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Abstract—This paper describes a distributed statistical esti-
mation problem, corresponding to a network of agents. The
network may be vulnerable to data injection attacks, in which
the attackers’ main goal is to steer the network’s final state to
a state of their choice. We show that the detection metric of
the straightforward attack scheme proposed by Wu et. al in [1],
is vulnerable to a more sophisticated attack. To overcome this
attack we propose a novel metric that can be computed locally by
each agent to detect the presence of an attacker in the network,
as well as a metric that localizes the attackers in the network.
We conclude the paper with simulations supporting our findings.

Index Terms—Distributed projected gradient, Decentralized
optimization, Data injection attacks, Convex optimization, Max-
imum likelihood

I. INTRODUCTION

D ECENTRALIZED multi-agent optimization is an im-
portant problem in distributed computation. These algo-

rithms rely on local computations as well as in-neighborhood
communication to reach their common goal of minimizing a
common cost function or converging to a stable point. As these
networks gain in popularity [2–10], it has become apparent
that they are sensitive to false data injection which can steer
the network’s final state, see [1], [11–21] for examples. The
structure of an independently - self updating network, which
has been the main advantage of these methods, can turn into a
vulnerability by allowing an attacker which controls a single
node to have a global impact. This type of attack cannot
be detected using cryptographic techniques, since they use a
legitimate node in the network.

This paper focuses on the problem of detecting attacks on
distributed statistical estimation, using maximum likelihood
estimators when implemented using the distributed projected
gradient (DPG) algorithm [2]. We begin with a novel data
injection attack scheme, and its effects on decentralized op-
timization algorithms, and primarly the DPG. We propose a
new, more sophisticated attack scheme that is invisible to all
previous detection methods. This attack scheme is shown to be
always successful on synchronous-communication networks,
even when the network is dynamically changing over time.
We then propose two new metrics, computed locally by each
agent, to detect the presence of an attacker in the network and
localize it. The proposed detector is shown analytically and
numerically to be successful.

Notations: We use boldfaced letters to denote vectors and
boldfaced uppercase letters to denote matrices. For a vector
θ, [θ]i denote its i-th element, similarly, for a matrix A, Aij

denotes its (i, j)-th element. We mark the vector of ones as 1,
the (m×m) identity matrix as Im and the j-th unity vector
as ej to be all zeros except for the j-th element.

II. PROBLEM FORMULATION

We consider a grid of sensors measuring independent ran-
dom processes that depend on a joint parameter. In order to
extract this parameter, the sensors solve a maximum likelihood
problem

arg max
θ

∑
i

log fxi
(xi|θ) (1)

where fxi is the i-th agent’s density function and θ is an
unknown parameter vector. We assume that the measured noise
is i.i.d. between sensors. We consider a distributed setup where
agents do not share their private information xi.

A. Preliminaries

We consider an undirected time varying graph G (t) =
(V,E (t)) defining a network of N agents, where V =
{1, ..., N} is a set of N nodes (agents) and E (t) ⊆ V ×V de-
notes the connections between the nodes for some time t ∈ N.
For each node i, we define Ni ⊂ V as the neighborhood set of
agent i, as Ni := {j : (j, i) ∈ E}, note that E = ∪∞t=1E (t).
We mark the agents’ states for some time t ≥ 0 in the k-
th instance as Θk (t) = [θk1 (t) , ...,θkN (t)]T ∈ RN×P . We
assume that the agents perform a randomized optimization
algorithm for K instances which are used as a detection metric.

B. Distributed stochastic maximum likelihood estimation

The network graph consists of N agents sharing the
common goal of minimizing a joint likelihood function in
a distributed manner; i.e., we need to solve the following
optimization problem:

min
θ
h (θ) :=

1

N

N∑
i=1

hi (θ) , s.t. θ ∈ C (2)
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where C ⊆ RP is a closed, convex, compact set and hi :
RP → R , hi(θ) = − log fxi(xi|θ) is a private differentiable1

function over C, known to the i-th agent alone. In our problem,
we assume that xi are i.i.d. given any value of θ; i.e., the
parametric distribution fx(x|θ) is the same function, and is
known to all nodes. However the specific realization fxi

