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Abstract-In this paper we analyze the connectivity of cognitive 
radio ad-hoc networks. Contrary to previous works, we pursue 
the connectivity of bolh the primary and secondary networks, 
astate we call "simultaneous connectivity". We determine that 
if the networks are simultaneously connected then their infinite 
connected components are unique. In addition, we characterize 
the region of densities in which both the primary and secondary 
networks have a unique infinite connected component. 

I. INTRODUCTlON 

Connectivity is an essential property for the operation of 
networks. The analysis of the connectivity of mobile ad-hoc 
networks can be challenging, for these networks do not have 
fixed structures. A natural method for analyzing the connectiv­
ity of mobile ad-hoc networks is continuum percolation [1]­
[6]. It is assumed that the nodes of the network are distributed 
according to a Poisson point process (PPP) and that two 
nodes are connected if the distance between them does not 
exceed a certain value. A network is said to be connected 
(or percolated) under continuum percolation models if there 
exists an unbounded (or infitine) connected component in the 
network. There is a prolific literature on the connectivity of 
large-scale homogeneous networks including [1], [2], [7]-[10]. 
These works assume one network scenario in which all the 
nodes belong to a single network. A realization of such a 
network is depicted in Fig. 1. 

In recent years, radio communication applications became 
ubiquitous in communication systems. These applications 
spectrum demands exhaust the limited and valuable free 
spectrum resources. New regulations aim at balancing the 
growing radio communication demands with the limited free 
spectrum resources. To accomplish this challenging goal, a 
new concept dubbed Cognitive Radio has emerged. Cognitive 
radio networks improve spectrum utilization by giving the 
opportunity to cognitive (secondary) users to transmit while 
Iimiting their interference on non-cognitive (primary) users in 
the network. 

The connectivity of non-cooperative ad-hoc cognitive radio 
networks with heterogeneous nodes is considered in several 
works, among them are [4]-[6], [11]-[13]. However, these 
works analyze models in which the secondary nodes are 
components of a multi-hop network, whereas the primary 
nodes are only apart of a single-hop network. These limited 

Fig. l. A realization of a homogeneous network with parameters ).. = 
40 km- 2 and p = D t = 210 m. The black lines indicate the disks that 
compose the largest connected component. 

models do not capture the complex connectivity demands of 
cognitive radio networks with multi-hop primary network. 

In this paper we pursue the connectivity of both primary 
and secondary networks of a cognitive radio ad-hoc network. 
This is the first work that discusses this setup, we hope that 
our analysis provides motivations and insights into generaliza­
tions of applications of stochastic geometry such as routing, 
medium-access control and interference analysis in wireless 
networks. We call the state in which both of these networks 
are connected "simultaneous connectivity". We assume that the 
nodes of the primary and secondary networks are distributed 
according to two independent two-dimensional PPPs with 
densities Ap and As , respectively. Every primary node has 
a transmission range D t , and every secondary node has a 
transmission range dt . We assume that a secondary node is 
not active, unless its distance to each primary node exceeds 
a length of D f . We call this model the heterogeneous model; 
Figs. 1-3 depict a realization for such a model: Fig. 1 depicts 
the primary network, Fig. 2 includes the guard zone of each 
primary user and active and passive secondary nodes, and Fig. 
3 depicts the active nodes of the secondary network. 

Define the simultaneous connectivity region to be the set of 
all 5-tuples (Dt , dt ,Df ,Ap , As ) for which there is at least 
one unbounded connected component in both the primary and 
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Fig. 2. The guard zone of the primary nodes which appear in Fig. land a 
realization of the active and passive secondary nodes. We set .\8 = 60km- 2 , 

.\p = 40km - 2, D f = 60 m. Green disks depict the guard zone of the 
primary nodes, blue + indicates active secondary no des and black x indicates 
passive secondary nodes. 

Fig. 3. The active secondary nodes of the realization which appears in 
Fig. 2 and the parameter dt = 230 m. The black lines indicate the disks 
that compose the largest connected component of the secondary network. 

secondary networks. In this paper we analyze the relationship 
between the densities Ap and A8 of the two dimensional PPPs 
and the radii Dt , dt and D f. Our analysis provides motivations 
and insights into generalizations of applications of stochastic 
geometry such as routing [14]-[17], medium-access control 
[18]-[22] and interference analysis in wireless networks [23]­
[27]. We note that there are many additional works regarding 
stochastic geometry and its applications in the analysis and 
design of wireless ad-hoc networks, see for example [25], 
[28]-[31]. However, due to space limitation we only cite 
several articles. 

