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Abstract—We address the problem of existence of unbiased
constrained parameter estimators. We show that if the con-
strained set of parameters is compact and the hypothesized dis-
tributions are absolutely continuous with respect to one another,
then there exists no unbiased estimator. Weaker conditions for the
absence of unbiased constrained estimators are also specified. We
provide several examples which demonstrate the utility of these
conditions.

Index Terms—Cramer-Rao bound, unbiased estimation, Esti-
mation theory, constrained estimators

I. INTRODUCTION

Unbiased estimation is a cornerstone of classical estimation
theory and arises as an important concept in minimum variance
unbiased estimation (MVUE) theory [1], [2], [3]. Information
theoretic bounds are an important tool for the evaluation of
estimators for identifying theoretical performance gaps. [4],
(51, [6], [7].

In this context, the Cramer-Rao bound (CRB) has emerged
as an important information inequality since it not only serves
as a non-trivial lower bound on all unbiased estimators, but is
also often readily computatable particularly for unconstrained
parameter estimation problems. While CRB can also be ex-
tended to bound the performance of biased estimators, these
bounds are often not useful in many interesting cases. This is
because they require the knowledge of the bias as a function
of the parameters and are thus not agnostic to the estimation
scheme employed.

In many real-world estimation problems we often encounter
constraints on the parameter space in the form of side-
information. For example in many communication systems
we encounter positivity constraints, limited power constraints,
bandwidth or delay constraints, circularity constraints, sub-
space constraints, and so on. Consequently, it makes sense to
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incorporate these constraints for deriving constraint dependent
lower bounds. Motivated by these scenarios a significant
amount of research has been conducted on developing esti-
mation techniques and performance bounds for constrained
problems. In this context, many papers propose deriving con-
strained CRBs and in particular focus on bounds for unbiased
estimators on account of its relative computational simplicity.
This raises the question of as to the conditions under which
unbiased estimators can exist in constrained scenarios. Before
we describe our results we will discuss some of the related
work in this context below.

CRBs for constrained parameters was introduced and stud-
ied by Gorman and Hero [8]. A constrained CRB on the error
covariance of estimators of multi-dimensional parameters was
derived. The derivation was based on a limiting form of a
multi-parameter Chapman-Robbins [9] form of a Barankin-
type bound [4]. It was shown that the constrained CRB
is equivalent to the unconstrained CRB evaluated with a
“constrained Fisher information matrix” for the case in which
there is a general smooth functional inequality constraint of
the form Gy < 0. This constrained Fisher matrix was shown
to be identical to the classical unconstrained Fisher matrix
at all regular points of the constraint set, e.g., at interior
points. However as noted by [8] at non-regular points, such as
points governed by equality constraints, the constrained Fisher
matrix was observed to be a rank-deficient matrix. It was also
established that functional constraints necessarily decrease the
CR bound for unbiased estimators.

Marzetta [10] provided a simpler proof for the case of
constrained unbiased estimators. While Gorman and Hero’s
derivation relied on an application of the Cauchy-Schwarz
inequality to a pair of random vectors, one of which has a
possibly singular covariance matrix, the derivation of Marzetta
avoids using the Cauchy-Schwarz inequality and it avoids
pseudoinverses. But, it focuses solely on unbiased estimators.
Another result of [10] is a necessary condition for an unbiased
estimator to achieve the constrained CRB with equality.

A subsequent work by Stoica and Ng [11] extends the con-
strained CRB (under differentiable, deterministic constraints
on the parameters) to the case in which the Fisher information
matrix for the unconstrained problem is not necessarily full
rank. This case was not treated in previous works. It was
assumed in [11] that the estimator was unbiased and it was
shown that the expression for the constrained CRB in this case
depends only on the unconstrained Fisher information matrix
and a basis of the nullspace of the constraints gradient matrix.
A necessary and sufficient condition for the existence of the
constrained CRB was also derived.



There have been a number of follow-on works that have
utilized constrained CRBs for a range of applications including
sparse estimation problems [12] and MIMO Radars [13].

