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Abstract—In distributed networks such as ad-hoc and device-
to-device (D2D) networks, no base station exists and conveying
global channel state information (CSI) between users is costly or
simply impractical. When the CSI is time-varying and unknown
to the users, the users face the challenge of both learning
the channel statistics online and converging to good channel
allocation. This introduces a multi-armed bandit (MAB) scenario
with multiple decision makers. If two or more users choose
the same channel, a collision occurs and they all receive zero
reward. We propose a distributed channel allocation algorithm
in which each user converges to the optimal allocation while
achieving an order optimal regret of O (log T ), where T denotes
the length of time horizon. The algorithm is based on a
carrier sensing multiple access (CSMA) implementation of the
distributed auction algorithm. It does not require any exchange
of information between users. Users need only to observe a single
channel at a time and sense if there is a transmission on that
channel, without decoding the transmissions or identifying the
transmitting users. We compare the performance of the proposed
algorithm with the state-of-the-art scheme using simulations of
realistic long term evolution (LTE) channels.

Index Terms—Distributed channel allocation, multiplayer
multi-armed bandit, online learning, dynamic spectrum access,
resource management, wireless networks.

I. INTRODUCTION

Channel allocation in wireless communication is one of
the fundamental management tasks [1], [2]. In the traditional
centralized systems which have global view of the whole
network, the optimal solution of a desired performance met-
ric can be obtained using the Hungarian method. However,
emerging wireless networking paradigms such as cognitive
radio networks, ad-hoc networks, and device-to-device (D2D)
communications are inherently distributed. A complete infor-
mation about the network state for these networks is typically
not available online, which makes the computation of optimal
policies intractable. Hence, it is desirable to develop a dis-
tributed learning algorithm for dynamic spectrum access that
can effectively adapt to general complex real-world settings
in dense and heterogeneous wireless environments.

The center of the channel allocation task is the combi-
natorial optimization assignment problem. The literature on
distributed channel allocation without learning, where the
channel state information (CSI) is assumed to be known, is
vast and we can only cover part of it here. Recently there has
been growing interest in distributed spectrum optimization for
frequency selective channels, where the assignment problem
arises. However, most of the work done in this field relies
on explicit exchange of CSI. Several suboptimal approaches
that do not require information sharing have been suggested
[3]–[6].

The auction algorithm [7] has been extensively used to
solve a variety of assignment problems for channel allocation

[8]–[11]. In [8] the auction algorithm was used to solve the
channel assignment problem for the uplink, using the base
station as the auctioneer. In [9] a distributed auction algorithm
with shared memory was used for switch scheduling. In [10]
it was shown that a modification of the auction algorithm
is equivalent to max product belief propagation. However,
all these modified auction algorithms require a base station
or shared memory, which prevents them from being fully
distributed. In [11] a fully distributed version of the auction
algorithm was suggested that exploits carrier sense multiple
access (CSMA) in order to avoid the need for an auctioneer. In
addition, all these algorithms, including [11] that is being used
here, assume that the CSI is known to the users. Our algorithm
generalizes the distributed CSMA auction algorithm [11] to
an online learning framework.

If the resource (channel) values are not known in advance
by the users, they have to learn these values online. Learning
the CSI in real-time comes at the expense of using the best
known channels so far. This introduces the well-known trade
off between exploration and exploitation that is captured by
the multi-agent multi-armed bandit (MAB) problem. Devel-
oping MAB-based methods for solving dynamic spectrum
allocation problems is an interesting research direction, moti-
vated by recent developments of MAB in various other fields,
and many works have been done in this direction recently.
A couple of these works [12]–[14] considered a cognitive
radio scenario where a set of channels can be either free or
occupied by a primary user that interferes all secondary users.
A generalized scenario was considered in [15]–[17], where
the channel qualities are not binary, but still all users have
the same vector of channel qualities. Recently, the case of
a full channel allocation scenario where different users have
different channel qualities (a matrix of channel qualities) was
considered in [18]. Later the channel allocation was improved
in [19] by the same authors, to have an order optimal sum-
regret of O (log T ), where T denotes the length of time
horizon. In [19], the auction algorithm [7] was used as a
basis for a distributed algorithm that achieves an expected
sum regret of O(log T ). However, since it relies on [7], this
algorithm requires communication between users in order to
exchange the bids and determine the winning player in each
auction.