11. SYSTEM MODEL AND DEFINITIONS 

In this seetion we present the heterogeneous model. We 
also state fundamental definitions and results of Percolation 
Theory which we apply in our analysis of the connectivity of 
the heterogeneous model. 

A. The Heterogeneous Model 

In this model the primary nodes are distributed according to 
a two-dimensional PPP with density Ap . We assume that the 
transmission range of primary nodes , Dt , is fixed. Similarly, 
the nodes of the secondary network are distributed according 
to a PPP with density A8 .This PPP is independent of the PPP 
of the primary network. We also assume that the transmission 
range of secondary nodes, dt , is fixed. We next provide several 
definitions corresponding to the heterogeneous model. 

Definition 2.1: There is a communication opportunity from 
node Xi to node Xj in the primary network if Ilxi -xjI12<::: D t , 

where 11·112 denotes the L 2 norm. 
Definition 2.2: There is a communication opportunity from 

node Zi to node Zj in the secondary network if the following 
conditions hold: 

1) Ilzi - Zj 112<::: dt , 

2) there is no primary node x such that 11 x - Zi 112<::: D f' 
3) there is no primary node x such that Ilx - zj112<::: D f . 

Consequently, D f is the radius of the guard zone of a primary 
node and transmitting/receiving secondary nodes. 

We only discuss bidirectional links; that is, we say that 
there is a link between the nodes Zi and Zj if there exists 
a communication opportunity from node Zi to node Zj and 
vice versa. 

Definition 2.3: Let X p be the set of nodes of the primary 
network. The connected component of node x E X p consists 
of all nodes in X p for which there exists a path to x in X p 

such that every two consecutive nodes in the path have a com­
munication opportunity. Additionally, an unbounded connected 
component of the primary network is a connected component 
of the primary network which consists of an infinite number 
of nodes. 

The definition of a connected component in the secondary 
network is similar. 

Definition 2.4: The simultaneous connectivity region C 
consists of all 5-tuples (Dt , dt , D f , Ap , A8 ) such that both 
the primary and secondary networks include a.s. at least one 
unbounded connected component. 

The connectivity of the primary and secondary networks 
can be studied by representing the two networks by the 
two independent Boolean models (see the following seetion). 
Nevertheless, our connectivity definitions differ from those of 
a simple Boolean model (see [32]). 

We now provide some definitions which are required for the 
analysis of the heterogeneous model. 

B. The Gilbert Disk (Boolean) Model 

The Gilbert disk model scatters points in ]R2 according to a 
PPP. Each point in the PPP is assumed to have a fixed radius. 
In the following we present several definitions related to the 
Gilbert disk model. 

Definition 2.5 (Point Process): Let ß2 be the O'-algebra of 
Borel sets in ]R2, and let N be the set of all simple counting 
measures on ß2. Let N be the O'-algebra which is generated 
by the sets 

{n E N: n(A) = k}, (I) 
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where A E 3 2 , and k is an integer. A point process X is 
a measurable mapping from a prob ability space (0 , F , P) 
into (N , N). The distribution of X is denoted by fL and is 
defined by IL(G) = P(X-l(G)), for all GEN. Hereafter, 
for convenience we refer to (N , N) as (0 , F). 

Definition 2.6 (Gilbert Disk (Boolean) Model): Suppose 
that X is a point process. A Gilbert disk (Boolean) model 
is composed of point process X and a fixed radius p such that 
each point x E X is a center of a disk with a fixed radius p. 
Note that this model is equivalent to a Boolean model with 
fixed radii. As mentioned before, in this paper we assume that 
X is a PPP with density A. We denote this Poisson Gilbert 
disk (Boolean) model by (X , P , A). 

We represent the heterogeneous network by the following 
Gilbert disk models (Xp ,Dt/2,Ap ) and (Xs ,dt/2,As ), where 
(Op , Fp , Pp) and (Os, Fs , Ps) are the probability spaces of 
two independent PPPs X p and X s , respectively. Further, Dt 

and dt are the transmission radii in the primary and secondary 
networks, respectively. 