Unfortunately, as we shall see in this paper, in many
interesting cases of constrained parameter sets, an unbiased
estimator does not exist. This limits the applicability of the
results, mainly to cases of biased estimators, and to cases of
unbiased estimators in which the constrained parameter set is a
manifold without boundaries [14], i.e., there are no non-trivial
inequality constraints. Moreover, often, the use of the CRBs
for biased estimators is quite complicated since it requires
explicit expressions for both the bias and the gradient of the
bias. One of the most striking consequences of the results of
this paper is that if the constraint set is the set of solutions
(zeros) of a set of continuous non-linear functions which is
bounded, then there exists no unbiased estimator.

This result in turn provides an explanation for the obser-
vation of [8] that inequality constraints do not reduce the
bound at internal points of the constrained parameter set.
The variance is not reduced simply because there are no
constrained unbiased estimators in this case. This implies that
in order to use the Gorman-Hero bound, one needs to know
the bias of the estimator with the constraint. In fact, in another
related work [15], a method for experimentally determining
the bias gradient norm is presented in order to explore bias-
variance tradeoffs.

In this paper we focus on the case of an estimation problem
of a parameter vector 6 that lies in R%. Our first result concerns
the case where 0 is constrained to a set, which has at least one
extreme point, .. In addition we assume that the distribution
of the observed random variable X given 6. is absolutely
continuous with respect to (w.r.t.) the distribution of X given
another parameter value in the constrained set. Under these
assumptions we show that there exists no unbiased estimator
whose range is the constrained set. We then specialize the
result to the important case of a constrained parameter set
which is compact (and not a singleton) and show that the
result continues to hold in this special case. Furthermore, we
extend the result to a case of a bounded constraint set, which
can be open, and whose closure contains an extreme point
and where the distribution of the observed random variable
has a bounded Radon Nikodym derivative. We further provide
examples to demonstrate that the conditions we specify are
necessary and cannot be further relaxed.

Our results imply that almost in every constrained problem
that one can think of, there exists no unbiased estimator. This
result is surprising in light of the scarcity of examples which
appear in the literature for the non existence of unbiased
constrained estimators (e.g. [16]). In fact, the non-existence
of unbiased estimators is the more common/natural case, a
fact that will be defined more explicitly. Moreover, this fact
has an important implication on CR bounds in the constrained
case; since the applicable case is the biased one, the CR bound
which requires explicit expressions for both the bias and the
gradient of the bias might be useless in many setups.

II. MAIN RESULTS

We begin by presenting a theorem which specifies con-
ditions under which an unbiased estimator of a vector of
parameters does not exist.

Lemma 1. Let © C RY be a set of parameters which is not
a singleton, and let Py, 6 € © be a corresponding collection
of distributions. Let X ~ Py be a random variable over some
measurable space. Suppose there exists an extreme point 0, €
O and an additional point 0’ € ©, ' # 6, such that Py and
Py, are absolutely continuous w.rt. one another. Then there
exists no unbiased estimator g(X) for 0, which is measurable
w.r.t. the Lebesgue o-algebra whose range is ©.

Note that Lemma 1 as well as the proceeding Theorem 1 do
not pose restrictive assumptions on the measurable space on
which the random variable X is defined. Hence, as a special
case, it holds for X which is a random N-Vector over R%.

Note also that absolute continuity and contiguity can be
formulated in terms of Rényi divergences as pointed out in
[17].

Proof. Let 0, be an extreme point of ©, the existence of which
is guaranteed by assumption.

Assume that g(X) is an unbiased estimator of § whose range
is ©. For notational convenience we denote by P(g(X)|6) the
distribution of g(X). By unbiasedness we have

EPec (g(X)|ee) :967 (1)

where Ep(-) denote expectation w.rt. the distribution P.
Therefore, by definition of the expectation we obtain

0. =Ep,. (4(X)|0.)
=/9@M%e
X
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where & is the alphabet of X and the last step follows from
the assumption that the range of g is ©.

