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ABSTRACT

This paper presents new results on network inference from observa-
tions of steady state behaviors emerging from perturbations of com-
plex networks dynamics. We focus on the estimation of network and
flow parameters using a general regularized inference formulation,
which is tackled numerically using the standard technique of alter-
nating optimization. We argue that relying only on the steady states
equations removes the requirement of precisely recording transient
data, and allows to meaningfully combine data from multiple exper-
iments. To provide theoretical benchmarks we study the relationship
between topological and functional characteristics of the system and
the divergence between the steady state behavior observed, to give
rigorous performance benchmarks. Numerical results are presented
on examples with social networks and gene regulatory networks to
justify our claims.

Index Terms— network inference, complex network systems,
social networks, gene networks, network identifiability

1. INTRODUCTION

Our life is surrounded by complex networks — from gene regulatory
networks to social networks, from power networks to transporta-
tion networks, etc.. It is not surprising that understanding complex
network systems has attracted researchers from various disciplines.
Among the related problems a challenging one is the reverse engi-
neering of a complex network, by recovering the network dynamics
that underpins its behavior.

This paper is concerned with the joint recovery of network and
the complex system’s dynamics from a small number of observed
steady states. The steady states are the stationary points of a com-
plex system that are easy to observe or measure. As the complex
system may admit only a unique steady state, we consider the nat-
ural or synthetic perturbations introduced to the system as a mean
to achieve identifiability. In fact, the steady states that emerge after
such perturbations can be exploited for the inference process. This
approach is akin to the standard system identification method involv-
ing probing and sensing in many signal processing and control prob-
lems, e.g., [1]. As the number of steady states observed is limited we
propose a regularized inference model to be tackled using alternat-
ing optimization. The inference model has an interesting structure
which can be decomposed naturally for computational speed up us-
ing parallel processors. We also address the issue of identifiability by
reviewing a few related results. We demonstrate the efficacy of our
approach in dynamics for social networks and gene networks. Im-
portantly, we achieve better than state-of-the-art network inference
performance using the steady states data alone.

This work is supported by NSF CCF-BSF 1714672.

Our work is related to a large body of prior work on network
inference. We focus on the signal processing and statistics litera-
ture first. The notable examples include [2] which developed the
graphical LASSO (gLASSO) method for undirected networks and
[3] which generalizes gLASSO to the temporally nonlinear dynam-
ics, a.k.a. graph filters [4–6]; also see the related work [7–11]. Note
that our approach considers directed networks and spatially nonlin-
ear dynamics. To this end, the most relevant work can be found
in [12] which uses a kernel-based method to infer the directed net-
work topology. However, their approach requires a relatively large
amount of data that can be difficult to observe. Similar earlier work
based on transient data was in [13, 14]. In addition, heuristics based
on machine learning tools have been proposed in [15–17] with meth-
ods tailored to the gene network recovery.

2. DYNAMICS OF COMPLEX NETWORK SYSTEMS

We consider a complex network system whose inter-connectivity be-
tween its nodes can be described by a directed graph G = (V,E),
with V = [n] := {1, ..., n} denoting the set of agents in the system
and E ⊆ V × V the possible interactions between pairs of agents.
The graph is directed, i.e., (i, j) ∈ E implies that it is possible for
agent i to influence agent j but not vice versa. Moreover, we assume
(i, i) /∈ E such that there is no self loop. We shall use the notion of
agents as a generalization of the interacting parties in the complex
systems — e.g., for social networks, an agent refer to an individual
who befriend with others; for gene networks, the name agent refers
to a gene which is regulated by another gene; for power networks, it
is a bus injecting a net positive or negative amount of real power in
the system, corresponding to generation and load respectively.

The interactions between agents differ from pairs to pairs. We
model this heterogeneity using a weighted adjacency matrix A ∈
Rn×n. The matrix is defined on the graph G such that Aij 6= 0 if
and only if (j, i) ∈ E. Let xi(t) be the state of agent i at time t,
and ẋi(t) := dx(t)/dt [resp. ẍi(t) := d2x(t)/dt2] be its first-order
[resp. second-order] time derivative. Denote the complex network
system as C0, its dynamics is described by the nonlinear system of
differential equations —

f(ẋi(t), ẍi(t)) = gi(xi(t)) +

n∑
j=1

Aijh(xi(t), xj(t);θi) , (1)

for all i ∈ [n], where gi(·) is some self-influence function, θi is the
parameter vector of the kernel functions h(x, y;θi) that models the
pairwise state interaction. The nonlinear function f(x, y) serves as a
measure of stationarity in the complex system such that f(x, y) = 0
if x = y = 0; in other words, the system is in steady state when the
right hand side of (1) is zero for all i ∈ [n]. Formally, we say that x̄
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is a steady state to the system C0 if it satisfies:

0 = gi(x̄i) +

n∑
j=1

Aijh(x̄i, x̄j ;θi), i = 1, ..., n . (2)

The steady states are the points of interest for many complex net-
work systems, since they correspond the lowest energy states and are
thus the stable points of the dynamics. Due to its stability, they are
also the behaviors of the network that can be most easily observed.