Recently, it has been shown in [20] (which improved [21])
that achieving a sum-regret of near-O(log T ) is possible even
without communication between users and with a matrix of
expected rewards. The algorithm in [20] is general but has
a slow convergence rate in T that makes it unsuited for
realistic communication scenarios. In this paper, we adopt
a more practical and communication-oriented approach and
achieve an order optimal sum-regret of O(log T ). The pro-
posed algorithm does not require any communication between



users, and each user only needs to sense a single channel at
a time (instead of simultaneously all of them as in [19]). It
is made possible by adding assumptions that are always valid
from a practical perspective: the expected rewards are integer
multiplications of a common resolution, and a user can choose
not to transmit on any channel and instead can sense a single
channel of its choice. We show that the proposed algorithm
is much easier and less costly to implement than that of [19]
and has a much better convergence time than that of [20].

II. SYSTEM MODEL

We consider an ad hoc network with a set of transmitter-
receiver pairs (links) N = {1, . . . , N} and a set of channels
K = {1, . . . ,K}, where K ≥ N . Each channel con-
sists of several orthogonal frequency-domain multiple access
(OFDMA) subcarriers, and each link uses a single channel.
In the case of more users than channels (N > K), a
combined OFDMA-TDMA (time division multiple access)
can be used instead in order to have enough resources for
all users. The links are located in a geographical proximity
in an area that typically includes other coexisting networks
nearby. This is relevant, for example, for WiFi networks and
Internet of Things (IoT) networks. As a result, each receiver
can experience alien interference from the transmission of
other users. Time is slotted and indexed by t, such that in
each time slot, L OFDM symbols are transmitted. We assume
a fast-fading scenario such that the number of OFDM symbols
per time slot L is designed to match the coherence time of
the channel. The links are active for a total of T time slots,
where T is unknown in advance by the links. The chosen
channel of link n at time t is denoted by an (t). Naturally,
links can choose not to transmit at all at a given time slot,
which is denoted an (t) = 0. Non-transmitting links can still
sense transmissions on a single chosen channel.

Since the channel statistics and the interference pattern are
initially unknown, each link needs to learn them online as
fast as possible in order to deduce which quality of service
(QoS) that it can support. The supported QoS set is Q �
{Q1, · · · , QM} where for each i, Qi = liΔmin, where Δmin

is the resolution for the supported QoS for a non-negative
integer li and Q1 < · · · < QM . The QoS experienced by link
n using channel i is denoted by Qn,i. In general, different
links have a subset of different possible QoS values from Q
due to different capabilities, e.g., number of transmitting and
receiving antennas. Being part of the standard of the protocol,
we assume that the parameters Δmin and Δmax = QM −Q1

are known to all devices.
In each time slot t, each link measures the instantaneous

QoS qn,i (t) by using a finer resolution than that of Q, in order
for the estimation of the average to be accurate. We model
qn,i (t) as i.i.d. sequence in time, independent for different
n or i. The distribution of qn,i (t) is bounded since Q1 ≤
qn,i (t) ≤ QM , and can be either discrete or continuous due
to arbitrarily fine measurements. We define the no-collision
indicator of channel i at time t by ηi = 0 when |Ni (t) | > 1
and ηi = 1 otherwise, where Ni denotes the set of links that
are transmitting on channel i at time t. The instantaneous
reward of link n at time t from transmitting on channel an is

rn,an (t) = qn,an (t) ηan (t) . (1)

For theoretical evaluation of our algorithm, we use the regret
which is defined as
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Fig. 1. The k-th packet structure of the proposed algorithm.

R =

T∑
t=1

N∑
n=1

Q∗
n −

T∑
t=1

N∑
n=1

qn,an(t) (t) ηan(t) (t) . (2)

The value Q∗
n is the expectation of the QoS of the channel

that link n is assigned to:

a∗ = arg max
a1,...,aN

N∑
n=1

Qn,an
. (3)

The expected total regret R̄ � E {R} is the average of (2)
over the randomness of the rewards {rn,i (t)}t that dictate the
random channel choices {an (t)}.