C. Occupied Components 

Define O(z, r) ~ {x E ~2 : Ilx - z112:::: r}. Every Poisson 
Boolean model (X , p, A) partitions ~2 into two regions, the 
occupied region, which we denote by 

O~UO(x,p), (2) 
xEX 

and the va cant region. The occupied region consists of the 
points in ~2 that are covered by at least one disk, whereas the 
vacant region consists of all points in ~2 that are not covered 
by any disko 

Two nodes Xl , X2 E X are connected if O(XI , p) n 
0(X2,p) -I- 0 (however, in the secondary network we consider 
only active nodes). The connected components in the occupied 
region are called occupied components, while the connected 
components in the vacant region are called vacant components. 

We remark that by definition of the occupied components 
in the Boolean model, two nodes are connected if the distance 
between them does not exceed 2p. Therefore, we represent 
each network by a model in which p is half of the trans­
mission radius. Further, an occupied component/region in the 
secondary network consists only of active secondary nodes of 
the secondary network. 

D. The Critical Probability 

We next define the critical probability of the Gilbert disk 
model. 

Definition 2.7 ( Critical Probability): Let d( A) ~ 
sUPx,YEAlx - Yl . Denote by Bp(A) the probability that the 
origin is an element of an unbounded occupied component of 
the Gilbert disk (Boolean) model (X , p , A), that is 

Bp(A) ~ Pr(d(W) = (0). 

The critical density Ac (2p) is defined by 

Ac(2p) ~ infp ~ 0 : Bp(A) > O}. (3) 

As we next state, the critical probability has a strong tie to the 
crossing probabilities which we define next. 

E. Unit Transformations 

We now define unit transformations of the heterogeneous 
model. We later use this definition in the discussion of the 
ergodicity of the heterogenous model. 

Definition 2.8: Let 3 2 denote the Borel sets of ~2 and let 0 
be a set of simple counting measures on 3 2 . Let t E ~2 and 
Tt : ~2 --+ ~2 be defined by the translation Ttx = x + t. Tt 
then induces the transformation St : 0 --+ 0 for each A E 3 2 

through the equation (see [32, p. 22]) 

(Stw)(A) = w(Tt- l A) , Vw E O. (4) 

Let n = Op x Os, j: = Fp x F s and P = Pp x Ps. Denote 
the unit vectors of ~2 by el , e2. It follows that Tt induces the 
transformation Tt on n where 

(5) 

More specifically, Tei induces the transformation Tei on n 
where 

(6) 

III. SIMULTANEOUSLY CONNECTED COMPONENTS 

In this section we establish the connectedness of the simul­
taneous connectivity region, and several results regarding the 
number of unbounded connected components in the primary 
and secondary networks and their existence. 

Proposition 3.1: The simultaneous connectivity region C is 
connected. 
The proof of this proposition can be found in [33, Proposition 
3.1]. 

Proposition 3.2: The heterogeneous model is ergodic (with 
respect to the unit transformations). 
The proof of this proposition can be found in [33, Proposition 
4.1]. 

From the ergodicity of the model we deduce that the number 
of unbounded connected components in each of the networks 
is constant a.s. 

Proposition 3.3: The number of unbounded connected com­
ponents in the primary network and the number of unbounded 
connected components in the secondary network are constant 
a.s. 
Due to space limitations the proof of this proposition is omitted 
and can be found in [33, Proposition 4.2]. 

Theorem 3.4: There is at most one unbounded connected 
component in the primary network and at most one unbounded 
connected component in the secondary network. 

Theorem 3.5: Let Dt , dt > 0 be given. For every Ap > 
Ac (Dt ) and As > Ac (dt ) there exists D f > 0 such that there 
is an unbounded connected component in the primary network 
and also an unbounded connected component in the secondary 
network. 
The proofs of Theorems 3.4 and 3.5 are presented in [33, 
Theorems 4.3, 4.4], respectively. 
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IV. NECESSARY CONDITlONS FOR SIMULTANEOUS 

CONNECTlVITY 

In this section we state necessary conditions for simultane­
ous percolation in both the primary and secondary networks. 
These two conditions are found by implementing two differ­
ent methods. The first condition, stated in Theorem 4.1, is 
found by considering the fact that there cannot exist both an 
unbounded vacant component and an occupied component in 
a Gilbert disk (Boolean) model a.s. 