This paper is concerned with inferring the parameters Θ :=
(A, {θi}ni=1) of the complex network system using its steady state
data. As we shall reveal later, our approach is parametric such that
it relies on fitting the parameters into the model (2). Note that the
number of steady states is limited (or is even unique) for a number
of complex network systems. This leads to an issue of extreme rank
deficiency since the array of unknown parameters Θ lives in a high-
dimensional space, i.e., there are n2 − n unknowns in A alone. To
this end, a traditional approach in system identification is to perform
a set of perturbation experiments in the system.

2.1. Perturbation Experiments

Consider introducing P different perturbations to the system C0. Let
p = 1, ..., P , the perturbed system Cp admits a different steady state,
denoted as xp, than x̄ while the sought parameters Θ remain un-
changed. In this way, we obtain a set of data that can be used to infer
Θ while alleviating the issue with rank deficiency.

In fact, performing perturbation experiments is a common ap-
proach for network inference in practice. The following perturbation
models will be studied in this paper:

Type I — Injecting New Agents to C0. For this type of experiment,
we introduce S new agents into the complex network system which
hold the states of zp := (zpj )Sj=1 during the pth experiment. This
yields a perturbed system Cp, whose steady state, xp, satisfies:

0 = `type−1
i (A,B, {θi}ni=1;xp), i = 1, ..., n , (3)

where

`type−1
i (A,B, {θi}ni=1;xp) :=

gi(x
p
i ) +

n∑
j=1

Aijh(xpi , x
p
j ;θi) +

S∑
j=1

Bijh(xpi , z
p
j ;θi) ,

(4)

and Bij is the interaction strength from the jth inserted agent to the
ith agent. In control theory, this is similar to adding a control input
to the complex network system. We remark that B is unknown in
general and it should be estimated alongside with Θ as a nuisance
parameter during the network inference process.

This perturbation model is relevant in the context of opinion dy-
namics in social networks, where each of the inserted agent is a
stubborn agent whose aim is to influence the social network. For
this case, we also have

∑n
j=1Aij +

∑S
j=1Bij = 1 for all i such

that the network dynamics is that of an average consensus process.
Each of the kth experiment observed correspond to a discussion on
a certain topic, and the inserted state zk are precisely the opinions
held by the stubborn agents. Interestingly, for the special case of lin-
ear DeGroot opinion dynamics, the observation rank will be upper
bounded by the number of stubborn agents S [18, 19].

Type II — Knocking Out Agents in C0. In this perturbation model,
we suppress/knock out an agent at a time in the complex network
system.

This type of perturbation experiment is relevant to the common
network inference experiments performed on gene regulatory net-
works (GRNs). Specifically, each agent corresponds to a gene in
the GRN and it is possible to knockdown an agent through exper-
iment techniques such as mutagenesis to knockout genes [20] and
microarray experiments to profile them [21]. It is worth noting that
the dataset collected from knockdown experiments are widely avail-
able, e.g., [21].

Let π(p) ∈ {1, ..., n} be the agent knocked out at the pth exper-
iment1, the perturbed system Cp satisfies:

0 = `type−2
i (A, {θi}ni=1;xp), i = 1, ...π(p)− 1, π(p) + 1, ..., n ,

(5)
where

`type−2
i (A, {θi}ni=1;xp) :=

gi(x
p
i ) +

n∑
j=1,j 6=π(p)

Aijh(xpi , x
p
j ;θi) +Ai,π(p)h(xpi , 0;θi) ,

(6)

Note that this is equivalent to imposing a boundary condition for
xπ(p)(t) = 0 on the system of differential equations. Interestingly,
for certain dynamics and parameters θi, it is possible to infer the
partial support of A merely by comparing the steady states. This
result can be summarized as follows.

Assumption 1 For all i, we have gi(x) = x and the kernel function
satisfies h(x, y;θ) = h(x;θ).

