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Abstract—It is shown that a receiver equipped with two anten-
nas may null an arbitrary large number of spatial directions to
any desired level, while maintaining the interference-free signal-
to-noise ratio, by judiciously adjusting the distance between the
antenna elements. The main theoretical result builds on ergodic
theory. The practicality of the scheme for systems operating at
a moderate signal-to-noise ratio is demonstrated for a scenario
where each transmitter is equipped with a single antenna and
each receiver has two antenna elements, the separation of which
can be arbitrarily set. As an example, for a five-user planar
line-of-sight interference channel, with the directions of users
being uniformly distributed, at a signal-to-noise ratio of 10 dB,
a near interference-free average transmission rate is achievable.
This amounts to roughly doubling the average rate attained by
non-naive time-division multiple access.

I. INTRODUCTION

The information-theoretic model of an interference channel
is an abstraction that is motivated by the physical channel
model of transmitter-receiver pairs that communicate over
a shared wireless medium. While abstraction often leads to
insights that may then be translated to more complicated real-
life models, it is now recognized that the interference channel
is an example that generalization also carries with it the risk
of over-abstraction, i.e., losing some key features of the true
problem. It is therefore worthwhile to re-examine the problem
formulation from time to time as has been demonstrated, e.g.,
in the case of magnetic recording channels; see e.g., [1] for an
overview of the evolution of the physical models and its impact
on the relevant information-theoretic and coding techniques.
Another example is the evolution that led to the V.90 voice-
band modem [2], [3].

We revisit the wireless interference channel where each of
the receivers is equipped with multiple antennas. It is well
known that given an adaptive array with Nr receive antennas,
one can null out Nr−1 (single-antenna) interferers and enjoy a
full degree-of-freedom (DoF) for one (single-antenna) desired
source. This leads to low utilization of the receive antennas,
since only 1/Nr of the degrees of freedom convey useful
information. The main advantages of receive beamforming are
its ease of implementation and its robustness, since channel
state information (CSI) feedback is not required.

The work of A. Leshem was partially support by ISF grant 1644/18 and
ISF-NRF grant 2277/16. The work of U. Erez was supported by by the ISF
under Grant 1956/15.

Nevertheless, works on interference alignment [4]–[6]
demonstrate that half of the DoFs can be achieved, indepen-
dent of the number of interferers, employing a single antenna
at each node. While appealing from a theoretical point of view,
interference alignment techniques (in all forms) face some ma-
jor challenges in real-life applications. Beyond knowledge of
full CSI of the complete interference network being required,
the results are highly asymptotic. Specifically, the signal-to-
noise ratio (SNR) at which a tangible improvement over naive
schemes is achieved is extremely high.

We consider the particular class of line-of-sight (as well
as specular multipath) interference channels; such channels
are prevalent in recent applications of wireless communica-
tions. The main result is as follows: given Nr = 2 receive
antennas and the possibility of setting their separation, one
can approximately null out any number of sources in the
plane, affording (with probability one) a full DoF to a single
desired source. This corresponds to a utilization of half of the
overall system degrees of freedom, so that for a system with
K users, we achieve K DoFs out of the 2K total number of
DoFs. This utilization is similar to the best achievable DoFs of
interference alignment schemes, while requiring only receive-
side CSI. Furthermore, the proposed technique achieves the
desired DoFs even at practical values of SNR. We also show
that the scheme can be implemented using a simple linear
array and an antenna selection mechanism.

A. Related Work

Handling interference efficiently is a major challenge in
multi-user wireless communication. Recently, it has become
clear that this challenge can sometimes be overcome via
interference alignment [5], [7]. Specifically, for the K-user
Gaussian interference channel, it is now known that each user
can achieve asymptotically roughly half the rate that would
be available if there were no interference whatsoever; i.e.,
K/2 DoF are available. However, many schemes, such as
the Cadambe-Jafar framework [7], require a large number
of independent channel realizations to achieve near-perfect
alignment and suffer from a significant SNR penalty due to
channel inversion. For the static Gaussian K-user interference
channel, Motahari et al. showed that K/2 DoFs are achievable
for almost all channel realizations [8] but thus far this result
has not been translated into real gains outside of the very high
SNR regime.