While the RHS of (2) is a convex combination of points
in ©, the LHS of (2), that is, 6., is an extreme point of ©.
By definition of an extreme point in © as a point which does
not lie in any open line segment joining two points of ©, we
conclude that

2

9(X) =0, wp. 1 wrt Py_. 3)

Since by assumption, the distributions Py and Pp_ are abso-
lutely continuous w.r.t. one another it follows that

9(X) =6, wp. 1 wrt. Py. @)

To realize that (4) holds, assume in negation that it does not.
Thus Je > 0 such that Py ({z : g(z) # 0.}) > ¢, while from
(3) we have Py_({z : g¢g(x) # 6.}) = 0, contradicting the
absolute continuity of Py and P, w.r.t. one another.
Equation (4) clearly contradicts the unbiasedness of the
estimator for 6. O

The following theorem gives alternative (stricter) conditions
for the non existence of an unbiased estimator.



Theorem 1. Let © C R% be a compact set of parameters
which is not a singleton. Assume further that Py, 0 € O is
a collection of distributions, which are absolutely continuous
w.r.t. one another. Let X ~ Py be a random variable over
some measurable space.

Then there exists no unbiased estimator g(X) for 6, which
is measurable w.r.t. Lebesgue o-algebra whose range is ©.

Proof. The proof of Theorem 1 is a straightforward conse-
quence of Lemma 1, which is established by proving that a
compact set in R? must contain at least one extreme point. To
this end, we use a known result, which can be found in [18,
Page 185, Corollary 5.33]. This corollary states that a convex
hull and the convex circled hull of a compact subset of a
finite dimensional vector space are compact sets. Therefore,
the convex hull of a compact set in R? is compact.

Further, we note that the set of extreme points of a compact
set in R? is non-empty: By the Krein-Milman Theorem [19],
the closure of Conv(A) is the convex hull of its extreme
points. If A is compact, then by the previous lemma, Conv(.A)
is closed. Therefore, Conv(A) is the convex hull of its
extreme points. Hence, all the extreme points of Conv(A)
must belong to A. By definition, an extreme point is not a
convex combination of other points in the set, hence all the
extreme points must belong to A.

Hence, we have established the existence of an extreme
point in ©. Now, repeating steps (1)-(3) the condition that
Py, 6 € ©O are absolutely continuous w.r.t. one another,
ensures that (4) holds for all # # 6., which contradicts the
unbiasedness of the estimator for all 6" # 6..

O

We next present a corollary of Theorem 1.

Corollary 1. Let f be a continuous non-linear function and
let the set © = {0 : f(0) = 0} of solutions be bounded, then
there is no unbiased estimator. The same result holds for a
bounded set © = {6 : f(6) < 0}.

Proof. By the boundedness and the continuity of f we have
that the set © must also be closed and thus also compact.
Therefore, the conditions of Theorem 1 are met and there
exists no unbiased estimator. O

Next, we relax the condition that there must exist an
extreme point within the constraint set, and replace it with
a requirement that an extreme point exists on its closure. This
allows to generalize the results to open constraint sets under
an additional requirement on set of distributions Py, 6 € O.
We denote by A the closure of the set A.

Theorem 2. Let © C R? be a bounded set of parameters
that is not a singleton. Let Py, 6 € © be a collection
of distributions which are absolutely continuous w.r.t. the
Lebesgue measure and w.r.t. one another, with Radon Nikodym
derivatives (p.d.f’s) fo, 0 € © which are uniformly bounded.
Let X ~ Py be a random variable over some measurable
space. Suppose there exists an extreme point 0, € © and that
there exists a sequence 0, which satisfies lim, .. 6, = 0,

and the sequence fq, converges globally in Lebesgue measure'

to the p.d.f. fo.. Then there exists no unbiased estimator g(X)
for 6, which is measurable w.r.t. the Lebesgue o-algebra whose
range is ©.