III. PROPOSED PROTOCOL

We design a novel multi-access channel (MAC) protocol
based on distributed auction algorithm where each link runs
distributively in order to maximize the accumulated sum of
QoS. It is noted that the algorithm in [11] exploits the CSMA
mechanism to bypass the need for an auctioneer and by
doing that, implements the auction algorithm distributively.
For this purpose, links compute a continuous back-off time
that is decreasing with their bid. The highest bidder for a
particular channel is simply the first link which accesses this
channel. However, in contrast to [11], we assume all links
can sense the channel that they choose, and all links will
agree on which link is the highest bidder for their channel.
Note that we do not analyze selfish links, but consider devices
that are programmed to run our designed MAC protocol in a
cooperative manner. This is the way that most MAC protocols
operate.

We divide the T time slots into packets with a dynamic
length, one starting immediately after the other. Each packet
is further divided into three phases, as shown in Fig. 1. In the
k-th packet:

1) Exploration Phase — this phase has a length of c1
time slots in each packet, and is used for estimating the
expected reward in each channel. The estimated values
are artificially dithered in order to avoid ties in the
subsequent auction phase. Collisions can be excluded
from each link’s estimation since they result in zero
reward.

2) Auction Phase — this phase has a length of⌈
4K2N

(
QM

Δmin
+ 1

N

) (
2b(k) + 1

)⌉
time slots in the k-th

packet, which is the convergence time of the distributed
auction algorithm, as dictated by Lemma 3. In this phase,
the links run the distributed auction on the estimated



Algorithm 1 Distributed Learning for Channel Allocation

Initialization Choose ε < Δmin
4K

. Set Vn,i (0) = 0 and sn,i (0) = 0
for all i and b (0) = 8.

1) Dither Values — Generate un,i for each i, independently and

uniformly distributed over
[
−Δmin

8N
, Δmin

8N

]
.

For t = 1, . . . , T (which determines k) do
A. Exploration Phase — For the next c1 time slots

1) Choose a channel i ∈ [1, ..,K] uniformly at random.
2) Receive the reward rn,i(t). Update Vn,i (t) = Vn,i (t− 1) +

ηi (t) and sn,i (t) = sn,i (t− 1) + rn,i (t), where ηi and rn,i

are defined in Section II.
3) Create a dithered estimation of Qn,i by computing Qk

n,i =
si(t)
oi

+ un,i for i = 1, . . . ,K.

B. Auction Phase — set state unassigned and Bn,i = 0, ∀i.
For the next

⌈
4K2N

(
QM
Δmin

+ 1
N

)(
2b(k) + 1

)⌉
time slots

Each auction iteration do
1) If unassigned then

a) Calculate its own maximum profit:

γn = max
i

(
Qk

n,i −Bn,i

)
(4)

b) Calculate its own second maximum profit:

ĩn = argmax
k

(
Qk

n,i −Bn,i

)
(5)

wn = max
i �=ĩn

(
Qk

n,i −Bn,i

)
(6)

c) Update the bid for its best channel ĩn:

Bn,̃in
= Bn,̃in

+ γn − wn + ε (7)

2) During the next 2b(k) time slots — Sense the channel ĩn after
a back-off time of

τn = fb(k)
(
Bn,̃in

)
(8)

time slots, where fb(k) is a quantization of some decreasing

function f (e.g., f (x) = 2b(k) −x) using b (k) bits, such that
0 ≤ τn ≤ 2b(k).
a) If the channel is not busy set state to assigned and to

unassigned otherwise.
3) Collision Resolution — In the τmax = 2b(k) + 1 time slot

a) Transmit over channel 1 if it is assigned a channel with a
collision.

b) If links sense a transmission on channel 1, then they update
b (k + 1) = b (k) + 1.

End
C. Exploitation Phase — for the next c22

k time slots

a) Transmit over the channel assigned at the end of the auction
phase.

End

expected rewards using b (k) bits for the quantized back-
off time. The function b (k) converges to a constant that
is independent of k.

3) Exploitation Phase — this phase has a length of c22
k

time slots for some constant c2. During this phase, the
links transmit on the channel that they are allocated in
the auction phase.

The description of algorithm is given in Algorithm 1.
The key advantage of our algorithm is that it only requires

from each receiver to sense if there are transmissions on a
single channel, which is a basic requirement. We assume
that all links are at a sensing distance from each other (a
fully-connected network). As is common in CSMA systems,

this assumption can be relaxed using request to send or clear
to send (RTS/CTS) protocols where the RTS/CTS are much
shorter and have priority in access. However, for simplicity
of exposition, we ignore this aspect. However, as opposed
to [19], the links do not know which transmission belongs
to which link. This is the scenario in practice with wireless
links located in close enough proximity. In our protocol,
links do not need to distinguish between the transmission of
other links, which may require decoding an ID for each link.
Moreover, it can be extremely computationally demanding in
practice to separate colliding transmissions and discern the
IDs involved. Sensing a single channel at a time instead of all
the K channels is another major advantage of our algorithm
over [19].