(xi|θ)
is private since each node has its own data. We mark the
optimal solution of the optimization problem as h∗ = h(θ∗),
where θ∗ ∈ interior(C) is the optimal parameter. In this
paper we assume that all hi(θ) are convex. The maximum
likelihood estimation can be solved distributedly using a
stochastic distributed projected gradient algorithm. Let G(t)
be the graph associated with a weighted adjacency matrix
W (t) ∈ RN×N , where W (t) satisfies:
Assumption 1: W (t) fullfils the next terms for t ≥ 0:
• W (t) is a symmetric, nonnegative matrix.
• If (i, j) ∈ E(t) then W i,j(t) ≥ ξ for some ξ ∈ (0, 1).
• If (i, j) /∈ E(t) then W i,j(t) = 0.
• W (t) is doubly stochastic.
Assumption 2: There exists B < ∞ such that the graph

(V,∪Bl=1E(t+ l)) is connected.
The distributed projected gradient (DPG) method [2] solves

the optimization problem shown in (2) by performing the
recursion:

θki (t+ 1) = θ̄
k
i (t)− η (t)∇hi

(
θ̄
k
i (t)

)
θ̄
k
i (t) =

n∑
j=1

W ij (t)θkj (t) , ∀i ∈ V, t ≥ 0,
(3)

where η(t) satisifies:

Assumption 3: η (t) is a time-varying step size satisfying∑∞
t=1 η (t) =∞ and

∑∞
t=1 η

2 (t) <∞.
Proposition 1: Under assumptions 1-3, for a compact space,

the joint objective function asymptotically reaches a minimum,
as seen in [3], [11].

lim
t→∞

h(θ(t)) = h∗ (4)

Our goal is to detect malicious nodes in the network that
attempt to destroy the distributed computation by injecting
false data.

III. DATA INJECTION ATTACKS

Consider a distributed maximum likelihood estimation,
where some nodes are malicious and inject false data into
the network. We divide the set of nodes, V , into two subsets:
R ⊂ V is the set of reliable agents and A := V \R, A 6= ∅ is
the set of attackers. Let na = |A| be the number of attacking
nodes. The attackers’ goal is to steer the network’s final state
limt→∞ θ(t) to a target state of their choice, while remaining
transparent to the network. To do so the attackers follow a
deceiving update rule of their choice while the trustworthy

1In the case where the objective function is non-differentiable, each gradient
reference should be considered a sub-gradient.

agents follow the DPG update rule as shown in (3). A previous
work suggested a straightforward attack scheme, as can be
seen in [1]. Unfortunately, the attack scheme can be changed
to be even smarter and thus evade this detection method. In
this section we present a novel improved attack method, and
then propose a detection scheme that exploits the statistical
nature of the problem to detect this more advanced attack.

A. Existing attacks

As stated above, the attacker’s goal is to steer the network’s
final state limt→∞ θ(t) to a target state of its choice. To do
so the attacker’s update rule is:

θj(t) = α0 + zj(t), ∀j ∈ A, (5)

while the trustworthy agents follow the DPG update rule as
shown in (3). α0 is the attacker’s desired final state and zj (t)
is a zero mean and σ2

z(t)IP variance random noise, vanishing
a.s. over time and satisfying the expected convergence rate of
the graph for all j ∈ A. The detection method proposed in
[1] relies on the difference between the final and the initial
state of the agents. For an attacker, the mean value of the
difference between the final state and the initial state equals
zero, whereas for a trustworthy agent, the mean value of the
difference between the final state and the initial state is not
zero.

B. New Attack Scheme

The new attack scheme proposed here is a mixture of two
update rules:
• The trustworthy agents’ DPG update rule.
• The straightforward attacker’s update rule [1].

To combine both update rules we generate a new time-varying
proportion coefficient marked as g(t).
Assumption 4: The new proportion coefficient g(t) fulfils the
following conditions:
• For all t ≥ 0, 0 ≤ g(t) ≤ 1.
• g(t) decreases over time, i.e. g(t+ 1) < g(t).
• g(0) = 1, limt→∞ g(t) = 0.
The new proposed attack scheme is

θj(t+ 1) = g(t)×DPG(θj(t))

+ (1− g(t))× (α0 + zj(t+ 1)), ∀j ∈ A
(6)

where DPG(θj(t)) refers to (3), α0 is the attacker’s desired
final state and zj (t) is a zero mean and σ2

z(t)IP variance
random noise, vanishing a.s. over time and satisfying the
expected convergence rate of the graph for all j ∈ A. Table 1
depicts the new attack scheme.