Proposition 1 [22] Under Assumption 1. Denote [h(x;θ)]i :=
h(xi;θi). If the perturbation in steady states, i.e., x̄ − xp, is small
and ‖(I−eπ(p)e

>
π(p))A∇xh(xp;θ)‖2 < 1, where∇xh(xp;θ) is

the Jacobian2 of the function h(x;θ), then it holds that:

x̄− xp ≈ ([x̄]π(p))eπ(p) + ([x̄]π(p))∇xh(0;θ)acol
π(p) , (7)

where eπ(p) is the π(p)th coordinate vector, and acol
π(p) is the π(p)th

column vector ofA.

The result above (whose proof can be found in [22]) suggests that the
support of acol

π(p) can be revealed by merely inspecting and thresh-
olding the difference vector x̄− xp. This is an example of the prior
knowledge that we exploit in the network inference method proposed
in the next section.

3. GENERAL INFERENCE WITH REGULARIZATION

To infer parameters Θ of the complex network system from steady
states data, we adopt a general regularized inference approach as:

minΘ̂

∑P
p=1 L(Θ̂;xp) +R(Θ̂) s.t. Âii = 0, ∀ i , (8)

where L(·; ·) is the loss incurred by the miss-match between Θ̂ and
the observed perturbed steady state. As the perturbed steady states
are directly observed (potentially with some form of observation
noise), we apply the least-square loss function3:

L(Θ̂;xp) =
∑n
i=1

(
`i(Θ̂;xp)

)2
, (9)

1Using a straightforward modification, it is possible to extend the model
to include multiple knocked out agents in an experiment.

2Precisely, the Jacobian is given by the diagonal matrix∇xh(xp;θ) :=
Diag([..., ∂h(x;θi)/∂x|x=xpi , ...]).

3As an extension, one could consider alternative loss functions for differ-
ent observation models, e.g., logistics regression for binary input.
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where `i(·; ·) is defined in (4) or (6), depending on the type of pertur-
bation experiments considered. Note that Θ̂ encompasses two sets
of parameters of the complex network system — (i) the network pa-
rameters, i.e., Â (also the nuisance parameters modeled in Type-I
experiments); (ii) the dynamics parameters, i.e., {θ̂i}ni=1.

We are interested in the scenario when P � n. Note that in
this case we are faced with the issue of rank deficiency as there
are at least n2 − n unknowns in Â while only Pn observations are
available. This suggests that an appropriate regularization function
is necessary to guarantee recoverability for network inference using
(8). We propose the following strategies for regularizing the network
adjacency matrices (e.g., Â, B̂) with different type of experiments:
• (Type-I: New agents injection) We apply:

Rtype−1(Θ̂) = ρ
(
‖vec(B̂)‖1 + ‖vec(Â)‖1

)
, (10)

for some ρ > 0. The regularizer simply imposes a sparse prior
on the unknown network parameters, i.e., the network is sparsely
connected.

• (Type-II: Knockout experiments) Under Assumption 1 we apply:

Rtype−2(Θ̂) = ρ‖vec(Â)‖1 + IS(Â) , (11)

where IS is an indicator function satisfying

IS(Â) =

{
∞, if [Â]ij 6= 0 for some (i, j) ∈ S,
0, otherwise ,

(12)

and for some δ > 0, we set

S :=

P⋃
p=1

{
(i, π(p)) : i ∈ [n],

[
x̄− xp

]
i

[x]π(p)
< δ
}
. (13)

In addition to promoting sparsity in the network adjacency matrix
Â, we also exploit the partial support estimated by Proposition 1.
Specifically, set S is an estimation for the locations of zeros in
the sub-matrix [A]:,π([P ]) as predicted by the proposition.

Due to the coupling between Â and θ̂i as seen in the loss func-
tion (4) and (6), the inference problem (8) is non-convex in general.
To handle this, we adopt the standard alternating optimization ap-
proach. Let k be the iteration number, we alternate between the two
steps — (i) given {θ̂(k)i }

n
i=1, problem (8) is convex and we solve

Â(k+1) ∈ arg minÂ L(Â, {θ(k)i }
n
i=1;xp) +R(Θ̂) ; (14)

(ii) given Â(k+1) (and B̂(k+1)), problem (8) is in general non-
convex, yet we can update the dynamics parameters using the
gradient method with a fixed step size:

θ
(k+1)
i = θ

(k)
i − γ

∑P
p=1∇θiL(Â(k+1), {θ(k)i }

n
i=1;xp) , (15)

where γ > 0 is a step size. This procedure is a hybrid of alternating
optimization with exact and inexact updates. Furthermore, it is guar-
anteed to converge to a stationary point of (8) under mild conditions
on the loss functions [23].

