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Abstract

In the last few years there has been much interest in the subject of complex
networks. It was realized that many real-world systems have a web-like structure
of many nodes interconnected by links, and may be described as networks. The
most famous example is the Internet, which is composed of many interacting
computers. Other examples are social networks that describe people and the
relations between them, and biological networks that describe the interactions
between proteins and genes a living cell. All these systems show collective
behavior that is not evident from the structure of their individual components.
Recently it was found that most real world networks do not behave
according to the classical random graph model, which was introduced by Erdés

and Rényi in the 1960's. Instead, the number of links emerging from each node —

the node "degree" k — is distributed according to a power-law P(k) ~k™ (with

2<1<3), as opposed to the Poisson degree distribution of the Erdds-Rényi
model. This new class of networks, termed “scale-free”, was found to have many
anomalous properties not found in the classical model. For example, they were
found to have a much shorter average distance, and to be highly resilient to
random breakdown of nodes or links.

However, most real world networks also have a “cost” or “weight”
associated with each link. Such networks are called “weighted” or “disordered”.
For example, in the Internet each link has a certain bandwidth, thus limiting the

rate of information transfer along this link. When routing information between two



distant computers in the network, we are interested in the rout ("path") with
minimal cost — the “optimal path”. In this dissertation we wish to answer the
following questions: What is the structure of the optimal path? How does the
optimal path behave for different types of disorder? And how are the different
optimal paths distributed? The main paradigm in this dissertation is that such
"optimization” problems on weighted random graphs may be solved using
percolation theory.

The dissertation is organized as follows: In Chapters 1 and 2 we give a
brief summary of previous results and common methods used in the field of
complex networks. Chapter 2 includes a new simplified formulation for the
method of generating functions as applied to percolation on random graphs.

In Chapter 3 we proceed to introduce a new structural characterization of
networks, which we term “Tomography”. We examine the structure of “layers” of
nodes around the maximally connected node. It is shown that the distance
distribution of all nodes from the maximally connected node of the network
consists of two regimes. The first is characterized by rapid growth in the number
of nodes, and the second decays exponentially. We also show analytically that
the nodes degree distribution at each layer is a power law with an exponential
cut-off. Empirical results from the Internet show a similar behavior to our model.

We next study the percolation transition in Erdos-Rényi and scale-free
graphs. It is known from percolation theory on lattices that the critical probability
for the percolation transition is not a sharp threshold; actually it is a region of

non-zero width Ap, for systems of finite size. In Chapter 4 we show that for



complex networks Ap, ~p./l, where |~N" is the average length of the

percolation cluster, and N is the number of nodes in the network. For Erdos-

Renyi graphs v, =1/3, while for scale-free networks with a degree distribution

P(k)~k“ and 3<i<4, v

0

n=(4-3)/(21-1). We show analytically and
numerically that the “survivability” S(p,l), which is the probability of a cluster to

survive | chemical shells at conduction probability p, behaves near criticality as

S(p,l)=S(pc,I)'exp{pi(p—pc)l}. Thus for probabilities inside the region

c

Pe

|p—pc|<|— the behavior of the system is indistinguishable from that of the

critical point.

Finally, in Chapter 5, we apply percolation theory to optimization problems
in networks. We first consider Erdos-Rényi graphs with random weights
associated with each link, and show that any disordered random graph contains
an inherent scale-free network, which we term the “supernode network”. We then
show that the minimum spanning tree in Erdés-Rényi graphs is related to this
network, and is composed of percolation clusters which are interconnected by a
set of links that create a scale-free tree.

We then use the above results to study the behavior of the optimal path in

disordered graphs. With each link i we associate a weight :exp(ari), where .

is a random number taken from a uniform distribution between 0 and 1, and the

parameter a controls the strength of the disorder. In these systems it was found

that the optimal path length I(a) scales as N™ for strong disorder and as log N



for weak disorder. We show that that the average length of the optimal path, for

intermediate values of the parameter a, obeys the following scaling form:

I(a):lw-F(iliJ, where | is the optimal path length in strong disorder

p. a

(a—> o), and p, is the percolation threshold. The optimal paths lengths

distribution obeys a similar form: P(I, N,a):llG[ll—,ilij. These relations are
» P @

0

supported by numerical simulations for Erdés-Rényi and scale-free graphs.

. 11
Hence, a single "control parameter" Z=—-= controls both the average and

distribution of the optimal paths lengths.
We explain this by showing that the optimal path follows the percolation

cluster up to a characteristic length & =ap_, after which it takes a “shortcut” link

(as in the “small-world” model) outside the cluster. The control parameter

z Eilﬂ is actually the number of shortcuts. Thus, the behavior of weighted

P @
random graphs is similar to percolation systems near the critical threshold, which

have a fractal behavior up to a certain correlation-length &.

