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Abstract 

In the last few years there has been much interest in the subject of complex 

networks. It was realized that many real-world systems have a web-like structure 

of many nodes interconnected by links, and may be described as networks. The 

most famous example is the Internet, which is composed of many interacting 

computers. Other examples are social networks that describe people and the 

relations between them, and biological networks that describe the interactions 

between proteins and genes a living cell. All these systems show collective 

behavior that is not evident from the structure of their individual components. 

 Recently it was found that most real world networks do not behave 

according to the classical random graph model, which was introduced by Erdös 

and Rényi in the 1960’s. Instead, the number of links emerging from each node – 

the node "degree" k  – is distributed according to a power-law ( ) ~P k k λ−   (with 

2 3λ< < ), as opposed to the Poisson degree distribution of the Erdös-Rényi 

model. This new class of networks, termed “scale-free”, was found to have many 

anomalous properties not found in the classical model. For example, they were 

found to have a much shorter average distance, and to be highly resilient to 

random breakdown of nodes or links. 

 However, most real world networks also have a “cost” or “weight” 

associated with each link. Such networks are called “weighted” or “disordered”. 

For example, in the Internet each link has a certain bandwidth, thus limiting the 

rate of information transfer along this link. When routing information between two 
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distant computers in the network, we are interested in the rout ("path") with 

minimal cost – the “optimal path”. In this dissertation we wish to answer the 

following questions: What is the structure of the optimal path? How does the 

optimal path behave for different types of disorder? And how are the different 

optimal paths distributed? The main paradigm in this dissertation is that such 

"optimization" problems on weighted random graphs may be solved using 

percolation theory. 

The dissertation is organized as follows:  In Chapters 1 and 2 we give a 

brief summary of previous results and common methods used in the field of 

complex networks. Chapter 2 includes a new simplified formulation for the 

method of generating functions as applied to percolation on random graphs.  

In Chapter 3 we proceed to introduce a new structural characterization of 

networks, which we term “Tomography”. We examine the structure of “layers” of 

nodes around the maximally connected node. It is shown that the distance 

distribution of all nodes from the maximally connected node of the network 

consists of two regimes. The first is characterized by rapid growth in the number 

of nodes, and the second decays exponentially. We also show analytically that 

the nodes degree distribution at each layer is a power law with an exponential 

cut-off. Empirical results from the Internet show a similar behavior to our model. 

We next study the percolation transition in Erdös-Rényi and scale-free 

graphs. It is known from percolation theory on lattices that the critical probability 

for the percolation transition is not a sharp threshold; actually it is a region of 

non-zero width cpΔ  for systems of finite size. In Chapter 4 we show that for 



 iii

complex networks ~ /c cp p lΔ , where ~ optl Nν  is the average length of the 

percolation cluster, and N is the number of nodes in the network. For Erdos-

Renyi graphs 1/ 3optν = , while for scale-free networks with a degree distribution 

( ) ~P k k λ−  and 3 4λ< < , ( ) ( )3 / 1optν λ λ= − − . We show analytically and 

numerically that the “survivability” ( ),S p l , which is the probability of a cluster to 

survive l chemical shells at conduction probability p, behaves near criticality as 

( ) ( ) ( )1, , expc c
c

S p l S p l p p l
p

⎡ ⎤
= ⋅ −⎢ ⎥

⎣ ⎦
. Thus for probabilities inside the region 

c
c

pp p
l

− <  the behavior of the system is indistinguishable from that of the 

critical point.   

Finally, in Chapter 5, we apply percolation theory to optimization problems 

in networks. We first consider Erdös-Rényi graphs with random weights 

associated with each link, and show that any disordered random graph contains 

an inherent scale-free network, which we term the “supernode network”. We then 

show that the minimum spanning tree in Erdös-Rényi graphs is related to this 

network, and is composed of percolation clusters which are interconnected by a 

set of links that create a scale-free tree. 

We then use the above results to study the behavior of the optimal path in 

disordered graphs. With each link i  we associate a weight ( )expi iarτ = , where ir  

is a random number taken from a uniform distribution between 0 and 1, and the 

parameter a  controls the strength of the disorder. In these systems it was found 

that the optimal path length ( )l a  scales as optNν  for strong disorder and as log N  
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for weak disorder. We show that that the average length of the optimal path, for 

intermediate values of the parameter a , obeys the following scaling form: 

( ) 1

c

ll a l F
p a

∞
∞

⎛ ⎞
= ⋅ ⎜ ⎟

⎝ ⎠
, where l∞  is the optimal path length in strong disorder 

( a →∞ ), and cp  is the percolation threshold. The optimal paths lengths 

distribution obeys a similar form: ( ) 1 1, , ,
c

llP l N a G
l l p a

∞

∞ ∞

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. These relations are 

supported by numerical simulations for Erdös-Rényi and scale-free graphs. 

Hence, a single "control parameter" 1

c

lZ
p a

∞≡  controls both the average and 

distribution of the optimal paths lengths.  

We explain this by showing that the optimal path follows the percolation 

cluster up to a characteristic length capξ = , after which it takes a “shortcut” link 

(as in the “small-world” model) outside the cluster. The control parameter 

1

c

lZ
p a

∞≡  is actually the number of shortcuts. Thus, the behavior of weighted 

random graphs is similar to percolation systems near the critical threshold, which 

have a fractal behavior up to a certain correlation-length ξ . 

To summarize, in this dissertation we studied structure, percolation, and 

optimization problems in disordered complex networks. We analyzed the 

structure of minimal spanning trees, and the average and distribution of optimal-

paths lengths. This work demonstrates how practical optimization problems in 

networks can be solved using methods from statistical physics and percolation 

theory.    
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Chapter 1: Introduction 

1.1. Networks 

Networks (or in mathematical terms, graphs) are mathematical entities composed 

of nodes and links connecting them. Many systems in nature may be described 

as “networks” [1-3], for example the Internet, which is composed of millions of 

interconnected computers. Other examples include social networks, which are 

used to describe people and the social connections between them (for example 

terrorist networks), and biological networks, which describe the complex 

interactions between genes and proteins in a living cell. 

 The main function of a network is to enable effective communication 

between distant nodes of the network. For example, in the Internet, any two 

computers that are connected to the network can (in principle) communicate with 

each other. In social networks, any two people in the world can usually reach 

each other through a short chain of social acquaintances. This is possible 

because the average distance along the network is extremely small: usually the 

average number of links connecting any two nodes on the network scales 

logarithmically with the network size. This is also known as the "small world" 

property.  

1.1.1. Erdös-Réyni graphs 

Graph theory is rooted in the 18th century. Leonhard Euler conducted one of the 

first studies in graph theory in 1736, thereby solving the problem known as “the 
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seven bridges of Königsberg”. The mathematicians Pal Erdös and Alfred Réyni 

proposed a special class of graphs called “random graphs” in the 1960's. In the 

Erdös-Réyni (ER) model [4, 5], we start with N nodes, and then connect any two 

nodes with some small probability p. The number of links k emerging from every 

node, also called the node “degree”, is a random variable distributed according to 

a Poisson distribution with the average degree pNk ≈ . 

 Erdös and Réyni found that as the probability p is increased from 0 to 1, 

the graph topology changes abruptly from a loose collection of small connected 

clusters (“components”) to a system dominated by a single cluster, also called 

the "Giant Component”. The point of transition, also termed “The Critical Point”, 

occurs when the average degree 1=≈ pNk .  Below the critical point the graph 

is composed of small clusters with a negligible number of loops (trees), and the 

size of the largest cluster is proportional to Nlog . As the probability p increases, 

trees of increasing order (size) appear. At the critical point an abrupt change 

occurs: A "giant component" appears, its size is proportional to N2/3, trees of all 

possible order are present, and loops of all orders appear. Above the critical 

point the giant component dominates the system: Its size is proportional to N, 

and loops are present inside it1. Another property is that the average distance 

between any two nodes inside the giant component is proportional to Nlog  [4, 6]. 

Hence we get the "small world" property above the critical point. 

                                            

1 However, the other clusters (also termed the "finite components") still have a negligible number 
of loops. 
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1.1.2. Scale-free networks 

As mentioned above the degree distribution in ER graphs is Poissonian, that is: 

!
)(

k
zekP

k
z−= , where ( )P k  is the fraction of nodes having degree k , and kz =  

is the average degree. However, most networks in the real world show a degree 

distribution that is clearly not Poissonian, rather it has a form of a power law: 

λ−kkP ~)(  where the exponent λ is usually in the range 32 ≤≤ λ . These 

networks are termed “scale-free” (SF). The power law degree distribution implies 

that the degrees of the nodes are not homogeneous as in ER graphs; rather 

there are a few nodes with a very large degree (“hubs”) and many nodes with 

very small degree. Scale-free degree distributions were observed in 

communication networks such as the Internet [5, 7, 8], in biological networks [9, 

10], in social networks [11], and many other systems.  

Barabasi proposed a simple model for generating SF networks [5]. In the 

Barabasi-Albert (BA) model we start with an initial number of nodes. We then add 

new nodes and connect them to existing nodes, where the probability that a new 

node will connect to an already existing node is proportional to the existing 

node’s degree (“Preferential Attachment”). A different method to construct SF 

networks is the “Molloy-Reed” construction2: initially the degree of each node is 

chosen according to a scale-free distribution, where each node is given a number 

of open links or “stubs” according to its degree. Then, stubs from all nodes of the 

network are interconnected randomly to each other.  

                                            

2 This model was actually proposed by Bollobás. 
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The exact form of the degree distribution is usually taken to be [12]:  

λ−= ckkP )( ,   Kmk ,...,=                                      (1.1) 

where m and K are the minimal and maximal degrees, and ( ) 11 −−≈ λλ mc  is a 

normalization constant3. For real networks with finite size, the highest degree K 

depends on network size N: ( )1/1 −≈ λmNK , thus creating a "natural" cutoff for the 

highest possible degree4. 

 Because of their in-homogeneity, scale-free networks have anomalous 

properties: networks with 32 << λ  have an average distance which is 

proportional to Nloglog  (which is much shorter than the average distance for ER 

graphs, which scales as log N ) [13], They are also highly resilient to random 

failure of nodes or links (because their percolation threshold vanishes for large 

systems - see below) [12], and they have different critical exponents than ER 

graphs (see below) [14]. 

                                            

3 The normalization constant is found using the relation [12]:  

( )
1

11 ( ) 0
1 1k m k m

c mP k c k dk m c
λ

λ λ

λ λ

∞ − +∞
− − +

= =

= ≈ = − = ⋅
− + −∑ ∫ , 

and thus: ( ) 11c mλλ −≈ − . 
4 An estimate of this cutoff can be found by the assumption that the tail of the distribution above K 

is of the order of one site [12]: 

( ) ( )
1

1 1 1 11 1( ) 1 0
1 1k K k K

kP k c k dk c m K m K
KN

λ
λ λ λ λ λλ

λ λ

∞ − +∞
− − − + − − +

= =

∞
= ≈ = = − ⋅ − =

− + − +∑ ∫ , 

 which gives: ( )1/ 1K mN λ−≈ . 
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1.2. Percolation 

1.2.1. Percolation theory 

Various phenomena in nature may be described by percolation theory, for 

example: forest fires, epidemic spreading and conduction in disordered systems 

[15]. A typical percolation system consists of a d-dimensional grid of length L, in 

which the nodes or links are removed with some probability 1 p− , or are 

considered “conducting" with probability p  [15, 16]. Below some critical 

probability cp  the system becomes disconnected into small clusters, i.e., it 

becomes impossible to cross from one side of the grid to the other by following 

the conducting links. However, above pc a spanning cluster emerges, similar to 

the giant component in random graphs. Percolation may be considered as a 

geometrical phase transition exhibiting universality, critical exponents, and an 

upper critical dimension at dc=6 – see Figures 1-1 and 1-2.  

Some of the system parameters which were found to have universal 

behavior are the size of the largest cluster5: ( )~ cP p p β
∞ − , the correlation length: 

~| |cp p νξ −− , the mean size of finite clusters: ~| |cS p p γ−− , and the cluster sizes 

distribution: ( )( )( ) ~s cn p s f p p sτ σ− ⋅ − . The exponents , ,β γ ν  etc. are called 

"critical exponents". Table 1-1 gives the values of some of the critical exponents 

for percolation systems. The "universality" of the critical exponents means that 

they do not depend on the local structure of the grid (i.e. square, triangle etc.), 
                                            

5 P∞  is defined as the probability that a randomly chosen node resides in the giant component. 
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rather only on the dimension d of the system. The critical threshold pc, though, is 

not a universal quantity. Notice also that for dimensions above the upper critical 

dimension dc=6 the critical exponents do not change. 

Stanley [15] found that at the percolation threshold pc the spanning cluster 

is a fractal, i.e., the mass of the spanning cluster scales as: fdLM ~ , where L is 

the geometrical length of the system and df is the fractal dimension which is 

generally not an integer in the case of fractals. The fractal dimension df is also a 

universal quantity (see Table 1-1). Above and below the percolation threshold the 

fractal behavior is still present only for length scales below the correlation length 

ξ , that is: 

~
fd

d

L LM
L L

ξ
ξ

⎧ <⎪
⎨

>⎪⎩
. 

At criticality, ξ →∞ . 

When measuring the distance between two points on a percolation cluster 

we can distinguish between the “geometrical distance” L (or r ) and the “chemical 

distance” l . The geometrical distance is the regular Euclidian distance between 

two points in a d-dimensional lattice, whereas the chemical distance is the 

distance along the links of the percolation cluster6. Thus we also define a 

"chemical dimension" ld , which gives the relation between the chemical size of 

the percolation cluster and its mass: ~ ~f ld dM r l . In random graphs, it is more 

                                            

6 For lattices with dimension 6cd d≥ = a path along the percolation cluster is uncorrelated, and 

like a random walk obeys 2 ~r l . Therefore, above the upper critical dimension, 2l rν ν= (see 
[15, 16] for details) 
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convenient to refer to the chemical distance because the geometrical distance 

has no meaning.    

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure  1-1: A sketch of the dependence of the size of the giant component, the 
mean finite cluster size, and the correlation length, on the conduction probability 
p . At the critical threshold cp  the giant component appears, clusters of all order 
(size) are present, and the correlation length diverges (i.e., it is proportional to 
the system size L). 

 P∞
1

, Sξ
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Size of Giant 
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Figure  1-2: A demonstration of percolation on a two-dimensional grid. Below the 
percolation threshold the system is composed of small clusters. At cp p=  a 
spanning cluster with a fractal structure appears, and clusters of all sizes are 
present. Well above cp  the finite clusters merge into the giant component. In this 
particular case (square grid, d=2, bond percolation) 1/ 2cp = . 