Proof. Let g(X) be a given estimator. Consider the sequence
of measurable mappings A, = g(X) - fp, (X), n=1,2,... By
the assumptions and by definition, A;, As,... is a uniformly
integrable sequence which converges globally in Lebesgue
measure to the limit A = g(X) - fp, (X). Hence, there exists
a subsequence A,, ,k = 1,2,.. which converges a.s. to A.
Since fp, (X) is uniformly bounded by say M < oo, and
since g(X) must lie in © which is also assumed to be bounded,
one can invoke the Lebesgue Dominated Convergence Theo-
rem (DCT) yielding
klim EP@,% (g(X)) = ]EPSC (g(X))

hade el

&)

On the other hand, from the unbiasedness we have
Epy, (9(X)) =0, and therefore,

lim Ep, (¢(X)) = lim 6,, = 0., (6)
k—o0 "k k—o0
where the right inequality follows by assumption.
Equations (5) and (6) imply that
EP@e (g(X)) = 0., @)

which means that the estimator is unbiased also at the point
0.. Therefore, the conditions of Lemma 1 are satisfied with ©
substituted by © U 6. and the theorem follows. O

We now generalize Theorem 2 to case where we the
collection of measures are tight.

Theorem 3. Consider a bounded set © C R? of parameters
whose closure contains an extreme point 0.. Let Py, § € ©
over observation space X be a collection of tight probability
measures on R™, with uniformly bounded Radon Nikodym
derivatives w.r.t. the Lebesgue measure. Then every measur-
able estimator of the form g : X — O is necessarily biased.

Proof. Let 60, be a sequence in the interior of © converging
to an extreme point #.. Since the collection of probability
measures is tight, it follows by Prokhorov’s Theorem [21] that
the corresponding sequence of measures, Py, is sequentially
compact. Therefore, there is a subsequence, Pgnk that con-
verges weakly to a limiting measure Py, .

Next we invoke Skorohod’s Representation Theorem, which
claims that weak convergence of measures implies correspond-
ing existence of random variables on a common probability
space with almost sure convergence. To this end, we construct
random variables Z,, and Z on a common probability space
([0,1], B, A) with Lebesgue measure A such that Z,, ~
Pgnk, Z ~ Py, with Z,, % Z. We now note that for an
arbitrary unbiased estimator g : X — © we have,

bn, = Ep, [9(X)] = BEA[g(X) fu(X)] =T 6. ®)

Global convergence in Lebesgue measure of the sequence fo,, to fo,
means that for every € > 0, limp 00 u({z : | fo,, () — fo, (x)| > €}) =0,
1 being the Lebesgue measure.

Note that for exponential families of measures other notions of convergence
and closure have been discussed by Csiszar and Matds [20].



where f,(X), f(X) are the Radon-Nikodym derivative of
P, P. w.r.t. A. Note that the limiting statement above follows
from our assumption that 6,, — 0.

We are left to prove that the following equality is satisfied.

Ex[g(X) (X)) £ Ep, [g(X)] = lim Bp, [g(X)) 2 lim By[of) (]

©))

We claim that this is an instance of the DCT. To show this
note that ||g(X)|| < maxpce ||f]| is bounded and by the
fact that the Radon-Nikodym derivatives, f,, (-) are uniformly
bounded. This implies that ||g(X)f,(X)| < C for some
constant C' > 0. By the Skorohod Representation Theorem
we know that, f,, (-) corresponding to the random variable
Zn,, must converge pointwise almost everywhere to f(-).
Consequently, ||g(X)f(X)|| < C almost everywhere. By the
DCT we now have a sequence of functions ¢g(X)f,(X) that
is bounded by an integrable function, namely, Cljq ;; under
the Lebesgue measure and converges pointwise to g(X) f(X).
Therefore, our claim follows. We are now in the position of
Theorem 2 and proof follows in an identical fashion. O

III. EXAMPLES AND DISCUSSION

In this section we present some examples of unbiased
constrained estimators, and characterize some important cases
in which unbiased estimators do not exist.

