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ABSTRACT

In this paper we provide finite sample bounds on the performance of
the weighted linear least squares estimator in sub-Gaussian martin-
gale difference correlated noise. In contrast to standard performance
analysis which uses bounds on the mean square error together with
asymptotic normality, our bounds are based on concentration of mea-
sure. We extend previous results by analyzing the weighted least
squares estimator and provide novel results in the case of correlated
noise and heteroscedasticity. Using these bounds we obtain accu-
rate bounds on the tail of the estimator. We show fast exponential
convergence of the L∞ probability of error. We analyze the fixed
design setting. We use the results to analyze the performance of the
weighted least squares estimator for the important problem of sys-
tem identification. We show how to extend the results to different
norms and state a theorem for the L2 norm.

Index Terms— Estimation; weighted least squares; non Gaus-
sian; concentration bounds; finite sample; large deviations; confi-
dence bounds; martingale difference sequence; system identification

1. INTRODUCTION

1.1. Related Work

Weighted linear least squares is one of the generalizations of the or-
dinary least squares. It has numerous applications in many fields,
many times producing superior results to ordinary least squares. No-
table examples would be [1, 2, 3, 4]. Standard analysis of estimators
is asymptotic by nature. Cramer Rao bound (CRB) was utilized in
many application, e.g. [5, 6]. The asymptotic properties of the least
squares estimator were explored by various scientist both for the lin-
ear least squares model and the non-linear model. Notable works are
[7, 8, 9, 10, 11, 12]. In these works large deviation results were given
alongside confidence intervals analysis and convergence rate results.
These works established the fact of the exponential convergence rate
of least squares estimators under different conditions. Ridge regu-
larized models were also analyzed by means of optimal convergence
rate in [13].
The noise model differs in many applications of least squares and
other optimization methods. Rather than the Gaussian model a Gaus-
sian mixture is used in many applications. Notable examples of
such applications are [14, 15, 16, 17]. In this work we consider
sub-Gaussian noise, which is a general non-Gaussian noise frame-
work. The Gaussian mixture model for instance is sub-Gaussian and
our results are valid for this model. In the case of Gaussian noise
least squares coincides with the maximum likelihood estimator. Still
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in many cases of interest least squares estimation is used in non-
Gaussian noise as well for computation simplicity. Specifically the
sub-Gaussian noise model is of special interest in many applications.
In the past few years, the finite sample behavior of least squares
problems has been studied in [18, 19, 20, 21, 22, 23]. These result
show the finite sample behavior of ordinary least squares and reg-
ularized least squares under different noise conditions. Our result
extends these results by analyzing the weighted least squares noise
under very general noise conditions. While classical analysis usu-
ally assumes the i.i.d noise case, in many cases of interest the noise
model used is not i.i.d but instead a martingale difference sequence
model. This noise model is quite general and is used in various fields.
For example [24, 25, 26]. These works utilize the martingale dif-
ference sequence model in different fields ranging from economics
to control theory. The asymptotic properties of these models have
been analyzed in various papers, for example [27, 28, 29, 26]. Re-
cently, least squares under this general noise model was analyzed
in [22, 23]. In this work we extend the results by analyzing the
weighted least squares estimator. This estimator is used in many ap-
plications with heterogeneous data. We provide theoretical bounds
on the uncertainty of the weighted least squares estimator in the pres-
ence of heteroscedasticity.

1.2. Contribution

In this paper we study the finite sample performance of the weighted
least squares estimator. We assume an additive model with sub-
Gaussian martingale difference noise and a fixed design matrix and
heteroscedasticity in the noise random variables. Our bounds are
given in the L∞ norms for this general data model as well as L2.
We extend previous results [22, 23] to the weighted least squares
case. This extension allows us to analyze heteroscedasticity in linear
models and give finite sample results for the weighted least squares
estimation technique in the sub-Gaussian martingale difference noise
case. We show the connection between the number of required sam-
ples and the weights of the model. We demonstrate that in the pres-
ence of heteroscedasticity the weighted least squares outperforms
the regular least squares estimator and the bounds capture this phe-
nomenon. This is the first result for these types of models. We use
the results to analyze the important signal processing problem of
system identification in the presence of a bounded interfering signal
passing through FIR channel.