 

cp p< cp p= cp p>
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Table  1-1: Critical exponents for percolation systems of different dimensions 
 

1.2.2. Percolation in networks 

Percolation theory may be applied to random graphs. Randomly removing a 

fraction 1 p−  of the links of an ER graph corresponds to changing the average 

degree k  to dilutedk p k=  in the diluted graph. According to the results of 

Exponent d=2 d=3 d=4 d=5 d=6-ε 
ER 

Network 
(d≥6) 

SF 
Network 

(3 4λ< < ) 

β  5/36 0.417 0.64 0.84 1 / 7ε−  1 
1

| 3 |λ −
 

γ  43/18 1.795 1.44 1.18 1 / 7ε+  1 1 

rν  (geometric) 4/3 0.875 0.68 0.57 1 5
2 84

ε
+  1/2 - 

lν  (chemical)      1 1 

σ  36/91 0.45 0.48 0.49 ( )21
2

O ε+  1/2 
| 3 |

2
λ
λ
−
−

 

τ  187/91 2.18 2.31 2.41 
5 3
2 14

ε
−  5/2 2 3

2
λ
λ
−
−

 

dl 1.678 1.84    2 
2
3

λ
λ
−
−

 

df 91/48 2.524 3.06 3.54 104
21
ε

−  4 
22
3

λ
λ
−
−

 

dc 6 6 6 6 6 6 
12
3

λ
λ
−
−
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Erdös, a giant component exists as long as 1dilutedk p k= ≥ . Thus the critical 

probability for the emergence of a giant component is: kpc /1= .  

In finite dimensional grids, the number of neighbors each node may have 

increases with the dimension d. In this sense, networks correspond to systems of 

infinite dimension, because the number of neighbors each node may have 

increases with the size of the system. To summarize, the process of randomly 

diluting links (or nodes) from a network may be described by percolation theory, 

where the system dimension is taken to be d = ∞ . Note that all systems above 

the upper critical dimension 6cd =  behave the same near the critical point. 

 It was found by Albert et al. [17] that the Internet, which can be modeled 

as a SF network with 2.5λ ≈ , is relatively resilient random removal of nodes. 

Cohen et al. studied the corresponding problem of percolation on SF networks 

[12, 14]. It was found that the general expression for the critical threshold is:  

( ) 1
1

1 0 −
=

−
=

κkk
k

pc                                            (1.2) 

Where 0 1κ −  is the branching factor, i.e., the average number of links emerging 

from a node reached by following a random link, and kk /2
0 =κ . For SF 

networks whose degree distribution is described by equation (1.1), 

3 3
2 3

0 2 2

, 3
2 ~ , 2 3
3

, 1 2

m if
K m m K if
K m

K if

λ λ
λ λ

λ λ

λ
λκ λ
λ

λ

− −
− −

− −

>⎧
− − ⎪⎛ ⎞= < <⎨⎜ ⎟− −⎝ ⎠ ⎪ < <⎩

,             (1.3) 
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where ( )1/1 −= λmNK . In the case of 2 3λ< < , the second moment of the degree 

distribution diverges, and thus 0κ  diverges with system size. The result of this is 

that 
3

1~ 0cp N
λ

λ
−

−
− →  for large N. 

 It was also found [14], using the method of generating functions (see 

Chapter 2.2), that the critical exponents in SF networks with 3 4λ< <  are 

different than for ER graphs, thus creating a different universality class7, see 

Table 1-1.   

 In Chapter 4 we will show that for networks of finite size N the percolation 

threshold is not a sharp point; rather it has a width cpΔ , such that in the range 

[ ],c c c cp p p p p∈ −Δ + Δ  all properties of criticality (e.g. a negligible number of 

loops) are present. 

1.3. Optimization in networks 

1.3.1. Weighted networks 

The function of most real world networks is to connect distant nodes, either by 

transfer of information (e.g. the Internet), or through transportation of people and 

goods (such as networks of roads and airlines). In many cases there is a “cost" 

or a “weight" associated with each link, and the larger the weight on a link, the 

harder it is to traverse this link. In this case, the network is called “disordered" or 

                                            

7 For 4λ ≥  the critical exponents are equal to those of ER graphs. For the anomalous regime 
2 3λ< <  the critical exponents are not fully known yet.  
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“weighted" [18]. For example, in the Internet each link between two routers has a 

bandwidth or delay time, in a transportation network some roads may have only 

one lane while others may be highways allowing for large volumes of traffic. 

When modeling random weighted networks, it is commonly assumed that each 

link is associated with a weight )exp( ii arw = , where ir  is a random number taken 

from a uniform distribution between 0 and 1, and the parameter a  controls the 

strength of the disorder. Networks with large values of a  can be interpreted as 

networks with large fluctuations in link weights: both very small and very large 

weights are present. 

1.3.2. Optimal path and the Shortest Path Tree (SPT) 

We define the optimal path to be the path between two nodes on the network 

such that the sum of weights along this path is minimal. This path may be much 

longer than the shortest-hopcount-path, which is the shortest path without 

regarding the weights on the links. One of the most popular algorithms for finding 

the optimal path is Dijkstra’s Algorithm [19], which builds a tree of shortest paths  

- the Shortest Paths Tree (SPT) - starting from some chosen node to all nodes of 

the network. 

1.3.3. The Minimum Spanning Tree (MST) 

Another type of optimal tree that can be built on the network is the Minimum 

Spanning Tree (MST). This is a tree that spans the whole graph, and whose total 

weight is minimal. There are two algorithms to build this tree: Prim’s algorithm 

and Kruskal’s algorithm [19]. It was shown [20] that any path between two nodes 
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along the MST is the path with the minimal barrier (i.e., minimal maximal-weight) 

possible between those two nodes. 

 In Chapter 5 we will describe the structure of the MST using percolation 

theory. We will show that the MST is composed of percolation clusters 

interconnected by a scale-free tree. The optimal paths in networks with strong 

disorder ( a →∞ ) follow the MST, and therefore their behavior can also be 

described by percolation theory. Moreover, in networks with intermediate 

disorder (i.e. intermediate values of the parameter a ) the optimal path follows the 

MST up to some characteristic length capξ = . In this sense there is a similarity 

between percolation systems near the critical point and disordered systems with 

large fluctuations on the weights of the links. 

1.4. Outlook and applications 

In the last years, extensive research has been done on networks. Models for 

generating networks were developed [5] and many important structural properties 

were found (e.g. [5, 12, 13, 17]). However, most real world networks have a 

weight associated with each link, and this was not taken into account.  

In this dissertation we approach this problem by studying the relation 

between percolation and optimization. We first study structural properties of 

networks and their behavior near the percolation critical point. Then, we apply 

percolation theory to optimization problems on weighted networks, and explain 

the structure of minimum spanning trees and the behavior of the optimal paths on 

the network. The ideas presented here demonstrate how optimization problems 
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in networks can be solved using statistical physics and percolation theory. From 

a practical point of view, our results may be helpful for devising new searching 

and routing algorithms on the Internet, and for generating efficient multicast trees 

[21, 22].  
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Chapter 2: Methods and Previous Results 

In this Chapter we present main results and common methods from the field of 

complex networks, which will be used throughout this dissertation.  

2.1. Chemical length of percolation cluster in 

networks: 

Let us consider a grid of dimension d=6, in which a fraction 1 cp−  of the links 

have been removed. According to percolation theory the mass of the percolation 

cluster scales as:  

~ ~f ld dM L l  

Where L is the geometric size of the system8 and l  is the chemical length of the 

percolation cluster. l  is actually proportional to the average distance between 

any two points on the percolation cluster when we are restricted to go only along 

links lying inside the percolation cluster. The total number of nodes in the system 

is: 

~ dN L  

Thus: 

( ) ( ) ( ) ( )// /1/~ ~ ~
f lf l f l

d dd d d d ddl L N N⎡ ⎤
⎣ ⎦  

                                            

8 The percolation cluster spans the system. Therefore L is also the geometric size of the 
percolation cluster. 
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Or: ~ optl Nν , where: f
opt

l

d
d d

ν ≡ . 

 Because of universality, this relation holds also for random graphs (where 

only the chemical distance l  has a meaning). Random graphs may be treated as 

infinite dimensional systems ( 6cd d≥ = )9. 

For ER graphs:  

6d = , 4fd = , and 2ld =  (see Table 1-1). Thus:  

4 1
2 6 3

f
opt

l

d
d d

ν ≡ = =
⋅

. 

For SF graphs: (with10 3 4λ< < ) 

12
3

d λ
λ
−

=
−

, 22
3fd λ

λ
−

=
−

, and 2
3ld λ

λ
−

=
−

 (see Table 1-1). Thus 

 

22 33
2 1 12
3 3

f
opt

l

d
d d

λ
λλν λ λ λ

λ λ

−
−−≡ = =

− − −⋅
− −

. 

The mean distance between two points in a random graph scales as log N , 

where N is the number of nodes in the graph [6]. However, when the graph is 

diluted such that a fraction 1 cp−  of its links are removed, the average distance 

increases dramatically to 1/3~l N  (for ER graphs) or ( ) ( )3 / 1~l N λ λ− −  (for SF graphs 

with 3 4λ< < ), which is much longer than log N  [18]. This conforms with results 

                                            

9 For random graphs cd d= ∞ > . This means that at the percolation threshold, the diluted graph 

can be embedded into a space with dimension cd . This embedding dimension is 6cd =  for 

ER graphs and ( ) ( )2 1 / 3cd λ λ= − −  for SF graphs (with 3 4λ< < ) – see Table 1-1. 
10 Note that for 4λ ≥ , SF graphs behave like ER graphs (near the critical point). 
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for finite dimensional systems [23], in which typical paths along the percolation 

cluster were found to follow long and twisted trajectories – much longer than the 

Euclidian distance - because of the fractal nature of the percolation cluster. 

2.2. Generating functions 

A general method for studying percolation on random graphs with arbitrary 

degree distributions was first introduced by Molloy and Reed [24, 25], who 

suggested viewing the giant component as being “explored”, and used differential 

equations for the number of unexplored links and nodes to find the size of the 

giant component11 and the degree distribution of the residual graph (i.e., the finite 

clusters) 12.  

 An alternative method is to use generating functions [26]. This powerful 

tool was introduced by Newman, Watts, and Strogatz [27], who used this method 

to calculate the size of the giant component and the cluster sizes distribution in 

SF networks. Later, Cohen et al. used this method to find the percolation critical 

exponents [14] (see Table 1-1). 

                                            

11 We used a similar procedure in Chapter 3. 
12 We note that the problem of percolation on networks can be solved analytically due to the fact 

that we are dealing with a system whose dimension d is above the upper critical dimension 
(dc=6), or equivalently, due to the fact that the number of loops (at criticality) is negligible. This 
is also termed in physics as the "mean-field" regime.  

 



 18

2.2.1. Definition 

Given a network with a degree distribution ( )P k , which is the probability that a 

randomly chosen node will have k  neighbors, we can define the probability 

generating function: 

( ) ( )0
0

k

k
G x P k x

∞

=

=∑ . 

The coefficient of kx  is the probability that a randomly chosen node will have k 

neighbors. Note that ( ) ( )0
0

1 1
k

G P k
∞

=

= =∑  because the degree distribution is 

normalized. The average degree is given by ( ) ( )0
1

1
k

k kP k G
∞

=

′= =∑ . 

Now, choose a random link and consider a node at one of its ends. The 

probability ( )1P k  that a node thus reached by following a random link will have a 

degree k is13: ( ) ( )1
1P k kP k
k

= . For our purposes it is useful to consider only the 

number of outgoing links – not including the incoming link. The corresponding 

generating function is: 

( ) ( ) ( )1 1
1 1

1 1

1k k

k k

G x P k x kP k x
k

∞ ∞
− −

= =

= =∑ ∑  

Note that ( ) ( )
( )

0
1

0 1

G x
G x

G

′
=

′
, and that ( )1G x  is normalized such that ( )1 1 1G = . 

                                            

13 This is equal to the fraction of edges in the network that connect to a node of degree k, which is 
proportional to ( )k NP k⋅  (there are ( )NP k  nodes of degree k, and each one has k such 
links connected to it).  
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2.2.1.1. Example: Erdös-Réyni graphs 

Take for example an ER graph. In the Erdös-Réyni (ER) model, we start with N 

nodes, and then connect any two nodes with some small probability p. The 

degree distribution is: 

( ) ( )1
!

k
N k kkN k

P k p p e
k k

− −⎛ ⎞
= − ≈⎜ ⎟
⎝ ⎠

, 

where pNk ≈  and N→∞. Thus, the number of links, k , emerging from every 

node is a random variable distributed according to a Poisson distribution with the 

average degree pNk ≈ . The generating functions are: 

( ) ( ) ( ) ( )1
0

0 0 !

k

k k x k k xk

k k

k x
G x P k x e e e e

k

∞ ∞
− − −

= =

= = = =∑ ∑ , 

and: 

( ) ( )
( )

( )
( )

1
10

1

0 1

k x
k xk eG x

G x e
kG

−
−

′
= = =

′
. 

Notice that in ER graphs ( ) ( )0 1G x G x= . However, this is not true in general (for 

example, in SF networks). 

2.2.2. Percolation 

Given a random graph with a degree distribution ( )P k , we can find the 

probability generating functions ( )0G x  and ( )1G x . Assume that a fraction 1 p−  of 

the links is randomly removed. How do the functions ( )P k , ( )0G x , and ( )1G x  

change ? 
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 After randomly removing a fraction 1 p−  of the links (bond percolation), 

the probability for a randomly chosen node to have k remaining links in the 

diluted graph is given by [12]: 

( ) ( ) ( ) 0

0

0
0 1 k kk

k k

k
P k P k p p

k

∞
−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑�  

The corresponding probability generating functions ( ) ( )0
0

k

k
G x P k x

∞

=

= ⋅∑� �  and 

( ) ( ) 1
1 1

1

k

k
G x P k x

∞
−

=

= ⋅∑� � in the diluted graph are: 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )( ) ( )

0

0

0
0

0

0

0

0
0 0

0 0

0
0

0 0

0 0
0

1

1

1 1

k kk k k

k k k k

k
k k k

k k

k

k

k
G x P k x P k p p x

k

k
P k xp p

k

P k p px G p px

∞ ∞ ∞
−

= = =

∞
−

= =

∞

=

⎡ ⎤⎛ ⎞
= ⋅ = − ⋅ =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

= − + = − +

∑ ∑ ∑

∑ ∑

∑

� �

 

And14: 

( ) ( )
( )

( )
( )

( )
( )

( )0 0 0
1 1

0 0 0

1 1
1

1 1 1

G x pG p px G p px
G x G p px

G pG G

′ ′ ′− + − +
= = = = − +

′ ′ ′

�
�

�
 

                                            

14 It can be shown that: ( ) ( ) ( ) ( ) 1
1 1

1

11 1 k

k
G x G p px kP k p px

k

∞
−

=

= − + = ⋅ − +∑�  is equal to 

( ) ( ) 1
1

1

1 k

kdiluted

G x kP k x
k

∞
−

=

= ⋅∑� � , where k  and ( )P k  are the average and distribution of 

the degrees in the original graph, and dilutedk p k=  and ( )P k�  are the average and 
distribution of the degrees in the diluted graph. 
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For example, in ER graphs, ( ) ( ) [ ]( ) ( )1 1 1
1 0 e ek p px k p xG x G x − + − −= = =� � . 

This means that the dilution of links in an ER graph changes the average degree 

from k  to dilutedk k p= .  