Apart from the obvious connection to works on the in-
terference channel, the idea of altering the physical propa-
gation channel, in the present paper the alteration being the
distance between antenna elements bears some similarity to
“media-based modulation", “spatial modulation" and “index
modulation" schemes; see, e.g., [9]. In these works, however,
the physical medium is modulated based on the information-
bearing signal. In contrast, the present work only requires
sub-sampling of the spatial channel at the receiver whereas
any standard coding technique for the additive white Gaussian
noise channel can be used for the the transmitted signals.

II. THE INTERFERENCE CHANNEL

Consider an interference channel with K transmitters and
K corresponding receivers. We assume for simplicity that all
transmitters are equipped with the same number of antennas
Nt and all receivers are equipped with Nr antennas. Denoting
by Hij , the channel matrix from transmitter j to receiver i,
the received signal is given by

yi =

K∑
j=1

Hijxj + zj , i = 1 . . .K, (1)

where zj is i.i.d. (between users and over time) circularly-
symmetric complex Gaussian noise.

Several variants of this problem have been addressed. For
instance, the case of Nt = Nr = 1 and real time-varying
(which can be thought of as a diagonal matrix) coefficients
has been studied in [4] where it was shown that for almost
all channel coefficients, interference alignment attains half
a DoF per user. A similar result was shown for scalar but
time-invariant channels in [5] through alignment on the signal
scale using lattice codes. Both of these approaches are very
asymptotic in nature and require high resolution transmit-side
CSI as well as very high SNR conditions to start to play a
beneficial role.

A. The Line-of-Sight Interference Channel

The use of high-frequency communication has prompted
recent interest in line-of-sight (LOS) communication as well
as specular multipath channels. In this paper, we analyze LOS
and finite specular multipath interference channels. Specifi-
cally, we make the following assumptions:
A1 We assume a single transmit antenna per user, and two

receive antennas per user, i.e. the matrices Hi,j in (1) are
reduced to 2× 1 vectors hi,j ∈ C2.

A2 The vectors hi,j consist of array manifold vectors.
A3 We allow the spacing between the two receive antennas

to be altered as needed to optimize performance.
A4 We assume that each receiver has perfect CSI w.r.t. all

channel gains corresponding to impinging signals. Trans-
mitters on the other hand need not have access to any
CSI beyond the rate at which they should communicate
with their respective receiver.

A5 For simplicity, we use a linear array and planar geometry
where all sources are far field point sources.

A6 Without loss of generality, we use the array manifold as
the channel, since the signal attenuation can be absorbed
in the power of xj .

A7 We assume that the locations of all transmitters and
receivers are independently uniformly distributed in angle
with respect to the origin.

A8 We assume that the transmit power of all transmitters is
bounded by P .

Note that by A7, the incidence angle of each received signal is
uniformly distributed as well. Therefore, it suffices to consider
the achievable rate of a single receiver.

III. ERGODIC NULLING

We propose a novel approach to the interference channel.
The classical signal processing literature deals primarily with
Nyquist-resolution beamformers, where at least some antennas
are separated by at most λ/2. In this case, the array has a
single main lobe in the desired direction, and the resolution
of the array is determined by the farthermost elements. This
is so since when all distances between antennas are larger
than λ/2, an ambiguous beam pattern occurs. An example
of this phenomenon is depicted in Figure 1. Interestingly, an
ambiguous beam pattern can prove extremely advantageous
when dealing with interference, since such patterns have
multiple nulls. Indeed, we will show that by judiciously
designing the beam pattern, we can point multiple nulls at
the interferers simultaneously. More specifically, with a highly
under-sampled array, any (finite) number of interferers at
almost any set of directions can be suppressed. This follows
from an ergodic theory argument.