2. PROBLEM FORMULATION

Consider a linear model with additive noise

x = Aθ0 + v (1)



where x ∈ RN×1 is our output, A ∈ RN×p is a known matrix
with bounded random elements, θ0 ∈ Rp is the parameter to es-
timate and v ∈ RN×1 is a noise vector consisting of a zero mean
sub-Gaussian white noise passing through a finite impulse response
filter12. Important examples of v of this type are zero mean digital
communication signals and Gaussian jammers. N indicates the
number of samples used in the model and assumed to be larger than
p.
Many real world noise models are sub-Gaussian; for instance,
bounded constellation digital communication passing through a
Rayleigh fading channel, finite Gaussian mixtures, any bounded
random variable, and any combination of the above.
We write the assumptions detailed above in a mathematical form:

A1: A ∈ RN×p is a fixed mixing matrix with α .
= max

n,i
|ani|.

A2: E (vn|Fn−1) = 0, where Fn−1 is a filtration and vn, n =
1 . . . N are the elements of v.

A3: For every 1 ≤ j ≤ N vj is sub-Gaussian with parameter δ2j .

The weighted least squares cost function is defined as:

JN0 (θ,x) = (x−Aθ)T W (x−Aθ) (2)

where W ∈ RN×N is a diagonal matrix of weights, W .
=

diag {w1, . . . wN}. Choosing a diagonal weight matrix is bene-
ficial when our data has heteroscedasticity. This can happen when
the conditions in which we acquire the data change, for example, if
for a small subset of samples there is no interference. It would be
optimal to weight these samples higher than the rest to achieve better
performance. In this case wi = δi where 1

δi
is the sub-Gaussian

parameter of the noise plus interference of the model.
Given N samples the weighted least squares solution is given by

θ̂N0 =
(
ATWA

)−1

ATWx =(
1

N

N∑
n=1

wnana
T
n

)−1

1

N

N∑
n=1

wna
T
nxn. (3)

where aTn , n = 1 . . . N are the rows of A and xn, n =
1 . . . N are the data samples. θ̂N0 is the optimum value of JN0 . If the
noise is zero mean then the estimator is unbiased.
We want to study the tail distribution of

∥∥∥θ̂N0 − θ0∥∥∥
∞

or more
specifically we wish to bound the term

P
(∥∥∥θ̂N0 − θ0∥∥∥

∞
> r
)
≤ ε (N, r) (4)

as a function of N and r. Furthermore, given N and r we want to
calculate ε (N, r) to achieve the above inequality. We analyze the
case that the design matrix is fixed.
Throughout this paper we use the following mathematical notations:

Definition 2.1.

1. Let x be a random variable defined on the probability space
(Ω, F, P ) and denote E (x) the expectation of x.

2. Let B ∈ Rp×p be a square matrix; we define the operators
λmax (B) and λmin (B) to give the maximal and minimal
eigenvalues ofB respectively.

1This is a special of a martingale difference noise. All the proofs remain
valid in the general martingale difference noise case.

2For simplicity we only consider the real case. The complex case is simi-
lar with minor modifications.

3. LetC be a matrix. The spectral norm for matrices is given by
‖C‖ .=

√
λmax (CTC).

4. A random variable v with E (v) = 0 is called sub-Gaussian
if its moment generating function exists and E (exp (sv)) ≤
exp

(
s2R2

2

)
[30]. The minimalR2 that satisfies this inequal-

ity is called the sub-Gaussian parameter of the random vari-
able v and we say that v is sub-Gaussian with parameter R2.
Let v ∈ RN be a random vector. We call v sub-Gaussian with
parameter R if each coordinate of v is sub-Gaussian with pa-
rameter R2

i , 1 ≤ i ≤ N and R2 = maxi
{
R2
i

}
.

3. MAIN RESULT

We are now ready to state and prove the main theorem.

Theorem 3.1. (Main Theorem)
Let x be defined as in (1) and assume A1-A3 hold. Given N , the
number of samples and r the maximal error tolerated, the probability
that the weighted least squares error is larger than r is bounded by

P
(∥∥∥θ̂N0 − θ0∥∥∥

∞
> r
)
< ε (N, r) (5)

where

ε (N, r) = p exp

−
N2r2µ2

2α2

N∑
j=1

w2
j δ

2
j

 (6)

and

µ
.
= λmin

(
1

N
ATWA

)
. (7)

Proof. We wish to study the term

P
(∥∥∥θ̂N0 − θ0∥∥∥

∞
> r
)
. (8)