 In the following sections, when dealing with percolation on networks, we 

will refer to the generating functions ( )P k� , ( )0G x� , and ( )1G x�  of the diluted  

graph unless otherwise specified.   

2.2.2.1. Calculating cluster sizes 

Consider a random graph below the percolation threshold. In this regime all 

clusters ("components") are trees, that is, the number of loops is negligible15 [4, 

5]. Let H1(x) be the generating function for the size of a component reached by 

choosing a random link and following it to one of its ends. H1(x) actually 

describes the distribution sizes of a randomly chosen "branch".  

H1(x) obeys the following self-consistent relation [27]: 

( ) ( )( )1 1 1H x xG H x= �                                            (2.1) 

This equation means that the probability to reach a branch of i  nodes (by 

following a link) is equal to the probability of following a link, reaching a single 

node, and then branching out to reach a total of 1i −  nodes through zero, one, 

two, etc. branches (see Fig. 2-1).  

 
                                            

15 Our analysis regards only the finite clusters which have a tree-like structure. Below the 
percolation threshold all clusters are finite, while above the percolation threshold an infinite 
cluster (the "giant component") appears. The giant component has loops and has to be 
explicitly excluded from the following analysis. 
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Figure  2-1: A graphical sketch of the recursion relation (2.1). The probability to 
reach a branch consisting of i  nodes is equal to the sum of probabilities to reach 
a single node, to reach a node connected to a single branch of size 1i − , to reach 
a node connected to two branches having a total size of 1i − , etc. 

 

In order to demonstrate this, let us write: ( )1
0

i
i

i

H x h x
∞

=

=∑  and ( ) ( ) 1
1 1

1

k

k

G x P k x
∞

−

=

=∑� . 

Substituting into Eq. (2.1) we get: 

( )
( ) ( )
( ) ( )
( ) ( )
]

2
0 1 2 1

2
1 0 1 2

22
1 0 1 2

32
1 0 1 2

... 1

2 ...

3 ...

4 ...

...

h h x h x x P

P h h x h x

P h h x h x

P h h x h x

+ + + = +⎡⎣

+ ⋅ + + + +

+ ⋅ + + + +

+ ⋅ + + + +

+

 

We will take for our demonstration the coefficients of 0x , 1x , 2x , and 3x  (See 

Figure 2-2). 

The coefficients of 0x :  

0 0h =  

The probability to follow an existing link and to reach no node is zero. 

The coefficients of 1x : 
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( ) ( ) ( ) ( )
( )

2 3
1 1 1 0 1 0 1 0

1

1 2 3 4 ...

1

h P P h P h P h

P

= + ⋅ + ⋅ + ⋅ + =

=
 

The probability to reach a branch consisting of a single node is equal to the 

probability to follow a link into a node of degree 1 (There is also the possibility to 

reach a node with higher degree, in which every outgoing link leads to a zero-

sized branch, but the probability for this is zero, as we have previously shown). 

The coefficients of 2x :  

( ) ( ) ( )
( )
( ) ( )

2
2 1 1 1 0 1 1 0 1

1 1

1 1

2 3 2 4 3 ...

2

2 1

h P h P h h P h h

P h

P P

= ⋅ + ⋅ + ⋅ + =

= ⋅ =

= ⋅

 

A two-node branch is reached if we follow a link to a node of degree 2, and follow 

its single outgoing link into a branch of size 1 – see Fig. 2-2(b). 

The coefficients of 3x :  

( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2 2
3 1 2 1 0 2 1 1 0 1 2 0

2
1 2 1 1

1 1 1 1 1 1

2 3 2 4 3 3 ...

2 3

2 2 1 3 1 1

h P h P h h h P h h h h

P h P h

P P P P P P

= ⋅ + ⋅ + + ⋅ + + =

= ⋅ + ⋅ =

= ⋅ ⋅ + ⋅ ⋅

 

A three node branch can be built in two ways, as shown in Fig. 2-2(c): 

a) By following a link to a node of degree 2 in which the single outgoing link 

reaches a branch of size 2. 

b) By following a link into a node of degree 3, in which every one of the two 

outgoing links reaches a branch consisting of a single node.  



 24

 

 

 

 

Figure  2-2: The possible ways for building a branch of (a) one, (b) two, and (c) 
three nodes, as described by Eq. (2.1). 

 

If we start from a random node, we have one branch at each end of every 

link emerging from that node, and all these branches constitute the cluster 

("component") in which our node resides in. We set ( )0H x  to be the generating 

function describing the size of a component in which a randomly chosen node 

resides. Similar to Eq. (2.1) we can write [27]:  

( ) ( )( )0 0 1H x xG H x= �                                            (2.2) 

Given the generating functions ( )0G x� , and ( )1G x� , In order to find the cluster 

sizes (which are given by H0(x)) we have to solve Eq. (2.1) for H1(x) and 

substitute into Eq. (2.2). 

 The above equations describe the finite components, which have a tree-

like structure. Below the percolation threshold, ( )0 1 1H =  (and also ( )1 1 1H = ), 

because this is the probability for a randomly chosen node to belong to a finite 

cluster (or branch) of any size. However, above the percolation threshold ( )0H x  

is not normalized, because it does not include the giant component. The size of 

the giant component is given by: 

( ) ( )0 01 1 1P H G u∞ = − = − �  

(a) (b) (c)
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where ( )1 1u H≡  obeys the self consistent relation:  

( )1u G u= �  

Or in terms of the probability distribution function (of the diluted graph): 

( ) ( )
0

1 k

k

P p P k u
∞

∞
=

= −∑ �     where:    ( ) 1

1

1 k

k

u kP k u
p k

∞
−

=

= ∑ � . 

where p is the dilution probability16. 

2.2.2.2. The critical threshold for percolation 

Assume our graph is diluted such that it is below the percolation threshold (i.e. 

cp p< ). The cluster sizes distribution is described by the two equations: 

( ) ( )( )1 1 1H x xG H x= �  and ( ) ( )( )0 0 1H x xG H x= � . 

 Assume that ( )0
0

i
i

i
H x h x

∞

=

=∑ . The average cluster size (to which a 

randomly chosen node belongs) is: ( )0
1

1i
i

s ih H
∞

=

′= =∑ .  Using Eq. (2.2) we get: 

( ) ( ) ( )0 0 11 1 1 1s H G H′ ′ ′= = + ⋅�  

From Eq. (2.1) we have: ( ) ( ) ( ) ( )
( )

1 1 1 1

1

11 1 1 1 1
1 1

H G H H
G

′ ′ ′ ′= + ⇒ =
′−

�
�

. Thus: 

( )
( )

0

1

11 1
1 1

s G
G

′= + ⋅
′−

�
�

. 

                                            

16 Note that the average degree in the diluted graph is dilutedk p k= , where k  is the 
average degree of the original graph. 
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At the percolation threshold components of all orders appear, i.e. the average 

cluster size diverges. It can be seen that the average cluster size diverges when 

( )1 1 1G ′ =� . Thus the percolation threshold is given by: 

( ) ( ) ( ) ( )1 1 1 11 1 1 1
1 1 1

d dG x G p px G p px p G p
x x xdx dx

′ ′= = − + = − + ⋅ = ⋅
= = =

�  

Thus: 

( ) ( ) ( ) ( )
1

2

1 1
1 11 1

c

k

k
p

k kG k k P k
k

∞

=

= = =
−′ −∑

. 

This conform well with previous results [12]. For example, for ER graphs: 

( ) ( )1
1

k xG x e −=  and ( ) ( )1
1

k xG x k e −′ = , resulting in the well known result: 

( )1

1 1
1

cp
kG

= =
′

. 

2.3. Summary and Conclusions 

In this Chapter we gave a brief review of previous results, and have introduced 

the main methods that will be used in this dissertation. The first result, derived 

from percolation theory, shows that random graphs, when diluted to the critical 

threshold, lose their relatively small average distance (also known as the "small 

world" property), i.e., the average path length between two points increases 

exponentially from log N  to optNν .  

In the second part of this Chapter we introduced a simplified formulation of 

the method of generating functions, and showed how this method may be used 
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to derive the critical probability for percolation, and the size of the giant 

component for random graphs with an arbitrary degree distribution. In the next 

Chapters we will apply these methods to Erdös-Réyni and scale-free networks.  
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Chapter 3: Tomography of scale-free 

networks 

3.1. Introduction 

In this Chapter we study the structure of scale-free networks with a degree 

distribution of the form λ−kkP ~)( . We examine the “Tomography” [28, 29] of 

these networks, i.e. the structure of layers around a single network node. It is 

shown that the distance distribution of all nodes from the maximally connected 

node of a random scale-free network consists of two regimes. The first is 

characterized by a rapid growth in the number of nodes, and the second decays 

exponentially. We also show analytically that the nodes degree distribution at 

each layer is a power law with an exponential cut-off. Empirical results from the 

Internet show a similar behavior to our model. 

The Chapter is organized as follows: first, we describe the process of 

generating the network, and define our terminology. Then, we analyze the 

degree distribution at each layer surrounding the maximally connected node. The 

results presented here are based on [28, 29].  

3.2. Model description 

We base our construction on the Molloy-Reed model [24, 25], also described in 

the introduction. The construction process tries to gradually expose the network, 
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similar to the method introduced in [13], thus creating a hierarchy in the Molloy-

Reed model, and enabling us to define layers in the graph.  

We start by setting the number of nodes in the network, N. We then 

choose the nodes degrees according to the scale-free distribution function 

λ−= cKkP )( , where ( ) 11 −−≈ λλ mc  is the normalizing constant and the degree k is 

in the range [ ],m K , for some chosen minimal degree m and the natural cutoff 

( )1/1 −= λmNK  of the distribution [12]. At the first stage each node in the network 

has a given number of outgoing links, which we term "open connections" (or 

"stubs"), according to its chosen degree. Let us define V as the set of N chosen 

nodes, C as the set of unconnected outgoing links from the nodes in V, and E as 

the set of edges in the graph. Using these definitions, the set of links in E is 

empty at this point, while the set of outgoing open links in C contains all 

unconnected outgoing links in the graph. In the Molloy-Reed construction 

described in the introduction, the links in C are randomly matched, such that at 

the end of the process, C is empty, and E contains all the matched links vu,  

that connect pairs of nodes Vvu ∈,  in the network. 

Instead, here we proceed as follows: we start from the maximal degree 

node, which has a degree K, and connect it randomly to K available open 

connections, thus removing these open connections from C (see Fig. 3-1(a)). 

The nodes that were now connected to the maximal degree node are termed as 

the first "layer". We have actually exposed the first layer (or chemical shell) of 

nodes, indexed as l=1. We now continue to fill out the second layer l=2 in the 

same way: We connect all open connections emerging from nodes in layer 1 to 
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randomly chosen open connections from C. These open connections may be 

chosen from nodes of layer 1 (thus creating a loop) or from other links in C. We 

continue until all open connections emerging from layer 1 have been connected, 

thus filling layer l=2 (see Fig. 3-1(b)). Generally, to form layer l+1 from an 

arbitrary layer l, we randomly connect all open connections emerging from l to 

either other open connections emerging from l or chosen from the other links in C 

(see Fig. 3-1(c)). Note, that when we have formed layer l+1, layer l has no more 

open connections. The process continues until the set of open connections, C, is 

empty. 

3.3. Theory 

We proceed now to evaluate the probability for nodes with degree k to reside 

outside the first l layers, denoted by ( )lP k . The number of open connections 

outside layer l, is given by: 

( )
1

l l
k

T N kP k
∞

=

= ∑  

The probability that a detached node with degree k will be connected to an open 

connection emerging from layer l is: 
l l

k
Tχ +

, where lχ  is the number of open 

connections emerging from layer l (see Fig. 3-1(b)). Therefore, the conditional 

probability for a node with degree k to be also outside layer l+1, given that it is 

outside layer l, is the probability that it does not connect to any of the lχ  open 

connection emerging from layer l, that is: 
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Figure  3-1: Illustration of the exposure process. The large circles denote 
exposed layers of the giant component, while the small circles denote individual 
sites. The sites outside the large circles have not been reached yet. (a) We begin 
with the highest degree node and fill out layer 1. (b) In the exposure of layer l+1 
any open connection emerging from layer l may connect to any open node ( lT  
connections) or loop back into layer l ( lχ  connections). (c) The number of 
connections emerging from layer l+1 is the difference between lT  and 1lT + , after 
reducing 1lS + , which is the number of incoming connections from layer l. 
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                                    (3.1) 

( ), 1| 1 exp
1 /

l

l l l l

k kP k l l
T T

χ

χ χ
⎡ ⎤ ⎛ ⎞

+ = − ≈ −⎜ ⎟⎢ ⎥+ +⎣ ⎦ ⎝ ⎠
 

for large enough values of lχ . 

Thus, the probability that a node of degree k will be outside layer l+1 is: 

( ) ( ) ( ) ( )1 , 1| exp
1 /l l l

l l

kP k P k P k l l P k
T χ+

⎛ ⎞
= + = −⎜ ⎟+⎝ ⎠

 

Thus we derive the exponential cutoff: 

( ) ( )expl
l

kP k P k
K

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
                                         (3.2) 

where: 

1

1 1 1

1 ll l

l

TK K
χ

+

= +
+

,                                              (3.3) 

gives the evolution of the cutoff17 with l.  

                                            

17 The exponential cutoff may be derived also using the following “mean field” approximation: 
Each node is treated independently, where the interaction between nodes is inserted through 
the expected number of incoming connections. At each node, the process is treated as 
equivalent to randomly distributing χl  independent points on a line of length l lTχ +  and 
counting the resultant number of points inside a small interval of length k. Thus, the number of 
incoming connections ink  from layer l to a node with k open connections is distributed 
according to a Poisson distribution with an expected value of: 

in l
l l

kk
T
χ

χ
=

+
, 

and: 

( )1 |
!

in

in

k
k in

l in
in

k
P k k e

k
−

+ =  

The probability for a node with k open connections not to be connected to layer l, i.e. to be 
outside layer l+1 also, is: 
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Now let us find the behavior of lχ  and Sl, where Sl+1 is the number of links 

incoming to the l+1 layer (and approximately18 equals Nl+1, the number of nodes 

in the l+1 layer). The number of incoming connections to layer l+1 ( 1lS + ) equals 

the number of connections emerging from layer l ( lχ ), minus the number of 

connections looping back into layer l. The probability for a link to loop back into 

layer l is: 

( )| l

l l

P loop l
T

χ
χ

=
+

 

and therefore: 

1 1 l
l l

l l

S
T

χχ
χ+

⎛ ⎞
= −⎜ ⎟+⎝ ⎠

                                        (3.4) 

The number of connections emerging from all the nodes of layer l+1 is 1l lT T +− . 

This is also the sum of the number of incoming connections from layer l into layer 

l+1, which is equal to 1lS + , and the number of outgoing connections l 1+χ . 