To develop the general framework for receiver antenna array
design, we first introduce some notations for LOS channels.
Let h(θ) be the array response towards direction θ. Assuming
a spacing of d (in units of λ), the array response is given by

h(θ) =
1√
2

[
1, ej2πd cos θ

]T
. (2)

so that (1) becomes:

yi =

K∑
k=1

hi,k(θ)xk + zi, i = 1 . . .K, (3)

Therefore, using a received beamforming vector

wi =
1√
2
[1, ejφi ],

the received signal of the i′th user becomes:

yi =

K∑
k=1

wT
i hi,k(θ)xk + zi, (4)

In the next section we show that by properly selecting di, φi,
we can obtain the following:

wT
i h(θk) ≈ δi,k, k = 1, ..,K, (5)

where δi,k is Kroneckers’s delta function. Henceforth, we will
omit the index i, as wi is chosen independently for each user.



IV. PROOF OF MAIN RESULT

We now prove that by judiciously adjusting the distance
between the receive antennas we can (with probability 1)
suppress all interferers to any desired level. First, we leverage
the theory of Diophantine approximation to establish that we
may do so while treating the angle and gain of the desired
signal as a random variable. We then significantly strengthen
the results by proving that for almost all angles of arrival,
one can approach the interference-free rate of any desired
user arbitrarily closely. This is proved using the uniform
distribution property of sequences modulo 1.

A. Diophantine Nulling

Consider a single receiver with a desired signal impinging
from direction θi. Let θj : j 6= i be the directions of
the interfering signals. The gain towards direction θ with a
beamforming vector w is given by

g(θ) = |wTh(θ)|2 =
1

2

∣∣∣1 + ej(2πd cos θ+φ)
∣∣∣2 . (6)

Straightforward algebraic simplification yields:

g(θ) = 1 + cos(2πd cos(θ) + φ) (7)

Theorem 1. For any ε > 0, there exists a spacing d and a
beamforming vector w towards direction θ such that I(θ) < ε
where

I(θ) =
∑
k 6=i

Pkg(θk − θ) (8)

is the total received interference. Furthermore, the expected
power of the desired signal satisfies

Eθi [g(θi − θ)] > 0. (9)

Proof. Note that g(ψ) = 0 whenever

cos(2πd cos(ψ) + φ) = −1. (10)

Therefore, setting φ = π, we obtain that g(ψ) = 0 whenever

2πd cos(ψ) = 2πp (11)

and p is an integer. Let q = d. Then, attaining a null amounts
to choosing a pair (p, q) such that

cosψ =
p

q
. (12)

and p is an integer. Note that this in itself is not a Diophantine
approximation problem since q is not required to be integer
and therefore the equation can be satisfied exactly for any
choice of n. Nonetheless, simultaneous Diophantine approxi-
mation will be useful when we consider a number of angles
(directions) we wish to null. To that end, we assume that q is
an integer as well.

That is, given θj : j 6= i, our goal is to find pj : j 6= i and q
(where the latter is preferably “small") such that the following
holds simultaneously for j 6= i:

cosψj ≈
pj
q
. (13)

where ψj = θj − θ.
Let us now recall some basic results from the theory of

metrical Diophantine approximation. We refer the reader to
Section 4.3 of [10] for an overview, from which we cite the
following (special case of the) high-dimensional Khinchine
result.

Let In := [0, 1)n denote the unit cube in Rn. We say that
a point x = (x1, . . . , xn) ∈ In is well approximable if there
exist infinitely many rational points(

p1
q
, . . . ,

pn
q

)
with q > 0 such that the inequalities∣∣∣∣xi − pi

q

∣∣∣∣ < 1

q1+1/n
(14)

are simultaneously satisfied for 1 ≤ i ≤ n. Then Khinchine’s
theorem states that the measure of well approximable points
in In is one.