The result of implementing the new attack scheme on the
network forces the initial state of the attackers’ nodes to
be similar to that of the trustworthy agents. Therefore, the
detection scheme in [1] fails. The major change is that the
network reaches convergence to some unstable point we mark
as ᾱ. Over time, while the network maintains convergence to
ᾱ, ᾱ drifts towards α0, the chosen state of the attacker as can
be seen in Figure 1.
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Table 1: New proposed attack scheme
Input: no. of time iterations T , no. of instances K.
for k = 1 : K do

Initialize θk(0) with sensors data.
for t = 1 : T do

for i = 1 : N do
if i ∈ A then

Node i updates according to the new
attack scheme, as seen in (6).

else
Node i updates according to the DPG

method, as seen in (3).
end

end
end

end

Proposition 2. Under the proposed attack scheme in (6),
the network converges to the attacker’s desired state α0.

lim
t→∞

‖θi(t)−α0‖ = 0, ∀i ∈ V, (7)

Proof in appendix VII-A.

IV. DETECTING THE MIXED ATTACK

In this section we propose a new detection scheme that can
detect the presence of an attacker. Once we find the attackers
we can ignore their data and have a trustworthy network
solving (2), reaching an optimal point.
In order to detect and localize the attackers we run the
recursive DPG algorithm as seen in (3) for K instances, where
the attackers are following the proposed attack scheme shown
in (6). The algorithm runs for some time index marked as T∞
that is sufficient for the algorithm to converge.

Detection task. Denote the two hypotheses:

H0 – There are no attackers in the network; i.e., A ∩ V = ∅.
H1 – There exists an attacker in the network; i.e., A ∩ V 6= ∅.

We propose a new metric, computed upon convergence of
the algorithm (of each instance k), to detect an attacker in the
network, marked as di, ∀i ∈ V .

di =

∥∥∥∥∥ 1

K

K∑
k=1

∇hi
(
θki (T∞)

)∥∥∥∥∥H0

≶
H1

δd (8)

where δd is a predefined threshold2.
Note: The proposed detection metric is purely local, it does
not require agents to keep track of neighbors activities, as
opposed to previous works, including [1].

Theorem 1. For the detection metric, di, as presented above,
E[di] 6= 0 only if an attacker is present in the network. Proof
in appendix VII-B.

2Note that hi is the same objective function for each instance k, for some
agent i ∈ V .

Fig. 1. An example of the proposed detection metric for the new attack
scheme, implemented in a network as described in section II-A. The top sub-
plot shows the initial convergence of the innocent DPG algorithm to some
arbitrary point ∇hi(ᾱ), ∀i ∈ V , whereas the bottom sub-plot shows how
the arbitrary point ∇hi(ᾱ) drifts to ∇hi(α0) 6= 0 over time, exceeding the
given threshold.

V. SIMULATIONS

This section presents the simulations proving the results
shown in the figures below. We begin by generating the edge
matrix E(t) representing the network’s connections for some
time t. The network generated is an ”Erdos–Renyi” network
consisting of N agents (N = 50, 100, 500) with some random
probability 0 ≤ p ≤ 1. Using the edge matrix we generate the
adjacency matrix W (t) as W (t) = I− 1

2NS+ 1
2N (P +P T ),

where P is a random N × N matrix and S is a diagonal
matrix consisting of the column sum of (P + P T ). We run
the algorithm many times, each time for K instances and up to
final time index T∞ = 105 (or less if convergence is achieved
earlier), representing t→∞. In each trial, the existence of an
attacker is random and unknown.

A. Example 1: Estimating Logistic Distribution mean:
We assume that each agent holds a single measurement, (in

this example P = 1) consisting of the desired signal with
zero mean noise. Our goal is to extract the desired noise
by eliminating the noise from the given measurement in a
distributed manner. To simulate the problem we initialize the
agents’ state with values generated from a logistic distribution
with parameters (µ, σ). The agents solve a ML problem with
the following private objective function:

hi(θ) = 2 log

(
2 cosh

(
xi − θ

2σ

))
+ C (9)

for all i ∈ V , where C is a constant number known to all
agents, xi is the measured signal for some agent i and θ = µ,
the desired variable. We repeated the simulations for 5× 105

iterations. The results are depicted in Figure 2. It shows that
the success of the attacker’s detection depends on the strength
of the attack (the distance from the real result), as well as on
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Fig. 2. Attacker Detection performance analysis - Probability of false alarm
vs. K for PD = 0.9. Attacker’s desired state pulls the network 4, 8 and 10
units away from the real final state.

the number of instances for which the algorithm is run. The
stronger the attack, the greater the detection margin as the
mean value of the objective function gradient at T∞ diverges
from zero.