Therefore: 

1 1 1l l l lT T Sχ + + += − −                                            (3.5) 

                                                                                                                                  

( ) ( )1, 1| 0 | exp
1 /

ink
l in

l l

kP k l l P k k e
T χ

−
+

⎛ ⎞
+ = = = = −⎜ ⎟+⎝ ⎠

 

Thus the total probability to find a node of degree k outside layer l+1 is: 

( ) ( ) ( ) ( )1 , 1| exp
1 /l l l

l l

kP k P k P k l l P k
T χ+

⎛ ⎞
= + = −⎜ ⎟+⎝ ⎠

 

and one obtains the exponential cutoff. 
18 This holds true assuming that almost no site in layer l+1 is reached by two connections from 

layer l. This is justified in the case where m=1 (where most of the nodes have only one 
incoming link), and also for the first layers in case of m>1 (in which loops are not yet formed). 
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At this point we have the following relations: Tl+1(Kl+1) (Equations (3.1) and (3.2)), 

Sl+1(χl,Tl) (3.4), Kl+1(Kl,χl,Tl) (Eq. (3.3)), and χl+1(Tl,Tl+1,Sl+1) (Eq. (3.5)). These 

relations may be solved numerically to give the degree distribution and number of 

nodes at each layer19. Approximate analytical results for the limit N → ∞  can be 

found in [13]. 

3.4. Simulations 

In order to check our analysis we simulated a SF network with 2 3λ< < , and 

used the Breadth-First-Search (BFS) algorithm [19] to extract the number of 

nodes at each layer starting from the maximal connected node. The BFS 

algorithm is implemented as follows (see Fig. 3-2): we start from a chosen node 

and insert it into a queue, assigning it a layer number l=0. We then extract it from 

the other side of the queue and take all its neighbors and insert them into the end 

of the queue, assigning them a layer number l=1. The algorithm continues in the 

same way: at each iteration we extract the first node (with layer number l) from 

the beginning of the queue and insert its neighbors to the end of the queue, 

assigning them a layer number l+1. However, each node that is inserted into the 

queue is marked so that it will not be inserted again. In this way the algorithm 

"explores" the graph layer by layer until there are no more nodes.  

 Figure 3-3 shows results from simulations (symbols) for the number of 

nodes on layer l, which can be seen to be in agreement with the analytical curves 

                                            

19 We begin with K0=K (the natural cutoff of the network),χ = =0 0K K , and ( )0P k ck λ−= . 
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of lS  (lines). We can see that starting from a given layer l=L the number of nodes 

decays exponentially. We believe that the layer index L is related to the radius of 

the graph, which scales as log log N  for scale-free networks with 2 3λ< <  [13]. It 

can be seen that lS  is a good approximation for the number of nodes at layer l. 

This is true in cases when only a small fraction of sites in each layer l have more 

than one incoming connection. An example for this case is when m=1 so that 

most of the sites in the network have only one connection. Figure 3-4 shows 

results for ( )lP k  with similar agreement. Note the exponential cutoff that 

becomes stronger with l (i.e. lK  is a monotonically decreasing function of l). 

It is important to note that the simulation results give the probability 

distribution for the giant component, while the analytical reconstruction gives the 

probability distribution for the whole graph. This may explain the difference in the 

probability distributions for lower degrees (and large l): many low degree nodes 

are not connected to the giant component and therefore the probability 

distribution derived from the simulation is smaller for low values of k. 

In another study, Brunet et al. [30] analyzed the layer structure for the 

Barabasi-Albert model [17] and its randomized variations [31]. They found that in 

the Barabasi-Albert model there are more nodes in the first layers due to 

dissortative mixing [32], which means that in Barabasi-Albert model there is a 

tendency for high degree nodes to connect to high degree nodes. 
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3.5. Empirical results 

Figures 3-5 and 3-6 show similar analysis for a "cut" (i.e., a large 

subnetwork) of the Internet at router level, taken from the Lucent mapping project 

[33]. The actual probability distribution is not a pure power law; rather it can be 

approximated by 2.3λ =  for small degrees and 3λ =  at the tail. Our analytical 

reconstruction of the layer statistics assumes 3λ = , because the tail of a power 

law distribution is the important factor in determining properties of the system. 

This method results in a good reconstruction for the number of nodes in each 

layer, and a qualitative reconstruction of the probability distribution in each layer. 

Similar behavior was found in real maps of multicast trees [22, 29]. 

In general, large degree nodes of the network mostly reside in the lower 

layers, while the layers further away from the source node are populated mostly 

by low degree nodes [22]. This implies that the tail of the distribution affects the 

lower layers, while the distribution function for lower degrees affects the outer 

layers. Thus the deviations in the analytical reconstruction of the number of 

nodes per layer for the higher layers may be attributed to the deviation in the 

assumed distribution function for low degrees (that is: 3λ =  instead of 2.3λ = ). 

Note that our model does not take into account the correlations in node 

degrees, which were observed in the Internet [30, 32], and hierarchical structures 

[34]. This may also explain the deviation of our measurements from the model 

predictions. 
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3.6. Summary and conclusions 

In this Chapter we introduced a structural characterization for networks, which we 

termed "Tomography". The Tomography of a network reveals the statistical 

properties of layers inside it (in particular, the number of nodes in each layer and 

their degree distribution). We show that, when applied to real world networks, the 

Tomography reveals their non-random nature with respect to the Molloy-Reed 

model. In general, the Tomography can be used as a simple local test for 

evaluation of different modeling schemes for the Internet [29], and also for the 

design of better network algorithms that take advantage of the network structure, 

for example: in estimation of the expected number of clients in a multicast trees 

[22].  
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Figure  3-2: An illustration of extracting the layers in the network using the BFS 
algorithm. Starting from the maximal connected node, the graph is "exposed" 
layer by layer until there are no more nodes.  
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Figure  3-3: Approximate number of nodes (Sl) vs. layer index l for a network with 
N=106 nodes, λ=2.85, and m=1. Symbols represent simulation results while solid 
lines are a numerical solution for the derived recursive relations. Bottom: from the 
semi-log plot we see that there is an exponential decay of Sl for layers l>L 
starting from a given layer L, which we believe is related to the radius of the 
graph. 
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Figure  3-4: Log-log plot of Pl(k) for different layers l=0,1,2,... (from top to 
bottom), for a network with N=106 nodes, λ=2.85, and m=1. Symbols represent 
simulation results while solid lines are a numerical solution of the derived 
recursive relations. 
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Figure  3-5: Real data results. Shown is the number of nodes at each layer for a 
router level cut of the Internet with N =112,969 nodes. Analytical reconstruction 
for lS  was done with 3λ = , and 1m = . 
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Figure  3-6: Real data results. Shown is a log-log plot of ( )lP k  for different layers 
0,1,2,...l =  for a router level cut of the Internet with N =112,969 nodes. 

Qualitative analytical reconstruction was done with 3λ = , and 1m = . The 
exponential cutoff can be seen at the tail of the distribution.  
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Chapter 4: Width of percolation threshold in 

complex networks 

It is known that the critical probability for the percolation transition is not a sharp 

threshold; actually it is a region of non-zero width cpΔ  for systems of finite size. In 

this Chapter we will show that for complex networks ~ /c cp p lΔ , where ~ optl Nν  is 

the average (chemical) length of the percolation cluster, and N is the number of 

nodes in the network. For Erdös-Réyni (ER) graphs 1/ 3optν = , while for scale-free 

(SF) networks with a degree distribution ( ) ~P k k λ−  and 3 4λ< < , 

( ) ( )3 / 1optν λ λ= − − . We show analytically and numerically that the survivability 

( ),S p l , which is the probability of a cluster to survive l chemical shells at 

conduction probability p, behaves near criticality as 

( ) ( ) ( )1, , expc c
c

S p l S p l p p l
p

⎡ ⎤
= ⋅ −⎢ ⎥

⎣ ⎦
. Thus for probabilities inside the region 

c
c

pp p
l

− <  the behavior of the system is indistinguishable from that of the 

critical point. The results presented here are based on [35].  

4.1. Introduction 

In this Chapter we will study the behavior of networks near the percolation 

threshold. The problem of percolation on networks has been studied extensively 

(e.g. [5]). Using percolation theory we can describe the resilience of the network 
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to breakdown of sites or links [12, 36], epidemic spreading [5, 37, 38], and 

properties of optimal paths [18]. 

 A typical percolation system consists of a d-dimensional grid of length L, in 

which the nodes or links are removed with some probability 1 p− , or are 

considered “conducting" with probability p  (e.g. [15, 16]). Below some critical 

probability cp  the system becomes disconnected into small clusters, i.e., it 

becomes impossible to cross from one side of the grid to the other by following 

the conducting links. Percolation is considered a geometrical phase transition 

exhibiting universality, critical exponents, upper critical dimension at dc=6 etc. It 

was noted by Coniglio [39] that for systems of finite size L the transition from 

connected to disconnected state has a "width" 1/

1~cp
L νΔ  where ν is the critical 

exponent related to the correlation length20. 

 Percolation on networks has been studied also from a mathematical 

viewpoint [4-6]. It was found that in Erdös-Réyni (ER) graphs with an average 

degree k  the percolation threshold is: 1
cp

k
= . Below cp  the graph is 

                                            

20 To see this, consider a percolation system in a d-dimensional lattice. At the percolation 
threshold cp  the spanning cluster spans the whole system (ξ →∞ ). Near the percolation 

threshold a typical cluster spans a length of ~ cp p νξ −− , which is the "correlation length". If 

the system has a finite geometrical length L, then for probabilities close enough to cp  such that 

~ cL p p νξ −< − , the typical cluster size ξ  is larger than the system size, and thus in effect 
there is a cluster spanning the system. Thus, for probabilities inside the range 

1/~c cp p p L ν−− < Δ  the behavior of the system is indistinguishable from its behavior at the 
critical point. 
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composed of small clusters (most of them trees). As p  approaches cp  trees of 

increasing order appear. At cp p=  a giant component emerges and loops of all 

orders abruptly appear. However, for graphs of finite size N the percolation 

threshold has a finite width 1/3

1~cp
N

Δ  [4], meaning that all attributes of criticality 

are present in the range [ ],c c c cp p p p p∈ −Δ + Δ . For example: The number of 

loops is negligible below21 c cp p+ Δ . 

 In this Chapter we study the Survivability of the network near the critical 

threshold. The survivability ( ),S p l is defined to be the probability of a connected 

cluster to “survive" up to l chemical shells in a system with conductance 

probability p [40] (i.e the probability that there exists at least one node at 

chemical distance l from a randomly chosen node on the same cluster). At the 

critical point pc, the survivability decays as a power-law: ( ), ~ x
cS p l l− , where x  is 

a universal exponent22. 

Below cp  the survivability decays exponentially to zero, while above cp  it 

decays (exponentially) to a constant. Here we will derive analytically and 

numerically the functional form of the survivability above and below the critical 

                                            

21 O. Riordan and P. L. Krapivsky (private communication). 
 

22 For directed percolation we have /x β ν=  [41]. This conforms with our results for networks, 

as will be derived in this Chapter, because 1β =  for ER graphs and 
1

3
β

λ
=

−
 for SF 

networks (with 3 4λ< < ), while 1lν =  for both cases (see Table 1-1). 
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point. We will show that near the critical point ( ) ( ) ( )1, , expc c
c

S p l S p l p p l
p

⎡ ⎤
= ⋅ −⎢ ⎥

⎣ ⎦
. 

Thus, given a system that has a maximal chemical length l at the percolation 

threshold, for probabilities inside the range c
c

pp p
l

− <  the behavior of the 

system is indistinguishable from that of the critical point. Hence we get c
c

pp
l

Δ < .  

 The maximal chemical length l at the critical threshold, i.e. the length of 

the percolation cluster, was found to be: ~ optl Nν
 [18] where N is the number of 

nodes in the network (see Chapter 2). For Erdös-Réyni (ER) graphs 1
3optν = , 

while for scale-free (SF) networks with a degree distribution ( ) ~P k k λ−  and 

3 4λ< < , ( ) ( )3 / 1optν λ λ= − − .  

4.2. General formalism 

Consider a random graph with a degree distribution P(k), i.e., a randomly chosen 

node has a probability P(k) to have k links. The probability to reach a node of 

degree k by following a randomly chosen link is ( ) ( )1
1P k kP k
k

=  [27] where k  

is the average degree. Accordingly, we write the two corresponding probability-

generating functions (e.g. [27]): 

( ) ( )0
0

k

k
G x P k x

∞

=

=∑  

And:  
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( ) ( )
( )

( ) ( )0 1 1
1 1

1 10

1
1

k k

k k

G x
G x kP k x P k x

kG

∞ ∞
− −

= =

′
= = ⋅ = ⋅

′ ∑ ∑  

Where ( )1G x  describes the probability that a node reached by following a 

random link has k outgoing links, not including the incoming link. For example, in 

ER graphs: ( ) ( ) ( )1
1 0

k xG x G x e −= = . 

 After randomly removing a fraction 1 p−  of the links (bond percolation), 

the probability for a randomly chosen node to have k remaining links in the 

diluted graph is given by [12]: 

( ) ( ) ( ) 0

0

0
0 1 k kk

k k

k
P k P k p p

k

∞
−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑�  

The corresponding probability generating functions ( ) ( )0
0

k

k
G x P k x

∞

=

= ⋅∑� �  and 

( ) ( ) 1
1 1

1

k

k
G x P k x

∞
−

=

= ⋅∑� � in the diluted graph are: 

( ) ( ) ( )

( ) ( ) ( )

( )( ) ( )

0

0

0
0

0

0

0

0
0 0

0

0
0

0 0

0 0
0

1

1

1 1

k kk k

k k k

k
k k k

k k

k

k

k
G x P k p p x

k

k
P k xp p

k

P k p px G p px

∞ ∞
−

= =

∞
−

= =

∞

=

⎡ ⎤⎛ ⎞
= − ⋅ =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

= − + = − +

∑ ∑

∑ ∑

∑

�

 

And: 

( ) ( )
( )

( )
( )

( )0 0
1 1

0 0

1
1

1 1

G x pG p px
G x G p px

G pG

′ ′ − +
= = = − +

′ ′

�
�

�
 

For example, in ER graphs, ( ) ( ) [ ]( ) ( )1 1 1
1 0 e ek p px k p xG x G x − + − −= = =� � .  
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 We next define ( ) 2
0 1 2 ...lM x m m x m x= + + +  to be the generating function 

for the number of sites that exists on layer (i.e. chemical shell) l starting from a 

random node on the diluted graph, and ( ) 2
0 1 2 ...lN x n n x n x= + + +  to be the 

corresponding function for the number of sites that exists on layer l from a node 

reached by following a random link. In order to find ( )LM x  for some layer 1L�  

we can write the following recursive relations [27, 42]: 

( ) ( )1 1N x G x= �  

For 1 1l L≤ < − : 

( ) ( )( )1 1l lN x G N x+ = �                                              (4.1) 

And similarly, for the final layer: 

( ) ( )( )0 1L LM x G N x−= �                                             (4.2) 

Eq. (4.1) means that the probability ( )1l
in +  for reaching a branch having i nodes at 

layer l+1 is composed of the probability of reaching a node by following a link, 

and then reaching i nodes at layer l by following all possible branches emerging 

from that node - see sketch in Fig. 4-1. 
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Figure  4-1: A graphical sketch of the recursion relation (4.1). The probability to 
reach a branch having i nodes at layer l+1 may be represented as the sum of 
probabilities to reach a single node, to reach a node connected to a single 
branch having i nodes at layer l, to reach a node connected to two branches 
having a total of i nodes at layer l, etc. 