We also remark that in the sub-problem for optimizing the
network-related parameters Â, the problem (14) has a friendly
decomposable structure. In particular, we observe that the loss func-
tions in (4) and (6) are only dependent on the ith row of Â (or in
addition B̂). When combined with the separability of the regular-
ization functions in (10) and (11), this suggests that the inference
problem can be decomposed into n independent sub-problems that
can be solved in a parallel fashion. In fact, even with a naive imple-
mentation such as solving (14) by off-the-shelf software as cvx [],
one could handle moderately sized network with n ≈ 1000.

3.1. Identifiability Guarantees

We briefly review the identifiability guarantees for our general infer-
ence method. To derive meaningful results, we focus on the special
case when the dynamics parameters {θi}ni=1 are known. Moreover,
the observations are noiseless such that we impose the constraint
L(Â, {θ(k)i }

n
i=1;xp) = 0 in (14) [or we set the regularization pa-

rameter ρ to sufficiently large to enforce the former].
For Type-I experiments, a special case was analyzed in [18] with

linear network dynamics, i.e., when h(xi, xj ;θ) = xj − xi for all
θ and gi(x) = x for all i. We set P = S such that the steady state
data is rank-S and is the maximum rank achievable with S injected
agents. Furthermore, [18] considers an active sensing setting where
the support of B is known. The authors considered a regularization
similar to (10) which takes the support of B into account and pro-
motes sparsity on Â. The results below hold when the support ofB
is drawn according to a random, `-row regular pattern:

Theorem 1 [18] If the number of injected agents S satisfies

S ≥ β(α, `)n+ ` , (16)

where β(α, `) is a nonlinear function of the maximum degree frac-
tion α := maxi ‖arow

i ‖0/n which approaches a constant factor of α
as n→∞. Then, as n→∞, the optimal solution to (14) is unique
satisfying (Â, B̂) = (A,B) with probability one.

The precise conditions are technical and are skipped in the interest of
space. Interested readers are referred to [19] for a gentle description.

For Type-II experiments, the identifiability result is proven un-
der Assumption 1 and a set of assumptions below:

Assumption 2 (a) The approximation in Proposition 1 is exact and
S finds correctly all the zeros in [A]:,π([P ]); (b) matrix A is non-
negative; (c) h(x;θ) has an exact first order Taylor approximation.

Also, define Si := {j : (i, j) ∈ S} as the restriction of S to the
indices of the ith row inA. We have

Theorem 2 [22] Under Assumption 1 and 2. Denote as Gi the
bipartite graph induced by the outgoing edges from π([P ]) \ Si to
all the nodes in V . If for all i ∈ V , Gi is an (α, δ)-unbalanced
expander graph with left degree bounded in [dl, du] such that

(1 + (dl/du)δ)‖arow
i ‖0 ≤ αn, 2(dl/du)δ >

√
5− 1 , (17)

then solving (14) with the additional constraint Â ≥ 0 yields a
unique solution that Â = Â.

Again, the precise conditions are technical and the interested readers
are referred to the working paper [22] for details.

That said, it is possible to satisfy the conditions above by solving
(14) using data from P = Ω(dmax) experiments. The required P
needs not to grow with n. Moreover, the above conditions favor
graphs that are regular, i.e., when agents have similar degrees.

4. NUMERICAL RESULTS & CONCLUSIONS

This section presents numerical experiments to verify the efficacy of
our proposed inference method under different network models. In
particular, for synthetic networks,
Opinion Dynamics. We consider the experiments on synthetic net-
works. Particularly, the steady states data are collected from a com-
plex network with n = 1000 agents and kernel functions:

h(xi, xj ; θi) = exp(−θi(xi − xj)2) · (xj − xi) , (18)

157



60 70 80 90 100 110

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

# Injected agents S = P

N
M

S
E

Known dynamics – ER
Unknown dynamics – ER
Known dynamics – SW
Unknown dynamics – SW
Known dynamics – PA
Unknown dynamics – PA

60 70 80 90 100 110

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

# Injected agents S = P

AU
R

O
C

Fig. 1. Network Inference on Opinion Dynamics. We compare
the normalized mean square error, and area under ROC curve, in
recovering A versus the number of new agents injected S, under
different network models.