The fact that the exploitation phase requires an exponential
number of time slots does not mean that it takes longer time—
it means that the lengths of the exploration and auction phases
are relatively much shorter. Note that T is finite and can be set
by the designer. Therefore, even the last (longest) exploitation
phase can still consist of just a couple of thousands of OFDM
symbols, which amounts to only a few milliseconds. From a
practical point of view, this is the desirable packet structure
since the actual transmission takes the vast majority of the
OFDM symbols while the equivalents of the synchronization
header do not cause a significant overhead. The overhead
caused by the exploration and auction phases is naturally
measured by the sum of regrets as in (2). We also note that
the computational complexity of running Algorithm 1 for each
device is O (K), since maximization over a K-sized vectors
is required.

IV. REGRET PERFORMANCE ANALYSIS

In this section, we analyze the performance of the proposed
protocol in different phases and provide our main result: The
expected sum of regret is an order optimal regret of O (log T ).

The following lemma characterizes the required estimation
accuracy of the exploration phase, taking into account the
dither noise.

Lemma 1 (Accuracy of Exploration Phase). Denote the
dithered estimations of the expected QoS values in packet k
by

{
Qk

n,i

}
. Assume that

∣∣Qk
n,i −Qn,i − un,i

∣∣ ≤ Δ for each
link n and channel i for some positive Δ. If Δ < 3Δmin

8N , then

arg max
a1,...,aN

N∑
n=1

Qn,a(n) = arg max
a1,...,aN

N∑
n=1

Qk
n,a(n). (9)

Proof: The proof follows from the fact that if Qk
n,i and

Qn,i are close enough for every i and n, then the optimal
assignment on

{
Qk

n,i

}
and {Qn,i} must be identical. For

details see the extended version of the paper [22].

The following lemma provides an upper bound for the
probability that the estimation for packet k failed. The fact that
this error probability exponentially vanishes with k, allows us
to limit the number of exploration time slots to c1, keeping
the overhead caused by the exploration phase negligible.

Lemma 2 (Exploration Error Probability). Denote the
dithered estimations of the expected QoS values in packet k
by

{
Qk

n,i

}
. If the length of the exploration phase satisfies



c1 ≥ Kmax

{
81
2 K, 128

9

(
Δmax

Δmin

)2

N2

}
, then after the k-th

packet, we have

Pe,k � Pr

(
max
n,i

∣∣Qk
n,i −Qn,i

∣∣ > 3Δmin

8N

)
≤ 3NKe−k.

(10)

Proof: The proof uses Hoeffding’s bound on both∣∣Qk
n,i −Qn,i

∣∣ and the number of samples of Qn,i without
collision. For details see the extended version of the paper
[22].

Lemma 3 (Auction Phase). Assume that b(k′) = bf for all
k′ > k. If the k-th exploration phase succeeded, then the
k-th auction phase converges to an allocation a1, . . . , aN

such that
∣∣∣∣∑N

n=1 Q
k
n,an

− max
a1,...,aN

∑N
n=1 Q

k
n,an

∣∣∣∣ ≤ ε with less

than KN
εk

(
QM + Δmin

8N

)
2b(k) time slots with the probability

1. If ε < 3Δmin

4K , and then the auction phase converges to
argmax

a

∑N
n=1 Qn,an .

Proof: The proof follows from the convergence and
performance guarantees proven in [23] together with Lemma
2. For details see the extended version of the paper [22].

Finally, we present our main result in the following theo-
rem.

Theorem 1 (Main Result). Assume that the instantaneous
QoS {qn,i (t)}t are independent in n and i.i.d in time t, with
expectations Qn,i ∈ {Q1, . . . , QM} such that Qi = liΔmin

for a non-negative integer li and a positive Δmin, and
Q1 < . . . < QM . Denote Δmax = QM − Q1. Let each link
run Algorithm 1 with ε < Δmin

4K and an exploration phase
length of

c1 ≥ Kmax

{
81

2
K,

128

9

(
Δmax

Δmin

)2

N2

}
. (11)

Then, the expected sum of regrets is R̄ ∼ O (log T ).