A. Example: IID Bernoulli Random Variables

The classical example for unbiased (and even MVU) esti-
mator over a compact parameter space is the estimation of the
parameter of an IID sequence of Bernoulli random variables
with parameter 0 < p < 1. In this case, the sample mean is the
best unbiased estimator. However, at the maximal and minimal
values of the parameter, the distribution of the measurements
is concentrated at a single value, i.e., when p € {0,1} all
the measurements assume the value p exactly. This is not
a coincidence as we saw above; had the distribution of the
measurements with p = 0 been absolutely continuous w.r.t.
any other distribution with p € (0,1), an unbiased estimator
could not have existed.

We note that extended exponential families are relevant in
this context; in certain cases, an unbiased estimate may not
exist within an exponential family. Extending the exponential
family by including distributions whose supports have positive
probability on the face of the convex support (adding elements
which are not mutually absolutely continuous) may solve the
problem enabling the existence of an unbiased estimtor, see
[22]. However, for certain types of constraints this is not
possible, e.g., if we constrain the parameter p to lie in the
interval [1/4,3/4].

Example III-A can now be generalized to obtain non-trivial
constraints: Assume that § € [0,2] and that given 6, X is
a random vector with value 0| 4+ z where z is a Bernoulli
random IID vector with mean 6 — |#]. Similar to the example
above we can find an unbiased estimator of § when we require
1<6<2.

Moreover, in [16, Chapter 7.12], the problem of estimating

the odds ratio 1pr in N independent Bernoulli trials with

probability of success p is considered, as an example of non-
existence of unbiased estimator. Any statistics 7" which maps
the observable binary string of length IV to a real number,
would result in an expectation E(T) = Z?thjp”j(l -
lés,aan unbiased estimator should satisfy the con-
this® polynomial would be equal to % for all
p € (0, 1), which is clearly impossible.

B. Example: Estimation of the Variance of IID Gaussian
Random Variables

A second interesting example is the case of estimating the
variance of a Gaussian random vector from a sequence of
N IID measurements X ~ A(0,6I). An unbiased estimator
exists with the constraint # > 0. However, as a consequence
of our results, one cannot find an unbiased estimator with any
other constraint of the form 6 > ¢, where c is strictly positive.
Since the point . = c is an extreme point of the interval
[c,00), and for any other 6 > ¢, Py is absolutely continuous
w.r.t. Py, (as both are absolutely continuous w.r.t. the Lebesgue
measure on RY), there exists no unbiased estimator of 6,
which is confined to [¢,00). On the other hand, for § > 0
we obtain that although § = 0 is an extreme point, since a
zero variance random variable is deterministic, its distribution
is not absolutely continuous w.r.t. any other positive-variance
Gaussian distribution, and therefore the conditions of Theorem
1 do not hold and indeed an unbiased estimator for # which
lies in [0, 00) exists.

Further, if one considers the open constraint set © =
(c1,¢2), the conditions of Theorem 2 are satisfies, and again
there exists no unbiased estimator.

C. Example: Spectrum Estimation with Power Constraints:

We next revisit Example 3 discussed in [8]: Let
(X1,...., Xn) be a segment of a real wide sense stationary
random process with power spectral density (PSD) Sx (f), f €
[—1/2,1/2]. The objective is to estimate the PSD, at d distinct
frequencies 0; = Sx(f), f1, ..., fa- It is assumed that the aver-
age power of {X;} is known over p non-overlapping frequency
bands, i.e., the vector ¢ = (6, ..., 04) is constrained to satisfy
the equations

X1,1 X1,2 X1,d 01 E,
X2,1  X2,2 X2.d| |02 E,
o =17 ao
Xp,1  Xp,2 Xp,d| [0d Ep

where {x;;},i = 1,..,p,j = 1,...,d is a specified matrix
with binary (0,1) entries, and E;,¢ = 1,...,p are specified
power levels. As mentioned in [8], these are in fact p linear
constraints on the unknown PSD, known as the p-point con-
straint in robust Wiener filtering theory. In this example, the
constraint set has no extreme points and therefore an unbiased
estimator can exist.