where θi > 0 is a parameter controlling the openness of an agent
to accept other’s different opinions. Moreover, gi(x) = x for all
i. The networks A are generated as — for Erdos-Renyi (ER) net-
works, the connection probability is set with pER = 1.01 logn/n;
for small world (SW) networks, the networks are generated based
on the algorithm in [24], set with a degree of dSW = d0.5 logne
with a rewiring probability of 0.2; for preferential attachment (PA)
networks, the networks are generated using [25] with a minimum de-
gree of 2. For this configuration at n = 1000, the average number of
edges in the ER and SW networks are comparable, while the PA net-
works have a smaller number of edges. Fixing the number of injected
agents at S, at each experiment, the initial opinions of all the agents
are randomly generated according to U [0, 1]. The support of the ma-
trix B is constructed as a random ` = 5 regular bipartite graph.
The openness level of each agent is generated as θi ∼ U [1, 1.5] for
i ∈ {1, ..., 500} and θi ∼ U [3.5, 4] for i ∈ {501, ..., 1000}. We
apply 10 iterations for the AO procedure, initiated with θi = 0.5 for
all i. The performance of network inference is presented in Fig. 1
for cases with unknown or known dynamics parameter.

As seen in the figure, the normalized mean square error (NMSE)
and the area under ROC (AUROC) metrics improve with the
number of injected agents in all types of networks. Note that
NMSE → 0 indicates perfect identification of the network weights
while AUROC→ 1 indicates perfect recovery of the network topol-
ogy. In particular, given the similar average edge density, the SW
networks can be recovered with less number of injected agents than
ER networks. This is due to the fact that the networks has less
number of nodes with high degree. Lastly, the estimated dynamics
parameters are matched with the ground truth. To illustrate this, for
an instance of the recovery of an PA network with S = 110 injected
agents, the recovered dynamics parameters satisfy E[θ̂i] ≈ 0.89 for
i ∈ {1, ..., 500} and E[θ̂i] ≈ 2.4 for i ∈ {501, ..., 1000}. This is
compatible with our generation model.

Gene Dynamics. We first consider an application of our method on
synthetic networks. Here, the dynamics equations satisfy Assump-
tion 1 and the kernel function is given by h(x;θ) = xb1/(b2 +xb1).
The networks A are generated according to the same models de-
scribed for opinion dynamics except that we set pER = 2 logn/n
and dSW = dlogne for ER and SW networks, respectively. The dy-
namics parameters for all agents are set as b1 = 0.5 and b2 = 1. The
steady states of the network is computed using the Runge-Kutta 4th
order method and a randomly chosen agent is knocked out in each
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Fig. 2. Network Inference on Gene Regulatory Dynamics. Simi-
lar models are considered as in the case for opinion dynamics.

E. coli S. cerevisiae

Methods AUROC AUPR AUROC AUPR

TIGRESS [16] 0.595 0.069 0.517 0.02
GENIE3 [15] 0.617 0.093 0.518 0.021
Proposed (top
100k)

0.6823 0.0508 0.525 0.02

iRafNet [17] 0.641 0.112 N/A N/A
Proposed (top
500k)

0.7573 0.0574 0.5734 0.0252

?All values are computed from the top 100k predictions made. Exceptions
are the iRafNet, GENIMS and proposed method (top 500k) in the last three
rows, that are based on the top 200k, all, top 500k predictions, respectively.

Table 1. GRN Recovery on Empirical Dataset. We use the pa-
rameterization with h(x;θi) = 0.75xb1/(1 + b2x

b1) where b1, b2
are unknown parameters. Proposed method (3rd row) uses the opti-
mized parameters learnt for the two networks, i.e., b1 = 0.047, b2 =
0.5893 for E. coli and b1 = 0.5571, b2 = 0.3749 for S. cerevisiae.

perturbation experiment. Our results are presented in Fig. 2 for these
synthetic networks. For ER and PA networks, we observe the same
trend as in the case of opinion dynamics where the performance im-
proves with the number of perturbation experiments observed. In-
terestingly, for SW networks, the AUROC performance deteriorates
with P when the dynamics are unknown. This is potentially due to
the lack of support for conditions in Theorem 2 with SW networks.

Finally, we apply our proposed method to two empirical datasets
taken from the DREAM5 challenge [21]. The datasets are microar-
ray experiments (where each record is the normalized gene expres-
sion) performed on E. Coli and S. cerevisiae. The E. Coli network
has n = 4511 genes and the number of experiments (of the same
conditions) isP = 56, while the S. cerevisiae network has n = 5950
genes and we have P = 7 experiments only. The results are pre-
sented in Table 1 where our method has outperformed the state-of-
the-art methods. Details of our numerical experiments can be found
in the technical report [22].

To conclude, this paper has described a general approach for
the joint recovery problem of network and dynamics in complex
networks, where only steady states data are used. We have also
presented identifiability conditions required for perfect recovery of
these networks. Numerical results show the benefits of our approach.
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