In order to study this term, we will start by studying each coordinate
separately. Then, we will use the union bound on the events that
any of the coordinate error is larger than r. For each 1 ≤ i ≤ p
separately consider

P
(∣∣∣(θ̂N0 − θ0)

i

∣∣∣ > r
)
. (9)

We know that the weighted least squares solution is given by

θ̂N0 =

(
1

N

N∑
n=1

wnana
T
n

)−1

1

N

N∑
n=1

wna
T
nxn. (10)

∣∣∣(θ̂N0 − θ0)
i

∣∣∣
=

( 1

N

N∑
n=1

wnana
T
n

)−1

1

N

N∑
n=1

wna
T
nvn


i

≤ λmax

((
1

N
ATWA

)−1
)

1

N

N∑
n=1

wnanivn

=
1

λmin
(

1
N
ATWA

) 1

N

N∑
n=1

wnanivn. (11)



We denote µ .
= λmin

(
1
N
ATWA

)
. Using this we can write

P
(∣∣∣(θ̂N0 − θ0)

i

∣∣∣ > r
)

≤ P

(
1
N

N∑
n=1

wnanivn > rµ

)
.

(12)

In order to analyze this probability we use similar techniques as in
[22, 23]. We will use the Laplace method. We start with bounding

E

(
exp

(
s

N∑
n=1

wnanivn

))
. We then use the achieved bound and

Markov’s inequality to bound the required probability.

E

(
exp

(
s

N∑
n=1

wnanivn

))

= E

(
exp

(
s

N−1∑
n=1

wnanivn

))
E (exp (swNaNivN ) |FN−1)

≤ E

(
exp

(
s

N−1∑
n=1

wnanivn

))
E (exp (swNαvN ) |FN−1)

≤ E

(
exp

(
s

N−1∑
n=1

wnanivn

))
exp

(
s2α2w2

N δ
2
N

2

)
(13)

The last inequality is due to the sub-Gaussianity of vN . Iterating this
procedure yields

E

(
exp

(
s

N∑
n=1

wnanivn

))
≤ exp

(
s2α2

2

N∑
j=1

w2
j δ

2
j

)
. (14)

Looking now at the original equation we have

P

(
N∑
n=1

wnanivn > Nrµ

)

≤ E

(
exp

(
s

N∑
n=1

wnanivn

))
exp (−sNrµ)

≤ exp

(
s2α2

2

N∑
j=1

w2
j δ

2
j − sNrµ

)
.

(15)

The first inequality follows from Markov’s inequality. The sec-
ond inequality follows from equation (14). The inequality is true for
all s > 0. Optimizing over s yields:

s =
Nrµ

α2

N∑
j=1

w2
j δ

2
j

. (16)

Substituting (16) into (15) we achieve

P

(
N∑
n=1

wnanivn > Nrµ

)
≤ exp

−
N2r2µ2

2α2

N∑
j=1

w2
j δ

2
j

 . (17)

Using a union bound over the elements of the vector ensures that

P
(∥∥∥θ̂N0 − θ0∥∥∥

∞
> r
)
≤ p exp

−
N2r2µ2

2α2

N∑
j=1

w2
j δ

2
j

 (18)

and finishes the proof.

Remark 3.2. If all vn n = 1 . . . N have the same sub-Gaussian
parameter δ2 and if furthermore we choose W = I then the main
theorem bound can be written as

P
(∥∥∥θ̂N0 − θ0∥∥∥

∞
> r
)

= p exp

(
−
Nr2λmin

(
ATA

)
2α2δ2

)
(19)

which coincides with previous results analyzing the ordinary least
squares estimator [22, 23].

While our analysis so far was for theL∞ norm, the results easily
translate to other norms using relationships between norms. We now
state an equivalent theorem for the L2 norm.

Theorem 3.3. Let x be defined as in (1) and assume assumptions
the assumptions about the model. Given N , the number of samples
and r the maximal error tolerated, the probability that the weighted
least squares error is larger than r is given by

P
(∥∥∥θ̂N0 − θ0∥∥∥

2
> r
)
≤ p exp

−
N2r2µ2

2α2p

N∑
j=1

w2
j δ

2
j

 . (20)

