitch Fitting:

2-input NANDs vs. 4-input NAND.

Switching Capacitance:

How many wires switch at each transition?

Design for power!

Stages Before the large cap.

Distribution of the load along the delay.

Conclusion:

Usually do as much predecoding as possible!



Alternative Solution: Dynamic Decoders

74



1
5

2 3 4

75

Peripheral 

Circuits
SRAM Memory 

Architecture
The 6T SRAM 

Bitcell

SRAM Stability SNM Calculation

Other Peripherals



Column Multiplexer

76

First option – PTL Mux with decoder

Fast – only 1 transistor in signal path.

Large transistor Count
A0A1

B0 B1 B2 B3

Y



4 to 1 tree based column decoder

77

Second option – Tree Decoder

For 2k:1 Mux, it uses k series transistors.

Delay increases quadradically

No external decode logic  big area reduction.



Combining the Two

78



Precharge Circuitry

79

Precharge bitlines high before reads

Equalize bitlines to minimize voltage difference when using sense 

amplifiers



bit bit_b



bit bit_b



Sense Amplifiers

80

t
p

C V

Iav

----------------=

make V as small

as possible

smalllarge

Idea: Use Sense Amplifer

outputinput

s.a.
small
transition



Differential Sense Amplifier

81

Non-clocked Sense Amp has high static power.

Clocked sense amp saves power

Requires sense_clk after enough bitline swing

Isolation transistors cut off large bitline capacitance