B. Example 2: Linear model
Consider a simple linear model where each agent receives

the following data:

xi = Hθ +wi (10)

where wi is a Gaussian distributed additive noise received by
each agent, wi ∼ N(0,C), where C is a known covariance
matrix and H is a known matrix. In this example P = 3.
We simulated two scenarios: without attackers and then with
attackers. In each simulation the network was the same as
in the previous example and the matrix H was selected
randomly, as well as the additive noise wi for each agent.
We repeated the simulation for 5× 105 iterations. The results
are depicted in Figure 3. Figure 4 depicts the attacker detection
performance analysis. The values of the objective function
gradient at the convergence time index reveals major difference
for a strong attack between both cases, giving us a large margin
for our detector threshold. Clearly, full convergence is not
needed to detect the presence of the attacker, allowing us to
run for many fewer iterations. For a modest attack it is shown
that the success of the detection scheme relies on the instance
amount the algorithm is run.

VI. CONCLUSIONS

In this paper we presented a novel attack on distributed
multi-agent optimization. We then described a detection
method for distributed maximum likelihood estimation with
i.i.d. agent data. In an extension of this work we present
exponential bounds on the detection probability, as well as
the localization algorithm which enables each agent to detect
malicious neighbors.

Fig. 3. Example of a linear model using the DPG algorithm with K = 1 and
the attack scheme in (6). In both subplots the objective function gradient is
presented; the top depicts the gradient for a trustworthy agent and the bottom
depicts an attacked network. Note that in order to reach such margin a strong
attack was applied.

Fig. 4. Attacker Detection performance analysis for the linear model -
Probability of false alarm vs. K for PD = 0.99. Attacker’s desired state
pulls the network 1, 2 and 3 units away from the real final state.

VII. APPENDIX

A. Proof of Proposition 2.

Using the definition of the new attack scheme presented in
(6) and the definition of the classic DPG method presented in
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(3), we observe the following inequality for the attacker:

‖θj(t+ 1)−α0‖ ≤
≤ g(t)‖W j(t)(Θ(t)−α01T )‖+ g(t)η(t)‖∇h(W j(t)Θ(t))‖
+ [1− g(t)]|zj(t+ 1)|
≤ g(t)‖W j(t)(Θ(t)−α01T )‖+ g(t)η(t)Q

+ [1− g(t)]|zj(t+ 1)|

where Q is the objective function gradient bound. From
the definition of g(t) in assumption 4, we know that
limt→∞ g(t) = 0. Recall that zj(t) vanishes a.s. over time.
Therefor, we get the next asymptotic behavior:

lim
t→∞

‖θj(t)−α0‖ = 0

Recall that trustworthy agents inject false data of second
order to the network. The remaining part of the proof for the
trustworthy agents is given in sub-section II.A in [11], which
shows how a stubborn agent steers the network to a final state
of its choice. Therefore

lim
t→∞

‖θi(t)−α0‖ = 0, ∀i ∈ V.

B. Proof of Theorem 1.

From Proposition 1, we know that the joint objective
function reaches a minimum for a trustworthy network as
shown in (4). For the objective function, the gradient at the
optimal solution satisfies:

∇h(θ∗) = ∇

(∑
i

hi(θ
∗)

)
= ∇

(
−
∑
i

log fxi
(xi|θ∗)

)
= 0

for every set x1, ...,xN . Therefore, Ex1,...,xN [∇h(θ∗)] = 0.
As stated before, xi, i ∈ V are i.i.d. random variables; hence:

E [∇h(θ∗)] = E

[
∇

(∑
i

hi(θ
∗)

)]
= N × E [∇ (hi(θ

∗))]

for some i.
Thus E [∇ (hi(θ

∗))] = 0, for all i ∈ V . Therefore E[di] = 0
for a trustworthy network.
If an attacker is present in the network, the network converges
to the attacker’s desired final state rather to the optimal param-
eter; therefore ∇h(θ(T∞)) 6= 0, resulting in E [∇ (hi(θ

∗))] 6=
0 and E[di] 6= 0.
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