To complete the proof we note that for all ψ, we choose
d = q and φ = π. Hence, we obtain that for all j 6= i

|q · cos(2πψj)− p| <
1

q
1

K−1

. (15)

since g(2πp) = 0 and ∣∣∣∣dg(ψ)dψ

∣∣∣∣ < 2πd (16)

by the mean value theorem we obtain that for all j and for all
q

g(ψj) <
2π

q
1

K−1

. (17)

By Khintchine’s theorem, we have infinitely many such q’s.
Taking q large enough, the claim follows.

Since the desired signal is uniformly distributed in angle, it
follows that almost surely, it is possible to achieve one degree
of freedom per user. Therefore, the overall utilization is one
half of the total degrees-of-freedom.

B. Ergodic Nulling

While Theorem 1 provides a proof that for any set of inter-
fering signals there is a two element array and a beamformer
which nulls the interferers, the gain of the desired user is
random. We now strengthen the result by proving that for
almost all sets of directions, one can suppress the interference
to any desired level without sacrificing the desired signal
power. Moreover, we show that without loss of generality, the
vector w can be chosen as w = 1√

2
[1, 1]T .

Theorem 2 (Main Theorem). Assume that the directions
θ1, .., θK are such that cos(θ1), ..., cos(θK) are irrational and
independent over Q. Then for every i and every δ > 0, one
can find itegers, d = q ∈ N such that beamforming with the
vector w = 1√

2
[1, 1]T yields:

g(θk) < δ, k 6= i
g(θi) > 1− δ. (18)



Note that this provides the interference-free capacity with
half the degrees of freedom. This is the case since the gain in
the desired direction can be made arbitrarily close to 1 while
the total interference is suppressed to any desired level. We
also note that for example whenever θ = 2π

N and N > 6, then
cos
(
2π
N

)
is irrational.

The proof of the main theorem will appear in the full version
of this paper [11]. Nonetheless, the following example of a
four-user interference channel demonstrates the idea of ergodic
nulling. The optimal array dimension was 5λ. Figure 1 depicts
the beam pattern resulting from the optimization of the rate of
user 1 for a single channel realization for which the directions
of the signals are: [175o, 59o, 151o, 133o]. The desired user’s
gain is close to 2 which is the interference-free gain, while
the gains corresponding to the signals of all other users are
suppressed to almost 0. Theorem 2 proves that such a beam
pattern is almost always achievable provided that the array is
sufficiently large.
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Fig. 1. Optimal beam pattern of user 1. Four-user interference channel.
dmax = 25λ. Directions: [175o, 59o, 151o, 133o]. Optimal d = 5λ. The
powers of all users are P = 1.

V. EXTENSION TO MULTIPATH CHANNELS

We now show that our approach generalizes to the case of
multipath (due to a finite number of reflections). Adhering
to discrete time and allowing a different path loss for each
reflection, the channel, as given in (3), now generalizes to

yi(e
jω) =

K∑
k=1

Li,j∑
`=1

γi,k,`h(θi,k,`)e
jωτi,k,`xk(e

jω) + zi(e
jω),

(19)

for i = 1 . . .K, where Lij is the number of reflections of the
j’th signal received by user i, and γi,k,` is the complex path
loss of the signal arriving from direction θi,k,`. Using similar

SNR [dB]

-5 0 5 10 15 20

R
a

te
 [

b
it
s
/c

h
a

n
n

e
l 
u

s
e

]

0

1

2

3

4

5

6

7

8

Interference free rate

Ergodic nulling

Non-naive TDMA

Fig. 2. Four-user interference channel where 100 random channel realizations
are drawn. SIR=-5 dB. dmax = 500λ.

ideas to those in the main theorem by nulling all undesired
signals and their reflections, while maintaining the desired
signal and its reflections arbitrarily close to 1, the resulting
received signal is given by:

yi(e
jω) =

Li,i∑
`=1

g(θi,i,`)γi,i,`hi,i(θi,i,`)e
jωτi,i,`xi(e

jω)+ζi(e
jω)

(20)
where ζi(ejω) = zi(e

jω)+z′i(e
jω) is composed of the receiver

noise as well as the residual interference at receiver i, z′i(e
jω).