Theorem 4.1: Suppose that 2Df > dt , then 

As > di 2Ac(1), 

Di2Ac(1) < Ap < (4DJ - d;)-l Ac(l) (7) 

are necessary conditions for simultaneous percolation in both 
networks. 
The proof of this theorem is presented in [33, Theorem 5.1]. 

Another set of conditions for simultaneous connectivity is 
obtained by discretization onto a site percolation in which each 
site has eight neighbors. This set of conditions explores the 
relationship between the densities of the primary secondary 
networks under the simultaneous ~ercolation regime. 

Theorem 4.2: Let 'np ~ I v:5: t l . Denote by Ps the critical 
probability of site percolation with eight neighbors. Then 

As > di 2Ac(1), 

Ap > Di 2 Ac(l), 

(
'np )2 ( ( _Ad2 )l/np ) Ap < - d; In 1 - 1 - e s t - Ps (8) 

are necessary conditions for simuItaneous percolation in both 
networks. 
Due to space limitations the proof of this theorem is omitted 
and can be found in [33, Theorem 5.2]. 

By applying the lower bound i .-::: Ps (see [34, Chapter 2.2]) 
to Theorem 4.2 we obtain the following corollary. 

Corollary 4.3: Let 'np ~ I v:5:' l2. Then 

2 As > di Ac(l), 
2 Ap > Di Ac(l), 

Ap < _ (:: ) 2 In (1 _ (~ _ e-A8d~ ) I/np) . (9) 

are necessary conditions for simuItaneous percolation in both 
networks. 
The proof of this corollary is presented in [33, Corollary 5.3]. 

V. SUFFIClENT CONDITlONS FOR SIMULTANEOUS 

CONNECTlVITY 

In this section we present the sufficient conditions for the 
existence of both primary and secondary connected unbounded 
components. We find these conditions by discretizing the 
continuous model onto adependent site percolation model 
[34], [35]. We discretize the heterogeneous model in a way that 
ensures that if there exists an unbounded connected occupied 
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Fig. 4. A k-dependent site percolation. A red box around a site encloses its 
dependent sites. The sites 81 and 82 are independent. 

component in the discrete site percolation, an unbounded 
connected component exists in the continuous model as weIl. 

Adependent site percolation is a site percolation in which 
the state of a site may depend on the states of other sites. If 
the state of a site only depends on the states of the sites that 
are separated by a path of minimum length k < 00 we say 
that the model is k-dependent (see Fig. 4). 

Let P be the marginal probability for a site to be open in a 
stationary dependent site model. By [34, Theorem 2.3.1], there 
exists p( k) such that for p > p( k) there exists an unbounded 
occupied component a.s. It follows that there exists Ps (k) such 
that for all p > Ps (k) there exists an unbounded occupied 
component in the k-dependent site percolation models with 
eight neighbors. 

Let S(t,Df ) stand for the (random) intersected area between 
two disks ofradius D f with centers at distance1 t. Further, let 

be the probability density function of the random distance t 
between the two centers, each generated independently trom 
the box of side length e. Denote, es = 2~' 
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Theorem 5.1: Let ks = I ~ . There eXlst unbounded i 4V2D ] . 

connected components simuItaneous y in both the primary and 
secondary networks if (both) the following conditions hold 

The proof of this theorem is presented in [33, Theorem 6.1]. 
A simpler but looser bound can be derived. 
Corollary 5.2: There exists an unbounded connected com­

ponent in both the primary and secondary networks if the 
following condition holds 

( 
1 e-),,'d;;S) 

D,:-2 Ac (1) < Ap < (7fDJ)-lln 1_(i)(2k8+1)2 (13) 

The proof of this corollary is presented in [33, Corollary 6.2]. 

VI. CONCLUSION 

In this paper we presented several resuIts regarding the 
simuItaneous connectivity of cognitive radio ad-hoc networks. 
We discussed the uniqueness of the unbounded connected 
components in each of the networks. We also claimed that for 
each pair of densities greater than the critical density without 
inter-network interference, there exists a small enough guard 
zone such that there exist unbounded connected components 
in both networks. Furthermore, we presented sufficient as well 
as necessary conditions for the simultaneous connectivity of 
the heterogeneous model. 
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