D. Example: Intersection of Polyhedral Sets
Consider the case of inequality constraints

d
Zai,kgi < Bk7 k= 17"'7d7

i=1

(1)

where By, o i, 1 € {1,...,d}, k € {1, ..., d} are real constants.
In the case in which the resulting set of allowable 0’s in (11)
defines a polyhedron, or even a set which possesses an extreme
point, there exists no unbiased estimator for (61, ...,04).

E. Example: Continuous Non-linear Function with Equality
Constraints

Revisiting the case discussed in Corollary 1, of a bounded
set © = {0: f(#) =0} or © = {0 : f(0) <0} of solutions;
one such example is a p-norm equality constraint, i.e., ||6], =
R. Other examples are when the parameter satisfies continuous
non-linear inequality constraints, e.g., ||#|| < R or when 0
belongs to an ellipsoid in R¢. In these cases too the same
argument holds since the boundary is the equality set.

FE. Example: Constrained Sparse Estimation and Compressed
Sensing Problem

Consider an observed vector

X =Af+ Z (12)

where Z is a Gaussian n-vector, A is a known deterministic
n x d matrix, and 6 = (6q,...,04)7 is a sparse d-vector of
unknown parameters which satisfies

d

Z|9i| <L

i=1

13)

Since the conditions of Theorem 1 are satisfied, there exists
no unbiased estimator g(X) = (g1(X), ..., g4(X)) for 6 which
satisfies Z?=1 lg:(X)| < 1.

Compressive Sensing: Note that in the context of compressed
sensing, many works typically consider the matrix A to be ran-
dom (see [23], [24]). In these contexts one desires estimators
04(X), namely, estimators that attempt to estimate 6 based
on realizing the random matrix A. Some of these works also
impose constraints on coefficients [25]. Our results on lack of
unbiased estimators extends to these constrained settings as
well.

G. Extension to the case of periodic unbiasedness

The papers [26], [27], [28], [29] consider mean square
periodic error criterion combined with periodic unbiasedness
for which the conventional CR bound does not provide a
valid bound. Lehmann-unbiasedness concept2 [30] is used to
introduce the concept of periodic unbiasedness®, and a CR

2 An estimator g(X) is said to be Lehmann unbiased w.r.t. a cost function
W: ©x0 — Rt if Eg (W(0,9(X)) > Eg (W(0,9(X)), V0',0 € ©.
When the cost function W is equal to the MSE, the Lehmann unbiasedness
degenerates to standard unbiasedness, i.e., Eg(g(X)) =6, V0 € ©.

3Periodic unbiasedness [26] is Lehmann unbiasedness with the cost function
E ( mod 2 (g(X) — 9)2), where the mod 2, maps the squared error to
[—=m, m].

type bound on the mean square periodic error of any periodic
unbiased estimator is derived. It is easy to realize that also in
this case, if the set of parameters is constrained to a strictly
smaller subset of [—, 7] which has and extreme point, there
still is no Lehmann unbiased estimator w.r.t. the mean square
periodic error.

H. Conclusion

In this paper, we showed that under very general conditions,
biasedness of the estimator is inevitable in constrained estima-
tion problems. Sufficient conditions for the non-existence of
an unbiased estimator whose range is the constrained set of
parameters, is that the latter would have an extreme point, and
that the distribution given the extreme value of 6§ would be
absolutely continuous w.r.t. another hypothesized distribution
corresponding to another parameter in the constrained set. We
extend the result to a case of open sets whose closure have
extreme point. We also state more easily verifiable conditions
which require that the constrained set be compact and the set
of hypothesized distributions are continuous w.r.t. one another.

As mentioned in the introduction, in [10] the case in which
there exists an unbiased estimator is considered for equality
constraints. If the equality constraints on a non linear function
f define a set of solutions which is bounded, then there is
no unbiased estimator. It should be emphasized, however,
that unbiased estimators can exist in the case in which the
constrained parameter set is a manifold without boundaries,
e.g., a intersection of hyperplanes in which there are no
extreme points.

Our results have strong impact on the applicability of the
results of [8], [10], [11].
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