 

As a simple demonstration, let us evaluate the probability ( )1
0

ln +  to 

encounter zero nodes at layer l+1 of a branch. Taking the zeroth power in Eq. 

(4.1) we have: ( ) ( ) ( ) ( ) ( ) ( ) 21
0 1 1 0 1 01 2 3 ...l l ln P P n P n+ ⎡ ⎤= + ⋅ + ⋅ +⎣ ⎦

� � � , which means that the 

probability to reach zero nodes at layer l+1 (by following a link) is composed of 

the probability ( )1 1P�  to reach a node with no emerging branch, the probability 

( ) ( )
1 02 lP n⋅�  to reach a node that has a single emerging branch with zero nodes at 

layer l, the probability ( ) ( ) 2

1 03 lP n⎡ ⎤⋅ ⎣ ⎦
�  to reach a node having two branches such 

that both of them have zero nodes at layer l etc. (see Fig. 4-1). Similarly, Eq. 

(4.2) refers to ( )LM x , which gives the probability for the number of nodes at 

layer L reached by starting from a random node, rather than by following a 

random link [27]. 
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Notice that ( ) 00LM m=  is the probability that there are zero nodes at layer 

L from a random node, i.e., the probability to die before layer L. Thus 

( )1 0L LMε = −  is the probability to survive up to layer L. Similarly, ( )1 0l lNε = −  

(where 1 1l L≤ < − ) is the probability for a branch to survive up to layer l. From 

Eq. (4.1) we have: 

( ) ( )( )1 10 0l lN G N+ = �  

( ) [ ]( )1 1 11 1 1 1l l lG G p pε ε ε+− = − = − + −�  

Thus for 1 1l L≤ < − : 

( )1 11 1l lG pε ε+ = − −                                       (4.3) 

And for the final layer L we have (Eq. (4.2)): 

( )0 11 1L LG pε ε −= − − ,                                   (4.4) 

which gives the survivability at layer L [42]. 

4.3. Erdös-Réyni graphs 

For Erdös-Réyni (ER) graphs: ( ) ( ) ( )1
0 1

k xG x G x e −= =  and Eq. (4.3) gives: 

[ ]( )1 1
1

22
2

22
2

1 1

1 1 ...
2

...
2

l lk p p k
l

l l

l l
c

e e

p k
p k

p kp
p

ε εε

ε ε

ε ε

− − −
+ = − = − =

⎡ ⎤
= − − + − =⎢ ⎥

⎢ ⎥⎣ ⎦

= − +

 

Where 1
cp

k
= . Setting cp pδ = − , we get: 
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( )
2

2 2
1

2

...
2

1
2

c
l l c l

c

l l l
c

kp p
p

p

δε ε δ ε

δε ε ε

+

+
= − + + ≈

≈ + −

 

where we have left only terms of second order23 in ,lε δ . We thus get: 

2
1

1
2

l
l l l l

c

d
dl p
ε δε ε ε ε+≈ − = − + ⋅ . 

At criticality, 0δ = , and the solution to this equation is: 1~l lε − . The additional 

term suggests the following solution near criticality: 1 1~ expl
c

l l
p

ε δ− ⎛ ⎞
⋅ ⎜ ⎟

⎝ ⎠
. Note that 

for ER graphs Equations (4.3) and (4.4) are the same, and thus the survivability 

Lε  at the final iteration also has the same form: 1 1~ expl
c

L L
p

ε δ− ⎛ ⎞
⋅ ⎜ ⎟

⎝ ⎠
. The above 

result can be written as: 

( ) ( ) ( )1, , expc c
c

S p l S p l p p l
p

⎛ ⎞
= ⋅ −⎜ ⎟

⎝ ⎠
                              (4.5) 

In order to check this result we numerically calculated the survivability ( ),S p l  

near cp  according to the recursive relations (4.3) and (4.4)24. 

 Fig. 4-2(a) shows the survivability ( ),S p l  for different values of p. For 

cp p=  the survivability decays as a power law, while above and below there is an 

exponential decay, either to zero (for cp p< ) or to a constant (for cp p> ). Fig. 4-

                                            

23 We assume that cp p<  and thus 1lε �  for large l . 

24 We start with 0 1ε = , and use Eq. (4.3) also for 0l = .   
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2(b) shows that all curves of the survivability ( ),S p l  from (a) can be rescaled 

such that they all collapse. Moreover, scaled survivabilities from all different 

graphs with different values of k  (i.e., different values of cp ) also collapse on 

the same curve. However, equation (4.5) is true only below the percolation 

threshold where there is no giant component. Above the percolation threshold 

there is an exponential decay to a non-zero constant, and the generalized 

expression is: 

( ) ( ) 1, , expc c
c

S p l S p l p p l P
p ∞

⎛ ⎞
= ⋅ − − +⎜ ⎟

⎝ ⎠
                          (4.6) 

where P∞  is the probability for a randomly chosen node to be inside the 

percolation cluster25. Indeed, setting 1l lε ε+ =  in the recursive relation 

1 1 lp k
l e εε −
+ = − , the resulting "steady state" solution is l Pε ∞=  [4, 6]. 

4.4. Scale-free graphs 

Scale-free graphs can be taken to have a degree distribution of the form 

( )P k ck λ−= , where ( ) 11c mλλ −≈ −  and m is the minimal degree [12]. In order to 

solve equation (4.3) we have to evaluate: 

( ) 1
1

1

11 ( )(1 )k
l l

k

G p kP k p
k

ε ε
∞

−

=

− = −∑  

                                            

25 ( ),S p l →∞  is the probability that if we start from a randomly chosen site, we will survive an 

infinite chemical distance. This equals to the probability P∞  that the chosen site resides in the 

giant component. In ER graphs P∞  obeys the transcendental equation: 1 k pPP e ∞−
∞ = −  [4, 6].  
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Figure  4-2: (a) The survivability ( ),S p l  for an ER graph with 5k = , numerically 

calculated for different values of p : cp , 45 10cp −± × , 43 10cp −± × , 41 10cp −± × , 
56.66 10cp −± × , and 53.33 10cp −± × . For cp p=  the survivability decays to zero 

according to a power law: ( ) 1, ~cS p l l− . For cp p< , ( ), 0S p l → , while for cp p> , 

( ),S p l Const→ . The decay is exponential (to zero or to a constant) according to 
equations (4.5) and (4.6). (b) Scaling of the survivability for different values of p, 
l, and k . Shown is ( ) ( ) ( ), , / ,cS p l S p S p l− ∞⎡ ⎤⎣ ⎦   vs. /c cp p l p−  for ER graphs 

with 5k =  (unfilled symbols) and 10k =  (filled symbols). The collapse of all 
curves on an exponential function (for large l) supports the scaling relations (4.5) 
and (4.6). 
 

Expanding by powers of ε , and inserting ( )P k ck λ−=  with 3 4λ< < , we get [43] 

(See also appendix A): 

1 2

1
( )(1 ) ( 1) (4 )

2
k

k

ckP k k k k λε ε λ ε
∞

− −

=

− = − − + Γ −∑  

Thus equation (4.3) becomes: 

( ) ( ) ( )

( )

2
1

2 2

11 1 4
2

4
2

l l l

l l
c

ck k k p p
k

p c p
p k

λ

λ λ

ε ε λ ε

ε λ ε

−
+

− −

⎡ ⎤= − − − + Γ − ⋅ =⎢ ⎥⎣ ⎦

= − Γ − ⋅
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where 
( )1c

k
p

k k
=

−
 [12]. Taking cp p δ= + , and substituting 

( ) 24
2 c

cA p
k

λλ −= Γ − , we get: 

( ) ( )

( )

2 2
1

2
2

2 2

4
2

1

2

c
l l c l

c

l l l
c c

l l l l
c

p c p
p k

A
p p

A A
p

λ λ

λ
λ

λ λ

δε ε λ δ ε

δ δε ε ε

δε ε ε λ ε

− −
+

−

−

− −

+
= − Γ − ⋅ + =

⎡ ⎤
= + ⋅ − + ≈⎢ ⎥

⎣ ⎦

⎡ ⎤≈ − + − − ⋅⎣ ⎦

 

For large l , 1lε � . Taking into account that 2 1λ − >  we have 2
l l
λε ε− � . 

Therefore: 

2
1

l
l l l l

c

d A
dl p

λε δε ε ε ε−
+≈ − = − + ⋅  

For 0δ =  the solution is ~ x
l lε −  with ( )1/ 3x λ= − . The additional term suggests 

the following solution near criticality: 1~ expx
l

c

l l
p

ε δ− ⎛ ⎞
⋅ ⎜ ⎟

⎝ ⎠
. The last iteration (Eq. 

(4.4)) can be shown to give the same behavior for Lε . A similar form can be 

found also for26 4λ > . The scaling form for SF networks is confirmed by 

numerical simulations as shown in Figures 4-3(a) and (b). 

 

 

                                            

26 In this range the behavior is similar to ER graphs [14]. 
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Figure  4-3: (a) The survivability ( ),S p l  for a SF network with 3.5λ = , 

numerically calculated for different values of p : cp , 26 10cp −± × , 24 10cp −± × , 
22 10cp −± × , 21.33 10cp −± × , and 36.66 10cp −± × . For cp p=  the survivability 

decays to zero according to a power law: ( ) 2, ~cS p l l− . For cp p≠ , ( ),S p l  
decays exponentially (to zero or to a constant) according to equations (4.5) and 
(4.6). (b) Scaling of the survivability for different values of p, l, and λ . Shown is 

( ) ( ) ( ), , / ,cS p l S p S p l− ∞⎡ ⎤⎣ ⎦  vs. /c cp p l p−  for SF graphs with 3.5λ =  (filled 
symbols) and 5λ =  (unfilled symbols). For all cases m=2. Due to numerical 
difficulties only curves with cp p<  are shown. 

 

4.5. Summary and conclusions 

We have shown analytically and numerically that the survivability in ER and SF 

graphs scales according to equations (4.5) and (4.6) near the critical point. Thus, 

the scaling form of the survivability near the critical probability obeys the following 

scaling relation (for cp p< ): 

( ) ( ), , exp c
c

c

p pS p l S p l
p

⎛ ⎞−
= ⋅ ⎜ ⎟Δ⎝ ⎠
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where ~ c
c

pp
l

Δ . Given a system with a maximal chemical length l  at criticality, 

for all values of conductivity p inside the range [ ],c c c cp p p p−Δ + Δ  the survivability 

behaves similar to the power law ( ), ~ x
cS p l l−  found at cp p= . Thus, the width of 

the critical threshold is ~ c
c

pp
l

Δ , where l is the chemical length of the percolation 

cluster. For ER graphs, 1/3~l N , while for SF networks with 3 4λ< < ,  

( ) ( )3 / 1~l N λ λ− − . 

 It is important to remember that real world networks do not have an infinite 

number of nodes. Some networks are rather small, for example, the transcription 

regulation network of the bacteria E. coli has roughly 400 nodes [44]. The 

importance of the results presented in this Chapter is that they allow us to use 

percolation theory also in real world systems of finite size. Furthermore, the 

scaling form of the survivability can be used in the modeling of epidemic 

spreading on networks [38]. 

4.6. Appendix 4.A: Derivation of ( )1 1G ε−  

We wish to evaluate ( ) ( )( ) 1
1

1

11 1 k

k
G kP k

k
ε ε

∞
−

=

− = −∑  for a degree distribution 

( )P k ck λ−= , where ( ) 11c mλλ −≈ −  and ε  is small. We expand the function: 

1

1

( ) ( )(1 )k

k

F kP kε ε
∞

−

=

= −∑  by series according to ε . For a function with 1n −  

derivatives at 0ε = , the Taylor expansion is: 
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2 ( 1) 11 1( ) (0) (0) (0) ... (0)
2 ( 1)!

n n
nF F F F F R

n
ε ε ε ε− −′ ′′= + + + + +

−
 

Now:  

( )
1

(0)
k

F kP k k
∞

=

= =∑  

( ) ( ) ( )
2

(0) 1 1
k

F k k P k k k
∞

=

′ = − − = − −∑  

( )( ) ( ) ( )( )
3

(0) 1 2 1 2
k

F k k k P k k k k
∞

=

′′ = − − = − −∑  

... 

The remainder of the series expansion is: ( ) ( )
!

n
n

nR F
n
ε ε= � , where: 0 ε ε< <� . In our 

case we take ε ε≈�  because ε  is small. In the case of a power-law (scale-free) 

distribution ( ) ~P k k λ−  with 3 4λ≤ ≤ , the 2nd derivative diverges. Thus we can 

expand only up to order n=2. The remainder is: 

2 2 2
(2) 3 3 ( 3)

2
0 0

( ) ( 1)( 2) (1 )
2 2 2

k k

k k

R F k k k ck dk c k e dkλ λ εε ε εε ε
∞ ∞

− − − − −

= =

= = − − − ≈∫ ∫ . 

Taking x kε=  gives: 

2 2 3 2
3 3 3 3 3

2 3 4
0 0 0

2

1
2 2 2

(4 )
2

k x x

k x x

x dxR ce k e dk ce e ce x e dx

c

λ
ε λ ε ε ε λ

λ λ

λ

ε ε ε
ε ε ε

ε λ

∞ ∞ ∞−
− − − − −

− −
= = =

−

= = = ≈

≈ Γ −

∫ ∫ ∫
 

Thus we get: 

1 2

1
( )(1 ) ( 1) (4 )

2
k

k

ckP k k k k λε ε λ ε
∞

− −

=

− = − − + Γ −∑ , 

as required. 
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Chapter 5: Optimization in weighted 

networks 

Optimization problems in networks are important for many applications in 

computer science. For example, when constructing a communications network or 

implementing a routing algorithm, one wants the system to be optimal in the 

sense that the data packets will arrive with minimal delay time and with minimal 

waste of network resources. In this Chapter we will show how the problem of 

optimization can be approached using tools from percolation theory and 

statistical physics. The results presented here are based on [35, 45-47]. 

5.1. Introduction 

Many real world systems exhibit a web like structure and may be treated as 

“networks.” Examples may be found in physics, sociology, biology, and 

engineering [1-3]. The function of most real world networks is to connect distant 

nodes, either by transfer of information, e.g., the Internet, or through 

transportation of people and goods such as networks of roads and airlines. In 

many cases there is a “cost” or a “weight” associated with each link and the 

larger the weight on a link, the harder it is to traverse this link. In this case, the 

network is called "disordered" or "weighted" [18]. For example, in the Internet, 

each link between two routers has a bandwidth or delay time; in a transportation 

networks, some roads may have only one lane while others may be highways 

allowing for large volumes of traffic. Another important example is in biological 
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networks such as the transcription regulation network of bacteria, where the 

weights represent chemical binding affinities between proteins and the DNA. 