4. SIMULATION RESULTS

In this section we analyze a problem of high importance in signal
processing, i.e., system identification in the presence of interfering
signal. In this case the fixed design matrix is a known training se-
quence of length N , s0, ...sN−1 that is transmitted through an un-
known channel. The noise plus interference is modelled as a δ2i sub-
Gaussian martingale difference composed of another transmitter in
the area as well as receiver noise. We model the case where the
noise and interference parameters change during the training. This
results in heteroscedasticity in the model. We show that the weighted
least squares solution is better than the ordinary least squares solu-
tion and that the main theorem captures this well and gives easy to
calculate performance bounds for this interesting case. As we now
show the external interference which is a bounded communication
signal passing through a linear time invariant channel is indeed a
martingale difference sequence. The fixed design matrix is given by

A =



s0 0 0 . . . 0
s1 s0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sp−1 sp−2 sp−3 . . . s0
sp sp−1 sp−2 . . . s1
sp+1 sp sp−1 . . . s2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
sN−1 sN−2 sN−3 . . . sN−p


(21)

where s0, . . . sN−1 are random BPSK signals chosen in advance. θ
are the channel parameters to be estimated using least squares. The
mathematical setting is given by

xn =

p−1∑
t=0

sn−tθt + vn (22)

where we define si
.
= 0 ∀i < 0. This equation can be written as

x = Aθ + v (23)



whereA is defined in (21). The noise vector v .
= (v0, . . . , vN−1)T

can be modelled as:

vn =

k∑
i=0

hijn−i + wn (24)

where jn is i.i.d zero mean bounded signal for example a BPSK
signal. This can happen for example when estimating the chan-
nel in a CDMA sequence, when the interference is composed of
another CDMA signal. 3 We denote by η the bound for jn, i.e.
P (jn ≤ η) = 1. We also assume that hi is an unknown system
modelled as a sub-Gaussian random variable. It is easy to see that
this noise which is a typical interference scenario is indeed a zero
mean martingale difference sequence. Under this model 10% of the
samples are sub-Gaussian random variables δ21 and δ22 respectively.
90% of the samples are random variables with sub-Gaussian param-
eters given by 4δ21 and 4δ22 . This results in heteroscedasticity in the
data model. We use the fact that jn ≤ η and the fact that a lin-
ear combination of sub-Gaussian random variables is sub-Gaussian
[30]. We can conclude that the noise is sub-Gaussian when for 10%
the parameter is δ21η2 +δ22 and for 90% of the samples the parameter
is 4δ21η

2 + 4δ22 . We can use the main theorem with these parame-
ters to calculate the performance for different values of N . Figure
1 depicts the relationship between the main theorem bound and the
simulation. It shows that the performance of the bound is similar to
the simulation performance and that the bound can be used to reli-
ably upper bound the performance of the estimator given the model
parameters. Figure 2 demonstrates the advantages of the weighted
least squares estimator over the ordinary least squares estimator in
the presence of heteroscedasticity. We show that both the simula-
tion results and the bounds for the weighted least squares estimator
outperform the ordinary least squares estimator. This shows that the
bounds in the main theorem correctly captures the advantages of the
weighted least squares approach.

5. CONCLUDING REMARKS

In this paper we examined the finite sample performance of the L∞

error of the weighted linear least squares estimator martingale differ-
ence sequence with heteroscedasticity as our data model. We showed
a very fast convergence of the L∞ error probability as a function of
the required performance and the number of samples. We extended
previous results by analyzing the weighted least squares. This allows
us to analyze problems with changing conditions and heteroscedas-
ticity. These settings could not be analyzed with previous results.
While our analysis was conducted for the L∞ norm, this doesn’t
limit the scope of our methods as relationships between norms can
be utilized to bound the error vector under different norms. We
demonstrate this by stating an equivalent theorem for the L2 norm.
We show that the in the presence of heteroscedasticity the weighted
least squares estimator outperforms the regular least squares estima-
tor. We show that this relationship between holds for the bounds
depicted in the main theorem of this paper and the main theorem of
[22].

3Similar analysis is relevant for high range resolution (HRR) estimation
of target parameters in the presence of temporally correlated jammer. See
[31] for example.

Fig. 1. Finite sample performance analysis of the weighted least
squares estimator for the system identification problem with sub-
Gaussian martingale difference noise plus interference. The graph
shows simulation results and main theorem bounds for parameters
r = 0.08 and p = 8.

Fig. 2. Performance analysis of weighted least squares and lin-
ear least squares estimators with sub-Gaussian martingale difference
noise. The graph shows simulation results and theoretical bounds for
both estimators with parameters N = 300 and p = 4.
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