Note that the power z′i(e
jω) can be made arbitrarily small and

g(θi,i,`) are (simultaneously) arbitrarily close to 1 by a proper
choice of δ. It follows that (20) amounts to a standard ISI
channel in the frequency domain.

VI. OPTIMIZING THE BEAMFORMER

We now discuss the practical implementation of the pro-
posed method. While Theorems 1 and 2 guarantee that inter-
ference can be suppressed to any desired level, they do not
exploit the full optimization parameter space. Ultimately, our
goal is to maximize the signal-to-interference-plus-noise ratio
by properly choosing d and φ. Explicitly, the desired solution
is given by

(d̂, φ̂) = argmax
d,φ

Pdg(θd)∑
k 6=i Pkg(θk) + σ2

(21)

where Pd, Pk are the receive power of the desired and inter-
fering signals, and θd, θk are the directions of the desired and
interfering signals, respectively. While this equation is highly
non-linear, given the received signal and interference CSI, we
can optimize the receive array by a full grid search over d, φ.
This is a two dimensional search with a moderate complexity.
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are drawn. 100 random channels. SNR=10 dB, SIR=-5 dB.

VII. SIMULATIONS

To test the proposed ergodic interference nulling scheme, we
generated 100 LOS interference channels, with five users. The
array was limited to d = 500λ, which is a reasonable number
for practical mm-wave scenarios. We tested the capacity of
user 1 with all transmitters randomly located at directions
randomly chosen between 0 and 180 degrees. The signal-
to-interference ratio was −5dB, since all interferers were
assumed to be received with the same power. As naive nulling
of a single degree of freedom achieves nearly zero rate, we
took as a baseline for comparison non-naive time-division
multiple access (TDMA), with two users transmitting per
time slot. We calculated the average achievable rate over
all the randomly drawn channel realizations, where for each
realization we optimized over d, φ using a full search with
1o resolution in φ. We also compared the performance to the
interference-free capacity of a two-element receive array. The
results are depicted in Figure 2. The interference-free rate is
clearly nearly attained up to an SNR of roughly 10 dB, and
even at 20 dB we attain over 4 bits per channel use, which
is roughly double the rate achieved by non-naive TDMA. The
slowing of the growth of the rate (as a functio of the SNR)
achieved by the ergodic nulling scheme is due to the limited
size of the array. To test the dependence on dmax we chose
SNR= 10 dB, and computed the achievable rate as a function
of dmax. The results are depicted in Figure 3. While attaining
the interference-free rate requires about 100λ separation, there
is a very significant performance gain, compared to non-naive
TDMA, even at dmax = 15λ.

VIII. DISCUSSION

In practice, moving the antennas to set the desired separation
may be difficult to implement. One possibility to overcome
this difficulty is to use the standard approach taken in massive
MIMO systems, choosing two antennas out of a large array

and switching them into two receive chains; see, e.g., [12]. We
note that it is possible to reduce the number of total antenna
elements when implementing the proposed nulling scheme via
antenna selection by the use of a non-redundant array [13]
as is commonly used in radio telescopes [14]. In a practical
implementation, it is preferable to limit the dimensions of
the array. To that end, a receiver could divide the interferers
into two groups, a small group of strong interferers to which
approximate nulling is applied, and a residual that is treated
as noise. Moreover, from a system perspective, it may be
advantageous to partition the users into disjoint sets in which
the number of strong interferers is limited. Finally, we would
like to mention that quantifying the robustness of the proposed
scheme to CSI accuracy is an important research direction.
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