These weights are fine-tuned by evolution in order to adapt to the environment 

[48].  

Consider two nodes A and B on such a disordered network. In general, 

there will be a large number of paths connecting A and B. Among these paths, 

there is usually a single path for which the sum of the weights along the path is 

minimal. This path is called the “optimal path”, and all optimal paths emerging 

from a certain node and reaching all nodes of the network create a shortest-path-

tree (SPT) from that node. A standard algorithm for finding the optimal path (and 

the SPT) is Dijkstra's algorithm [19]. The optimal path may be much longer than 

the shortest-hopcount-path [23], i.e. the path with the minimum number of links 

between nodes A and B, as demonstrated if Fig. 5-1.  

The problem of finding the optimal path is one example for an 

"optimization" problem. Another example is the minimum-spanning-tree (MST), 

which is a tree that reaches all nodes of the graph and for which the sum of the 

weights of all the links (total weight) is minimal. In this Chapter we will explain the 

behavior of the optimal path, the SPT and the MST and their dependence on the 

nature of the disorder. 
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Figure  5-1: A sketch of a two-dimensional weighted network. In order to cross 
from node A to B along the optimal path we have to take a long detour, whereas 
the shortest-hopcount-path is a straight line. 

5.2. Scale-free substructures emerging from 

weighted networks 

In this subsection we will show that any weighted random graph has an internal 

scale-free structure. We will then show that the minimum spanning tree (MST) is 

related to this network, and is composed of percolation clusters, which we regard 

as “super-nodes”, interconnected by a scale-free tree. We will then use these 

results to understand the structure of optimal paths in disordered networks. 

5.2.1. Scale-free topology 

Scale-free topology is very common in natural and man-made networks. 

Examples vary from social contacts between humans to technological networks 
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such as the World Wide Web or the Internet [1-3]. Scale free (SF) networks are 

characterized by a power law distribution of connectivities, i.e. the degree 

distribution is ( )P k k λ−∼ , where k is the degree of a node and the exponent λ 

controls the broadness of the distribution. Many networks are observed to have 

values of λ around 2.5. For values of 2<λ<3 the second moment of the 

distribution, 2k , diverges, leading to several anomalous properties [12, 13], for 

example, the percolation threshold in such networks vanishes ( 0cp → ), and the 

radius (i.e., the average of the shortest-hopcount-path) scales as log logr N∼ , a 

phenomenon also known as "ultra-small world". 

5.2.2. The clusters network 

Consider an Erdös-Réyni  (ER) graph with N nodes and an average degree k , 

thus having a total of / 2N k  links. To each link we assign a weight chosen 

randomly and uniformly from the range [ ]0,1 . We define "black" links to be those 

links with weights below the percolation threshold 1/cp k=  [4]. Two nodes 

belong to the same cluster if they are connected by black links (Fig. 5-2(a)). From 

percolation theory [15, 16] follows that the number of clusters containing s nodes 

scales as a power law, sn s τ−∼ , with 2.5τ =  for ER networks27. We next merge 

                                            

27 ER networks can be regarded as having an infinite dimension since space does not play any 
role. For example, in a d-dimensional rectangular grid, each node may have 2d neighbors, 
whereas in random graphs the number of possible neighbors of each node diverges with 
network size. 
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all nodes inside each cluster into a single “supernode”. We define a new 

“supernode network” (Fig. 5-2(b)) of SNN  supernodes28. The links between two 

supernodes (see Figs. 5-2(a) and 5-2(b)) have weights larger than pc. 

The supernode network is scale-free with a degree distribution 2.5( )P k k −∼ . 

This can be explained as follows: every node in a supernode has the same 

(finite) probability to be connected to a node outside the supernode. Thus, the 

degree k of each supernode is proportional to the cluster size s, which obeys 

sn s τ−∼ . Hence, ( )P k k λ−∼  with λ=2.5, as supported by simulations shown in Fig. 

5-3. 

Next, we check if the supernode network is a random SF network (thus 

having anomalous properties such as ultra-small world etc.). We link-randomize 

the supernode network, in a way that preserves the degree distribution [31], This 

is done by the following algorithm: choose randomly two links A B and C D, 

and switch the endpoints, that is, disconnect those two links and connect A D 

and C B (Fig. 5-4(b)). We observe (Fig. 5-4(a)) that the "tomography" of the 

resulting randomized network, i.e. the number of nodes at each chemical shell 

from the maximal degree node (see Chapter 3), is the same as in the original 

supernode network, thus indicating that the supernode network is indeed 

random. 

                                            

28 / 2SNN N=  in Erdos-Renyi networks, as will be shown below. 
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Figure  5-2: Sketch of the “supernode network”. (a) The original ER network, 
partitioned into percolation clusters whose sizes s are power-law distributed, with 

~sn s τ− , where 2.5τ =  for ER graphs. The “black” links are the links with weights 
below cp , the “dotted” links are the links that are removed by the bombing 
algorithm, and the “gray” links are the links whose removal will disconnect the 
network (and therefore are not removed even though their weight is above pc). 
(b) The “supernode network”: the nodes are the clusters in the original network 
and the links are the links connecting nodes in different clusters (i.e., “dotted” and 
“gray” links). The supernode network is scale-free with ( )P k k λ−∼  and 2.5λ = . 
Notice the existence of self loops and double connections between the same two 
supernodes. (c) The minimum spanning tree (MST), which is composed of black 
and gray links only. (d) The MST of the supernode network (“gray tree”), which is 
obtained by bombing the supernode network (thereby removing the “dotted” 
links), or equivalently, by merging the clusters in the MST to supernodes. The 
gray tree is also scale-free, with 2.5λ = .  
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Figure  5-3: The degree distribution of the supernode network of Fig. 5-2(b), 
where the supernodes are the percolation clusters, and the links are the links 
with weights larger than pc (O). The distribution exhibits a scale-free tail with 

2.5λ = . If we choose a threshold less than pc, we obtain the same power law 
degree distribution with an exponential cutoff. The different symbols represent 
slightly different threshold values: pc−0.03 (□) and pc−0.05 (Δ). The original ER 
network has N=50,000 nodes and an average degree 5k = . Note that for 

k k≈  the degree distribution has a maximum. 
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Figure  5-4: (a) The "tomography" of the supernode network (□) and the link-
randomized supernode network (Δ). It can be seen that the number of nodes at 
each layer is the same, thus indicating that the supernode network is random. 
The tomography here was obtained by averaging over many realizations of the 
network. Hence, for large l , we get a fractional number of nodes on average. (b) 
An illustration of the link-randomizing algorithm. Note that the number of links 
connected to each one of the nodes A,B,C, and D does not change in the 
switching process. Thus the degree of each node is preserved. 
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5.2.3. The minimum spanning tree – definition and algorithms 

We next show that the minimum spanning tree (MST) of an ER graph is related 

to the supernode network, and therefore also exhibits scale-free properties. The 

MST on a weighted graph is a tree that reaches all nodes of the graph and for 

which the sum of the weights of all the links (total weight) is minimal [19].  

 Standard algorithms [19] for finding the MST are Prim’s algorithm which 

resembles invasion percolation [15], and Kruskal’s algorithm which resembles 

normal percolation. We first explain Prim's algorithm: 

(a) Create a tree containing a single vertex, chosen arbitrarily from the graph. 

(b) Create a set containing all the edges in the graph.  

(c) Remove from the set an edge with minimum weight that connects a vertex in 

the tree with a vertex not in the tree. 

(d) Add that edge to the tree. 

(e) Repeat steps (c-d) until every edge in the set connects two vertices in the 

tree. 

Note that two nodes in the tree cannot be connected again by a link, thus 

forbidding loops to be formed.  

 Prim's algorithm starts by choosing a random node in the network, and 

then growing outward to the "cheapest" link which is adjacent to the starting 

node. Each link which is "invaded" is added to the growing cluster (tree), and the 

process is iterated until every site has been reached. Bonds can only be invaded 

if they do not produce a loop, so that the tree structure is maintained [20]. This 

process resembles invasion percolation in the Physics literature.  
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 A direct consequence of the invasion process is that a path between two 

points A and B on the MST is the path whose maximum weight is minimal, i.e., 

the minimal-barrier path29. This is because if there were another path with a 

smaller barrier (i.e. maximal weight link) connecting A and B, the invasion 

process would have chosen that path to be on the MST instead.  

 The minimal-barrier path is important in cases where the "bottleneck" link 

is important. For example, in streaming video broadcast on the Internet [21, 22], 

it is important that each link along the path to the client will have enough capacity 

to support the transmission rate, and even one link with not enough bandwidth 

can become a bottleneck and block the transmission. In this case we will choose 

the minimal-barrier path rather than the optimal path30. 

An equivalent algorithm for generating the MST is Kruskal's algorithm: 

(a) Create a forest F (a set of trees), where each vertex in the graph is a 

separate tree.  

(b) Create a set S containing all the edges in the graph.  

(c) While S is nonempty: 

• Remove an edge with minimum weight from S.  

• If that edge connects two different trees, then add it to the forest, 

combining two trees into a single tree.  

• Otherwise discard that edge. 

                                            

29 This path is sometimes referred to as the "min-max path" [49]. 
30 In this example the weight of the link is related to its inverse capacity (the capacity of a link is 

roughly proportional to its bandwidth) and is also proportional to its delay time. The optimal path 
is thus the path with a minimum total delay time, which is less important for video broadcast. 
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Note that an edge cannot connect a tree to itself, thus forbidding loops to be 

formed. 

  Kruskal's algorithm resembles the percolation process because we add 

links to the forest according to increasing order of weights. The forest is actually 

the set of percolation clusters growing as the conductance probability p  (i.e. the 

weight of the link that is currently being added) is increasing (as long as cp p< , 

see below).  

 It was noted by Dobrin et al.[20]  that the geometry of the MST depends 

only on the unique ordering of the links of the network according to their weights. 

It does not matter if the weights are nearly the same or wildly different, it is only 

their ordering that matters. Given a network with weights { }ir  on the links, any 

transformation which preserves the ordering of the weights (e.g., the link which 

has the fiftieth largest energy is the same before and after the transformation) 

leaves the MST geometry unaltered. This property is termed "universality" of the 

MST. Thus, given a network with weights { }ir , with ir  being a random variable 

distributed uniformly in the range [0,1] , a transformation of the weights to { }iτ  

such that ( )ii arexp=τ  (for 0>a ) will leave the MST unchanged. 

5.2.4. Structure of the minimum spanning tree 

5.2.4.1. The bombing optimization algorithm 

An equivalent algorithm for finding the MST in a weighted random network is the 

“bombing optimization algorithm” [18]. We start with the original ER network and 



 69

remove links in order of descending weights. If the removal of a link disconnects 

the graph, we restore the link and mark it “gray” [50]; otherwise the link (shown 

dotted in Fig. 5-2(a)) is removed. The algorithm ends and an MST is obtained 

when no more links can be removed without disconnecting the graph. 

Let us apply the bombing algorithm on a weighted ER graph, with weights 

distributed uniformly between 0 and 1. Because the weights are randomly 

distributed, the bombing algorithm resembles a percolation process in which the 

links (above some weight p ) are removed with probability 1 p− . However, in the 

bombing algorithm only links that close a loop can be removed (otherwise the 

graph will be disconnected). It is known that for ER networks the loops are 

negligible below criticality [5], i.e., the percolation clusters have almost no loops. 

Therefore the bombing process does not modify the percolation clusters — 

where the links have weights below pc. Thus, the bombing modifies only links 

outside the clusters, so actually it is only the links of the supernode network that 

are bombed. Hence the MST resulting from bombing is composed of percolation 

clusters connected by gray links (Fig. 5-2(c)).  

From the MST of Fig. 5-2(c) we now generate a new tree, the MST of the 

supernode network, which we call the “gray tree”, whose nodes are the 

supernodes and whose links are the gray links connecting them (see Fig. 5-2(d)). 

Note that bombing the original ER network to obtain the MST of Fig. 5-2(c) is 

equivalent to bombing the supernode network of Fig. 5-2(b) to obtain the gray 

tree, because the links inside the clusters are not bombed.  
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To summarize, the MST on a weighted ER network (with weights ir  

distributed uniformly between 0 and 1) is composed of two components (see Fig. 

5-2(c) and (d)): (i) the percolation clusters, which consist of links with weights 

below cp  (we will refer to these as the "black" links because they are not affected 

by the bombing), and (ii) the "gray tree" – a tree connecting the percolation 

clusters, and whose links have weights above cp . We will next describe the 

properties of these two components.  

Note that because of the universality of the MST, the above description 

applies to any random distribution of weights that can be mapped monotonously 

to the uniform distribution between 0 and 1. For example, in the case where the 

weights are distributed uniformly in the range [ ],a b , or where the weights are 

given by the expression: ( )ii arexp=τ , where ir  is distributed uniformly in the 

range [ ]0,1  and 0>a . MST's on SF networks have a similar structure [46]. 

In the following two subsections we will describe the properties of the 

percolation clusters and the gray tree, which together compose the MST. 

5.2.4.2. The percolation clusters 

The percolation clusters are described by percolation theory for 6cd d≥ = . The 

average length along the largest cluster scales as 1/3~percl N  for ER networks and 

as ( ) ( )3 / 1~percl N λ λ− −  for SF networks [18] (See Chapter 2). 

The number of clusters Ncl at the critical threshold (which is also the 

number of supernodes Nsn in the supernodes network and the gray tree) may be 
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calculated as follows: The MST consists of a total of 1N −  links – one incoming 

link per node except for the tree root [19]. These may be divided into two groups: 

gray and black links (see Fig. 5-2(c)). The original network has a total of / 2N k  

links31. The bombing algorithm leaves a fraction cp  of "black" links inside the 

percolation clusters. Hence / 2black cN N k p= . The number of gray links is 

1gray clN N= −  (see Fig. 5-2(d)). Thus: 

MST black grayN N N= +  

( )1 1black clN N N− = + −  

( )/ 2 1 / 2cl black c cN N N N N k p N k p= − = − = −  

For ER graphs, 1/cp k= , thus / 2clN N= , whereas for SF networks we get:  

( )

2
11
2 1cl

k
N N

k k

⎛ ⎞
= ⎜ − ⎟

⎜ ⎟−⎝ ⎠
.  

5.2.4.3. The "gray tree" 

We find (Fig 5-5(a)) that the gray tree has also a scale-free degree 

distribution P(k), with λ=2.5 - same as the supernode network32.  We also find 

                                            

31 By definition, the average degree is 2 /k E N= , where E is the total number of links and N 
is the total number of nodes. 

32 MST's on scale-free networks with λ=2.5 were found to retain the original network’s degree 
distribution [51, 52, 53]. The origin of this phenomenon is yet unknown. 
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(see Fig. 5-5(b)) that the average path length lgray on the gray tree scales as33 

( )~ log log( / 2) ~ loggray snl N N N=  [47]. Note that even though the gray tree is 

scale-free, it is not ultra-small [13], since the average length does not scale as 

log log N . This is because the gray tree is not a random scale-free tree; rather it 

is optimal (i.e. it is the MST of the supernode network). 