Proof: Lemma 3 shows that if the exploration phase
succeeds and enough bits are used for the CSMA back-off
quantization, then the exploitation phase contributes no regret
to the sum of regret. Moreover, Lemma 2 upper bounds from
above the error probability of the exploration phase. The
bound implies that it decreases exponentially with k. The
proof follows by bounding from above the expected regret
using these two facts. The proof is presented in the extended
version of the paper [22].

V. SIMULATION RESULTS

In this section, we demonstrate the performance of pro-
posed algorithm using computer simulations. We compare the
proposed algorithm with the centralized Hungarian method
[24], random channel selection and the E3 algorithm in [19].
The Hungarian method requires some central entity to know
the CSI of all users. Requiring much less information, the E3
algorithm assumes that each user can decode the channel each
of the other users choose. Our algorithm requires even much
less information - each user only needs to sense whether there
is a transmission on a given channel.

We consider an ad-hoc network of N links that are uni-
formly distributed on disk with a radius of 500 m. We
considered the extended pedestrian A model (EPA) of the LTE
standard with 9 random taps. The path loss is computed using
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Fig. 2. Performance evaluation over LTE fading channel. Simulation param-
eters are: N = K = 10, explore length= 800 OFDM symbols, and auction
length = 500 OFDM symbols.

path loss exponent of α = 4. The central carrier frequency is
2 GHz with a per-user transmission bandwidth of 200 KHz.
The channel bandwidth is divided into N sub-channels and
we used N = K = 10. The transmit power is fixed at
12dBm for each user. The users were assumed to be moving
at a speed of 3 km/h. We used a transmission duration of
T = 105 time slots, with a single OFDM symbol per time
slot (L = 1). Our transmission packet has the exploration
phase of 800 OFDM symbols and the auction phase of 500
OFDM symbols. Each experiment consists of averaging 1000
independent realizations.

In Fig. 2a, the sum-regret of our algorithm is compared with
that of the E3 algorithm [19]. It is evident that the performance
of both algorithms is essentially identical, despite the fact that
our algorithm uses no communication between users as the E3
algorithm [19] does. Both algorithms have an expected sum-
regret that increases similar to log T and both converge to the
optimal allocation already at the first packets. In Fig. 2b, we
present the spectral efficiency performance of both algorithms
together with the confidence intervals of 90% and 95% outage
(worst realizations)), where again all performances are very
similar between our algorithm and the E3 algorithm [19]. It
also shows that the proposed algorithm approaches the optimal
performance within a few packets, which is much better than a
random selection and behaves very similarly in all realizations.

We also demonstrate the performance of the proposed algo-
rithm in the presence of alien interference for LTE channels
in Fig. 3. In this scenario, we consider four interferers that
use four out of K = 10 available channels. These interfering
nodes are randomly located outside the network disk and
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Fig. 3. Performance evaluation over LTE fading channel with alien interfer-
ence. Simulation parameters: N = K = 10, explore length= 500 OFDM
symbols, and auction length = 500 OFDM symbols.

within a distance of 500 m from the annular region of the
disk. It can be seen from Fig. 3b that the spectral efficiency is
reduced by ~2 bits/sec/Hz. However, the proposed algorithm
achieves the optimal performance within few thousand sym-
bols similar to the interference-free case, as shown in Fig. 2.
This scenario again confirms that our performance is identical
to that of the E3 algorithm [19].

VI. CONCLUSIONS

In this paper, we presented a novel distributed algorithm for
channel allocation over wireless channels where links initially
have no estimation for the statistics of the channels. Learning
the statistics of the channels in real-time (exploration) comes
at the expense of using the best known channels (exploitation).
The scenario is modeled as a multiplayer multi-armed bandit
problem where a collision occurs if two or more links transmit
on the same channel. We proved that our algorithm achieves
the optimal order of regret — O (log T ). Our algorithm is
based on a distributed auction algorithm that uses CSMA to
avoid the need for an auctioneer (base station). In contrast
to the state-of-the-art algorithms, our algorithm requires nei-
ther centralized management nor any communication between
devices, which makes it very relevant to cognitive ad-hoc
networks. From a practical point of view, this results in a
significant complexity reduction of the physical layer design.
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