 

 

 

 

 

 

 

 

 

Figure  5-5: (a) The degree distribution of the “gray tree” (the MST of the 
supernode network, shown in Fig. 5-2(d)), in which the supernodes are 
percolation clusters and the links are the gray links. The distribution exhibits a 
scale-free tail with 2.5λ = , same as the supernode network. (b) The average 
path length grayl  on the gray tree as a function of original network size. It is seen 

that ( )~ log ~ loggray snl N N . 

 

                                            

33 Although Braunstein et al. [18]  found that the length of the optimal path is ( ) 1~ logoptl N λ−
, for 

SF networks with 2<λ<3 in the strong disorder limit, this is valid only when multiple links 
between nodes do not exist. For SF networks that have multiple links, such as in our case (Fig. 
5-2(b)), we find a shorter optimal path: ~ logoptl N  for 2<λ<3. 
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5.2.5. The "minimal barrier" path 

As explained above, the MST is optimal in two senses: (i) the total weight of all 

links is minimal (ii) a path between any two nodes on the MST will encounter the 

smallest maximal barrier (weight) between these nodes. The last property is 

common to many physical systems. We will also see that the optimal path follows 

the "minimal-barrier" path in cases where the weights in the network are strongly 

fluctuating ("strong disorder"). Accordingly, we study the weights encountered 

when traveling along a typical path on the MST.  

We consider all pairs of nodes in the original MST of N nodes (Fig. 5-2(c)) 

and calculate the typical path length typl , which is the average path length on the 

MST. For each path of length typl  we rank the weights on its links in descending 

order. For the largest weights (“rank 1 links”), we calculate the average weight 

1rw =  over all paths. Similarly, for the next largest weights (“rank 2 links”) we find 

the average 2rw =  over all paths, and so on up to typr l= . Fig. 5-6 shows rw  as a 

function of rank r for three different network sizes N = 2000, 8000, and 32000. 

We can distinguish between two types of weights on the minimal-barrier path: 

(a) Weights below pc – these belong to the black links inside the supernodes 

(i.e. clusters). Their weights are uniformly distributed because the bombing 

algorithm cannot remove links inside the clusters. The number of black links 

scales as 1/3~blackl N  for ER graphs (see Chapter 2). 

(b) Weights above pc – these belong to the “gray links”, which were removed 

and restored by the bombing algorithm. Therefore they are not uniformly 
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distributed. As shown above, the number of gray links along the optimal 

path scales as ~ loggrayl N . Notice also that the highest weights (e.g. 1rw =  

and 2rw = ) are independent of the network size N. 

We explain these findings as follows: the black links represent a "global" 

phenomena – an extensive part of the optimal path lies along the giant 

component (the largest percolation cluster), which is a fractal and whose radius 

scales as N1/3 [18] (see Fig. 5-2(c) and Chapter 2). As opposed to this, the gray 

links are associated with the finite clusters (or supernodes), which are "local" 

phenomena. High weights are associated with small clusters which have a small 

number of external links. The bombing process is limited in removing links 

connected to small clusters, because removal of such a link is more likely to 

disconnect the cluster from the graph. Hence, the weights of the highest gray 

links along the "minimal barrier", being a local phenomena, path do not depend 

on the network size. 

 However, the average length of the minimal-barrier path (i.e., the length of 

the average path on the MST) is dominated by the largest percolation cluster34 

( ) ( )1/3 1/3log ~MST black grayl l l o N o N N= + = + . 

 

                                            

34 The question of exactly which proportion of the average minimal-barrier path follows largest 
percolation cluster is currently under research. Some discussion may be found in [46].  
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Figure  5-6: The average weights rw  along the optimal path of an ER graph with 
5k = , sorted according to their rank. Different symbols represent different 

system sizes: N = 2000 (O), N = 8000 (□) and N = 32000 (Δ). Below 0.2cp = , the 
weights are uniformly distributed, and their number scales as N1/3. Above cp  the 
number of weights along the minimal-barrier path scales as log(N), and their 
values are independent of network size N. 
 

5.3. The transition from strong to weak disorder 

In this subsection we will apply our findings from previous sections to study the 

behavior of optimal paths on networks with different types of disorder.   

Gray 
links

Black 
links 
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5.3.1. Strong and weak disorder 

Consider a disordered random network, i.e. with each link we associate a "cost" 

or "weight". A common procedure to implement disorder on a network is as 

follows [18, 47, 54]: one assigns to each link i of the network a random number 

ir , uniformly distributed between 0 and 1. The cost associated with link i is then: 

( )expi iarτ = , 

where the parameter a  controls the broadness of the distribution of link costs, or 

the "strength" of disorder. 

 When the parameter a  is small, all weights in the network are of the same 

order of magnitude, e.g. { }1.1, 2.5,3, 4.7,5,...iτ = . In this case the network is said to 

be "weakly disordered". However, when a →∞ , the weights are of different 

orders of magnitude, e.g. { }6 91,1000,10 ,10 ,...iτ = , and the network is in "strong 

disorder".  

It was found by simulations [18] that the length of the optimal path in weak 

disorder scales as log N , similar to the shortest-hopcount path. However, in the 

strong disorder regime, the optimal path length scales as optNν , where 1/ 3optν =  

for ER networks, and ( ) ( )3 / 1optν λ λ= − −  for SF networks (with 3 4λ≤ ≤ ) – see 

Table 5-1. It can be seen that the length of the optimal path in strong disorder 

scales the same as the length of the percolation cluster on the network, which is 

exponentially larger than the shortest-hopcount path. 
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 Shortest-
hopcount path 

Optimal path, 
weak disorder 

Optimal path, 
strong disorder 

ER graphs log N  log N  
1/3N  

SF networks 
(3 4λ≤ ≤ ) 

log N  log N  ( ) ( )3 / 1N λ λ− −  

SF networks 
( 2 3λ< < ) 

log log N  - log N  

 
Table  5-1: Scaling (with N) of the average length of the optimal path in 
disordered networks [18]. It can be seen that for strong disorder the optimal path 
length is exponentially larger than the shortest-hopcount path, i.e., the optimal 
path in strong disorder scales as a power of N rather than a logarithm. In weak 
disorder the optimal path is larger only by a multiplication factor. The behavior for 
scale-free networks in the anomalous regime 2 3λ< <  is similar, with the optimal 
path in strong disorder being exponentially larger than the shortest-hopcount 
path. The behavior in weak disorder is yet unclear due to numerical difficulties. 

 

These results may be explained as follows: take a typical optimal path 

between two nodes A and B on the network. This path is chosen such that its 

total cost i
i
τ∑  is minimal. When the system is in strong disorder, all weights 

along the optimal path are of different orders of magnitude. Thus the maximal 

weight maxτ  is of higher order of magnitude than all other weights along the path, 

and it dominates the sum, i.e., maxi
i
τ τ≈∑ . Hence, in strong disorder the optimal 

path is chosen such as to minimize the maximal weight maxτ . In other words, in 

strong disorder the optimal path is equivalent to the minimal-barrier path.  

We have seen in previous sections that the minimal-barrier path lies on 

the MST, which is composed of percolation clusters and gray links. Hence, the 
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optimal path in strong disorder ( a →∞ ) follows (on average) the minimal-barrier 

path, whose length is dominated by the length of the percolation cluster optNν . 

We now ask the following question: how does the optimal path behave for 

intermediate values of disorder strength a  - between strong and weak disorder ? 

5.3.2. Transition in average length of the optimal path 

We have seen that the optimal path length scales differently for strong and weak 

disorder: 

1/3

log 1
( ) ~

1
N a

l a
N a

⎧
⎨
⎩

�
�

 

We propose the following scaling form: 

1( )
c

ll a l F
p a

∞
∞

⎛ ⎞
= ⋅ ⎜ ⎟

⎝ ⎠
                                            (5.1) 

Where ( ) 1/3~l l N∞ = ∞  is the optimal path length for a →∞ , and: 

log 1
( ) ~

. 1

u u
F u u

const u

⎧
⎪
⎨
⎪⎩

�

�
 

The motivation for this scaling form is as follows: the weights along the 

optimal path for a →∞  (which lies on the MST) are ( )expi iarτ = , where the 

values ir  along the optimal path may be sorted according to their rank as shown 

in Fig. 5-7 (because of the universality of the MST, the monotonous 

transformation { } { }i irτ →  leaves the MST unchanged). We now take any two 
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consecutive-rank "black" links ( )1 1exp arτ =  and ( )2 2exp arτ = , such that 1 2r r<  

(and35 1 2, cr r p< ).  

From the figure it can be seen that36 2 1
cpr r r

l∞
Δ = − = , and thus 

( )2

1

exp exp cpa r a
l

τ
τ ∞

⎛ ⎞
= Δ = ⋅⎜ ⎟

⎝ ⎠
. The criterion for strong disorder is that all 

consecutive rank weights will be of different orders of magnitude, i.e.  1cap
l∞
� . 

This suggests that the control parameter of the scaling is 1

c

lZ
p a

∞≡ . When 1Z �  

we are in the strong disorder regime, and when 1Z �  we are in weak disorder. 

The scaling form of Eq. (5.1) is confirmed by simulations, as shown in Fig.  

5-8. The optimal path for infinite disorder strength, l∞ , was found using Prim's 

algorithm for finding the minimal-barrier path, and the optimal path ( )l a  was 

found using Dijkstra's algorithm. The collapse of all curves confirms that 

1

c

lZ
p a

∞≡  is indeed the control parameter of the transition from strong to weak 

disorder.  Similar results can be obtained on SF networks [47] and finite-

dimensional lattices [55]. 

                                            

35 We do not take weights above pc because the "gray" links are a local property and their effect 
on the optimal path length is much smaller than that of the "black" links. 

36 The number of gray links along the optimal path in strong disorder is much smaller than the 
number of black links. Thus, the number of black links may be well approximated by l∞ .    
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Figure  5-7: Weights ir  along the typical optimal path (in strong disorder), sorted 
according to their ranks, for a network of N=2,000 nodes. There are 
approximately l∞  "black" links whose weights are uniformly distributed in the 
range [0, )cp . The difference between two consecutive "black" weights is 

2 1
cpr r r

l∞
Δ = − = . 
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Figure  5-8: The order-disorder transition. Shown is ( ) /l a l∞  vs. 1

c

lZ
p a

∞≡  for 

networks different size N (which determines l∞ ), average degree k  (which 
determines cp ), and disorder strength a . Different symbols represent different 
values of k : 3k =  (○), 5k =  (□), and 8k =  (Δ). The collapse of all curves 

on one function ( )F Z  shows that a single control parameter 1

c

lZ
p a

∞≡  controls 

the transition. 
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5.3.3. Scaling of the optimal-path-lengths distribution 

We now ask the following question: How are the different optimal paths in a 

network distributed? The distribution of the optimal paths lengths is especially 

important in communication networks, in which the overall network performance 

depends on the different path lengths between all nodes of the network, and not 

only on the average.  

Recent works have studied the distribution form of the shortest paths 

lengths on minimum spanning trees [21, 42], which correspond to optimal paths 

on networks with large variations in link weights (i.e., strong disorder a →∞ ). 

The exact analytical form of the distribution is not known, but a good fit was 

found for a Maxwellian function [42]. 

However, the results in the previous section suggest that the optimal-

paths-lengths distribution function obeys the following scaling form:  

( ) 1 1, , ,
c

llP l N a G
l l p a

∞

∞ ∞

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                                     (5.2) 

Where ( ), ,P l N a  is the probability to have an optimal path of length l  in a 

network of size N and disorder strength a . Notice that the parameter 1

c

lZ
p a

∞≡  

determines the functional form of the distribution. 

 Relation (5.2) is supported by simulations for both ER and SF graphs, 

including SF graphs with 2 3λ≤ ≤ , for which 0cp →  with system size N. We 

simulate ER graphs with weights on the links for different values of graph size N, 

control parameter a , and average degree k  (which determines 1/cp k= ; see 
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Table 5-2). We then generate the shortest path tree (SPT) using Dijkstra’s 

algorithm [19] from some randomly chosen root node. Next, we calculate the 

probability distribution function of the optimal paths lengths from this node to all 

nodes in the graph. In Fig. 5-9 we plot ( ), ,l P l N a∞  vs. /l l∞  for different values of 

N , a , and k . A collapse of the curves is seen for all graphs with the same 

value of ( )( )1/ /cZ p l a∞= .  

Figure 5-10 shows similar plots for SF graphs - with a degree distribution 

of the form ( ) ~P k k λ−  and with a minimal degree37 m. A collapse is obtained for 

different values of N , a ,λ  and m, with 3λ ≥  (see Table 5-3).  

Next, we study SF networks with 2 3λ< < . In this regime the second 

moment of the degree distribution 2k  diverges, leading to several anomalous 

properties [12-14]. For example, the percolation threshold approaches zero with 

system size: ( ) ( )3 / 1~ 0cp N λ λ− − − → , and the optimal path length l∞  was found 

numerically to scale logarithmically (rather than polynomially) with N [18]. 

Nevertheless, as can be seen from Fig. 5-11 and Table 5-4, the optimal paths 

lengths probability distribution for SF networks with 2 3λ< <  exhibits the same 

collapse for different values of N and a (although its functional form is different 

from that 3λ > ). 

 
                                            

37 Note that the minimal degree is m=2, thus ensuring that there exists a giant component for any 
λ, and thus 0 1cp< < . For the case of m=1 there is almost surely no infinite cluster for λ>λc≈4 

(or for a slightly different model, λc=3.47875 [56], resulting in an effective percolation threshold 

( )/ 1 1cp k k k= − > . See [28, 56] for details. 
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Figure  5-9: Optimal paths lengths distribution, ( )P l , for ER networks with (a), (b) 

( )( )1/ / 10cZ p l a∞≡ =  and (c), (d) 3Z = . (a) and (c) represent the un-scaled 
distributions for Z=10 and Z=3, respectively, while (b) and (d) are the scaled 
distributions. Different symbols represent networks with different characteristics 
such as size N (which determines 1/3~l N∞ ), average degree k  (which 

determines 1/cp k= ), and disorder strength a  (see Table 5-2 for details). 
Results were averaged over 1500 realizations. 
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Table  5-2: Different disordered ER graphs with same value of ( )( )1/ /cZ p l a∞≡ . 
The symbols refer to Fig. 5-9. 
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Figure  5-10: Optimal paths lengths distribution, ( )P l , for SF networks with (a), 

(b) ( )( )1/ / 10cZ p l a∞≡ =  and (c), (d) 2Z = . (a) and (c) represent the un-scaled 
distributions for Z=10 and Z=2, respectively, while (b) and (d) are the scaled 
distributions. Different symbols represent networks with different characteristics 
such as size N (which determines ~ optl Nν

∞ ), λ  and m (which determine cp ), and 
disorder strength a  (see Table 5-3). Results were averaged over 250 
realizations. 
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Table  5-3: Different disordered SF graphs with same value of ( )( )1/ /cZ p l a∞≡ . 

The percolation threshold was calculated according to: ( )/ 1cp k k k= − . The 
symbols refer to Fig. 5-10. 
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Figure  5-11: Optimal path lengths distribution function for SF graphs with 

2.5λ = , and with ( )( )1/ / 10cZ p l a∞≡ = . (a) represents the un-scaled distribution 
for Z=10, while (b) shows the scaled distribution. Different symbols represent 
graphs with different characteristics such as size N (which determines ~ lnl N∞  
and 1/3~cp N − ), and disorder strength a  (see Table 5-4). Results were averaged 
over 1500 realizations. 
 

 

 

 

 

 

 

Table  5-4: Different disordered SF graphs with same value of ( )( )1/ /cZ p l a∞≡ . 

Notice that 1/3~ 0cp N − →  for N →∞ . The symbols refer to Fig. 5-11. 
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5.3.4. Discussion 

We have seen that both the average optimal path length and the optimal-paths-

lengths distribution follow the simple scaling relations (5.1) and (5.2), and are 

controlled by a single parameter: 1

c

lZ
p a

∞≡ .  

We suggest the following explanation for this phenomenon: At strong 

disorder ( a →∞ ) the optimal path follows the percolation cluster38, whose radius 

scales as 1/3N . Because a  is very large, this optimal path takes long detours and 

twists in order to avoid links with large weights, resulting in an effective "dilution" 

of these links. For smaller values of a , the percolation cluster is followed only up 

to a characteristic length capξ = . Then, the optimal path takes a "shortcut" 

outside the percolation cluster. These shortcuts shorten39 the optimal path from 

1/3N  (strong disorder) to log N  (weak disorder); see sketch in Fig. 5-12. The 

control parameter 
c

lZ
ap
∞≡  is actually the number of "shortcuts" taken. Hence it 

determines the length of the average optimal path and also the functional form of 

the optimal-paths-lengths distribution.  

 In order to prove this argument, consider some portion of the optimal path 

that follows the percolation cluster at strong disorder. Assume that the length of 

this portion is bl , and the values of ir  are uniformly distributed in the range [0, )cp  

(see Fig. 5-7). The sum of weights S along this portion is: 
                                            

38 More accurately, the optimal path, which is equivalent to the minimal-barrier path, follows the 
MST, and an extensive portion of it (consisting only of "black" links) follows the largest 
percolation cluster. 

39 This resembles the shortcuts in the "small-world" model [57]. 
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and we have assumed that: ( )exp 1cap � . Hence we get: ( )
1

exp *
bl

i
i

S arτ
=

= ≡∑  

where 1* ln b
c

c

lr p
a ap

⎛ ⎞
≈ + ⎜ ⎟

⎝ ⎠
. Thus, taking a shortcut link outside the percolation 

cluster instead of following all these bl  links (inside the percolation cluster) will 

reduce the cost of the optimal path, but only if the weight short cutr −  of this link will 

obey:  

( ) ( )exp exp *short cutar ar− < , 

or: 

1* ln b
c short cut c

c

lp r r p
a ap−

⎛ ⎞
< < ≈ + ⎜ ⎟

⎝ ⎠
. 
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If b cl ap� , such link cannot exist. However, if b cl ap> , there starts to be a finite 

probability for such a link to exist. Therefore the optimal path will follow the 

percolation cluster up to a characteristic length40 capξ = .  

The above results are consistent with results found for finite dimensional 

systems [23, 58, 59]: In a finite dimension, the parameter controlling the 

transition is 
1/

c

L
ap

ν

, where L is the system length and ν  is the correlation length 

critical exponent (for random graphs 1lν =  when calculated in the chemical path 

metric). The expression 1/L ν  is proportional to the number of "red bonds"41 - 

bonds that, if cut, would disconnect the percolation cluster [15, 39]. The length of 

the optimal path changes most considerably when the optimal path deviates from 

the percolation cluster instead of passing through one of its "red bonds". Thus, in 

finite dimensional systems, the “red bonds” control the order-disorder transition. 

5.4. Summary and conclusions 

In this Chapter we have studied optimization problems in networks. We have 

shown that the minimum spanning tree is composed of percolation clusters, 

interconnected by a scale-free tree. We then used this to study the average and 

distribution of the optimal paths lengths in networks with different types of 

disorder. The analysis presented in this Chapter demonstrates how statistical 

                                            

40 Note that in the case of SF networks with 2 3λ< < , cp  approaches zero (with increasing N) 

and consequently 0capξ = → . This suggests that for any finite value of disorder strength a , 

a SF network with 2 3λ< <  is in the weak disorder regime. 
41 The "red bonds" are also termed "cutting bonds". 
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physics and percolation theory can be used to solve optimization problems in 

networks, which are of practical importance for the design of efficient routing and 

searching algorithms. 

 

 

 

 

 

 

 

 

Figure  5-12: A sketch of the optimal path for a finite value of disorder strength a . 
The optimal path (red curve) follows the percolation cluster up to a characteristic 
length capξ = , after which it becomes beneficial to take a shortcut (dotted red 
lines) outside the percolation cluster. The optimal path in the case of strong 
disorder (blue curve) follows the percolation cluster, and it is much longer than 
the shortest-hopcount path.  
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א 

 תקציר

 מערכות רבות בעולמנוהתברר כי . בשנים האחרונות התעורר עניין רב בחקר רשתות מורכבות

אחת הדוגמאות . של קודקודים וקשתות המקשרות ביניהם" רשת"ניתנות לתיאור על ידי 

 דוגמאות . ביניהםהמכילה מליוני מחשבים המקושרים, ינטרנטהבולטות ביותר היא רשת הא

 ברשתות חברתיות בהן הקודקודים הם אנשים והקישורים הם היחסים נוספות ניתן למצוא

 הכימיים בין חלבונים וגנים יחסי הגומליןורשתות ביולוגיות המתארות את , החברתיים ביניהם

 .בתא

לאחרונה נמצא כי רוב הרשתות בעולם אינן מתוארות היטב על ידי המודל המקובל של  

, 60 –בשנות ה ) Erdös and Rényi( ידי ארדש ורניי  עלשהוצע, מודל זה. גראפים אקראיים

בגרף ) צאות ממנושל קודקוד היא מספר הקשתות היו" דרגה("מניח כי התפלגות הדרגות 

התברר כי התפלגות הדרגות ברוב , אולם). Poisson(ות פואסונית אקראי הינה התפלג

נתון  kבעלי דרגה יחסי המספר הקודקודים : כלומר, ההרשתות האמיתיות הינה לפי חוק חזק

) על ידי הביטוי ) ~P k k λ− , 2כאשר 3λ< " רשתות חסרות סקאלה"לרשתות אלו ניתן השם . >

)scale-free networks (קיימים ברשת קודקודים עם דרגות : מכיוון שהן חסרות דרגה אפיינית

המרחק הממוצע בין , למשל,  נמצא כי לרשתות אלו תכונות ייחודיות.הות ומאוד נמוכותמאוד גבו

כי כמו כן נמצא . זוג קודקודים ברשת קטן בהרבה מהמרחק הממוצע במודל של ארדש ורניי

 . אקראית של קודקודים או קשתות להריסהיחסיתשתות אלו עמידות ר

מתברר כי ברוב הרשתות בעולם יש , אף על פי שהתכונות המבניות של רשתות נחקרו  

 "רשתות ממושקלות"נקראות עם משקלים על הקשתות רשתות  .לכל קשת " משקל"או " מחיר"

נתבים שני לכל קישור בין , למשל, באינטרנט .ותכונותיהן טרם נחקרו, "רשתות לא מסודרות"או 

 כאשר .נתבים הוא מוגבלהולכן קצב האינפורמציה שניתן לשדר בין כל שני , יש רוחב פס מוגדר

אנו מעוניינים לנתב אותה לאורך , אנו שולחים אינפורמציה בין שני מחשבים מרוחקים ברשת



ב 

בעבודה זו ". המסלול האופטימלי"מסלול זה נקרא . המסלול בעל המחיר הכולל הנמוך ביותר

טימלי  מתנהג המסלול האופכיצד?  המבנה של המסלול האופטימליומה: נחקרו השאלות הבאות

ומהי התפלגות האורכים של המסלולים האופטימליים ?  סוגים שונים של אי סדרעםברשתות 

 זו הוא שניתן לפתור בעיות אופטימיזציה  הרעיון המרכזי בעבודת מחקר?השונים ברשת

 .)פרקולציה (פיסיקה סטטיסטית ותורת החילחולות ממושקלות על ידי שימוש בכלים של ברשת

של תוצאות  סקירה מציגיםבפרקים הראשון והשני אנו : כדלהלןהעבודה מאורגנת  

הפרק השני כולל גם פורמאליזם חדש . קודמות ושל שיטות מקובלות בחקר רשתות מורכבות

 . כפי שהיא מיושמת בבעיות חילחול ברשתות, ופשוט יותר של שיטת הפונקציות היוצרות

של " טומוגרפיה"ה: חסרות סקאלה בפרק השלישי אנו מציגים איפיון מבני חדש לרשתות 

ובוחנים את תכונות , לצורך איפיון זה אנו בוחרים את הקודקוד המקושר ביותר ברשת. הרשת

בכל שכבה כזו אנו סופרים את מספר הקודקודים  .סביבו) הקליפות הכימיות, כלומר" (שכבות"ה

נקצית התפלגות אנו מראים שלפו. ובודקים את התפלגות הדרגות של כל הקודקודים בשכבה

בתחום ראשון יש : המרחקים של קודקודי הרשת מהקודקוד המקושר ביותר יש שני תחומים

בנוסף לכך אנו . ואילו בתחום השני יש דעיכה אקספוננציאלית, עליה חזקה במספר הקודקודים

. מתפלגות לפי חוק חזקה עם חיתוך אקספוננציאליבכל שכבה הקודקודים דרגות כי מראים 

 .הפרק אנו משווים את תוצאות המודל עם ממצאים מרשת האינטרנטבסיום 

ידוע מתורת החילחול .  אנו חוקרים את רוחב סף החילחול ברשתותהרביעיבפרק  

בתוך . כי אם תחום בעל רוחב סופי התלוי בגודל המערכת, סריגים כי סף החילחול אינו סף חדב

אנו מראים כי  .מעבר הפאזהנקודת ת את תחום זה מתקיימות כל התכונות הקריטיות המאפיינו

~ברשתות מורכבות רוחב סף החילחול מקיים את הקשר  /c cp p lΔ , כאשר~ optl Nν הוא 

-ארדש עבור רשתות.  הוא מספר הקודקודים ברשתN –ו , האורך הממוצע של צביר החילחול

/1רניי מתקיים  3optν רשתות בעלות התפלגות , כלומר(ואילו עבור רשתות חסרות סקאלה , =

)דרגות מהצורה  ) ~P k k λ− 3 עבור 4λ< )מתקיים ) > ) ( )3 / 1optν λ λ= −  על מנת להראות .−



ג 

)) survivability" (שרידות" נומרית שהמראיםטית ויאת אנו מוכיחים אנלז ),S p l,כלומר , 

מקיימת את הקשר , pעבור הסתברות הולכה  קליפות כימיות lהסיכוי שצביר החילחול ישרוד 

): רבת הנקודה הקריטיתקהבא ב ) ( ) ( )1, , expc c
c

S p l S p l p p l
p

⎡ ⎤
= ⋅ −⎢ ⎥

⎣ ⎦
עבור ,  לכן.

cהסתברויות הולכה בתחום 
c

pp p
l

−  התנהגות המערכת היא בלתי ניתנת להבחנה >

 .מהתנהגות המערכת בקריטיות

בתחילת . אנו מיישמים את תורת החילחול לבעיות אופטימיזציה ברשתותבפרק החמישי  

גם ברשתות הקלאסיות של ארדש ורניי , הפרק אנו מראים כי כאשר לכל קשת יש משקל אקראי

 כי על ידי איחוד של קודקודים המקושרים על ידי אנו מראים. מתקיימות תכונות חסרות סקאלה

מתקבלת , )supernodes" (על-קודקודי"קשתות בעלות משקלים מתחת לסף החילחול לתוך 

) עם התפלגות דרגות רשת חסרת סקאלה ) ~P k k λ− 2.5 - וλ אנו מראים כי ,  בנוסף לכך.=

/ -מורכב מ )  קודקודיםNעם (רניי -ברשתות ארדשהעץ הפורש המינימלי  2Nצבירי חלחול  

2.5λהמקושרים ביניהם על ידי אוסף קשתות היוצרות עץ חסר סקאלה עם  =. 

בהמשך הפרק אנו משתמשים בתוצאות אלו על מנת לחקור את התנהגות המסלול  

) אנו נותנים משקל i לכל קשת. שוקלותהאופטימלי ברשתות ממ )expi iarτ הוא  irכאשר , =

 .של אי הסדר") חוזק"או ה (השונותדת יקובע את מ aוהפרמטר , 1 – ל 0מספר אקראי בין 

log -ול ,  באי סדר חזקoptNν -שקול ל  מסלול האופטימליברשתות אלו נמצא כי אורך ה N באי 

עבור ערכי ביניים של ,  המסלול האופטימלי שלהאורך הממוצע אנו מראים כי .סדר חלש

):  מקיים את יחס הכיול הבא,aהפרמטר  ) 1

c

ll a l F
p a

∞
∞

⎛ ⎞
= ⋅ ⎜ ⎟

⎝ ⎠
 הוא אורך המסלול ∞lכאשר , 

a(האופטימלי באי סדר חזק  של ארכי המסלולים   ההתפלגות. הוא סף החלחולcp -ו , )∞→



ד 

): האופטימליים ברשת הנה בעלת צורה פונקציונלית דומה ) 1 1, , ,
c

llP l N a G
l l p a

∞

∞ ∞

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 .

המיוחד ביחסים . רניי וגם על רשתות חסרות סקאלה-ל מודגמים על רשתות ארדש"היחסים הנ

1אלו הוא שפרמטר בודד 

c

lZ
p a

 קובע את תכונות הממוצע וההתפלגות של המסלולים ≡∞

 .האופטימליים

 אחר )ממוצעב(ים  ברשת עוקבים האופטימלייםכדי להסביר זאת אנו מראים כי מסלול 

capξעד האורך אפייני צביר החלחול  קשת דרך ועוברים " קיצור דרך"לאחר מכן הם עושים . =

1הפרמטר . מחוץ לצבירהנמצאת 

c

lZ
p a

 מכך אנו למדים .הללו  מייצג את מספר קיצורי הדרך≡∞

 חלחול הנמצאות בקרבת הנקודה כי התנהגותן של רשתות ממושקלות דומה למערכות

 .ξכך שהתנהגותן הנה פראקטלית עד אורך קורלציה , הקריטית

אופטימיזציה ברשתות מורכבות עם אי ו ,חלחול,  מבנהבעבודה זו חקרנו בעיות, לסיכום 

של ארכי ואת הממוצע וההתפלגות , את מבנה העץ הפורש המינימליבין היתר ניתחנו . סדר

 אופטימיזציה  של שימושיותעבודה זו מדגימה כיצד ניתן לפתור בעיות. המסלולים האופטימליים

 . פיסיקה סטטיסטית ותורת הפרקולציהקורן במשברשתות באמצעות שיטות 
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