To summarize, in this dissertation we studied structure, percolation, and
optimization problems in disordered complex networks. We analyzed the
structure of minimal spanning trees, and the average and distribution of optimal-
paths lengths. This work demonstrates how practical optimization problems in
networks can be solved using methods from statistical physics and percolation

theory.



Chapter 1: Introduction

1.1. Networks

Networks (or in mathematical terms, graphs) are mathematical entities composed
of nodes and links connecting them. Many systems in nature may be described
as “networks” [1-3], for example the Internet, which is composed of millions of
interconnected computers. Other examples include social networks, which are
used to describe people and the social connections between them (for example
terrorist networks), and biological networks, which describe the complex
interactions between genes and proteins in a living cell.

The main function of a network is to enable effective communication
between distant nodes of the network. For example, in the Internet, any two
computers that are connected to the network can (in principle) communicate with
each other. In social networks, any two people in the world can usually reach
each other through a short chain of social acquaintances. This is possible
because the average distance along the network is extremely small: usually the
average number of links connecting any two nodes on the network scales
logarithmically with the network size. This is also known as the "small world"

property.

1.1.1. Erdos-Réyni graphs

Graph theory is rooted in the 18" century. Leonhard Euler conducted one of the

first studies in graph theory in 1736, thereby solving the problem known as “the

1



seven bridges of Konigsberg”. The mathematicians Pal Erdds and Alfred Réyni
proposed a special class of graphs called “random graphs” in the 1960's. In the
Erdos-Réyni (ER) model [4, 5], we start with N nodes, and then connect any two
nodes with some small probability p. The number of links k emerging from every

node, also called the node “degree”, is a random variable distributed according to

a Poisson distribution with the average degree (k) ~ pN .

Erdos and Réyni found that as the probability p is increased from O to 1,
the graph topology changes abruptly from a loose collection of small connected
clusters (“components”) to a system dominated by a single cluster, also called

the "Giant Component”. The point of transition, also termed “The Critical Point”,

occurs when the average degree (k) ~ pN =1. Below the critical point the graph

is composed of small clusters with a negligible number of loops (trees), and the

size of the largest cluster is proportional to logN . As the probability p increases,

trees of increasing order (size) appear. At the critical point an abrupt change
occurs: A "giant component" appears, its size is proportional to N*3, trees of all
possible order are present, and loops of all orders appear. Above the critical
point the giant component dominates the system: Its size is proportional to N,
and loops are present inside it'. Another property is that the average distance

between any two nodes inside the giant component is proportional to logN [4, 6].

Hence we get the "small world" property above the critical point.

' However, the other clusters (also termed the "finite components") still have a negligible number
of loops.



1.1.2. Scale-free networks

As mentioned above the degree distribution in ER graphs is Poissonian, that is:

zk

P(k)y=e™ W where P(k) is the fraction of nodes having degree k, and z = (k)

is the average degree. However, most networks in the real world show a degree
distribution that is clearly not Poissonian, rather it has a form of a power law:

P(k)~k™ where the exponent A is usually in the range 2<1<3. These

networks are termed “scale-free” (SF). The power law degree distribution implies
that the degrees of the nodes are not homogeneous as in ER graphs; rather
there are a few nodes with a very large degree (“hubs”) and many nodes with
very small degree. Scale-free degree distributions were observed in
communication networks such as the Internet [5, 7, 8], in biological networks [9,
10], in social networks [11], and many other systems.

Barabasi proposed a simple model for generating SF networks [5]. In the
Barabasi-Albert (BA) model we start with an initial number of nodes. We then add
new nodes and connect them to existing nodes, where the probability that a new
node will connect to an already existing node is proportional to the existing
node’s degree (“Preferential Attachment”). A different method to construct SF
networks is the “Molloy-Reed” construction?: initially the degree of each node is
chosen according to a scale-free distribution, where each node is given a number
of open links or “stubs” according to its degree. Then, stubs from all nodes of the

network are interconnected randomly to each other.

2 This model was actually proposed by Bollobas.



The exact form of the degree distribution is usually taken to be [12]:
P(k)=ck™, k=m,..,K (1.1)
where m and K are the minimal and maximal degrees, and c~(1-1)m*" is a

normalization constant®. For real networks with finite size, the highest degree K

V4 thus creating a "natural" cutoff for the

depends on network size N: K ~mN
highest possible degree*.
Because of their in-homogeneity, scale-free networks have anomalous

properties: networks with 2<A<3 have an average distance which is

proportional to loglog N (which is much shorter than the average distance for ER
graphs, which scales as logN ) [13], They are also highly resilient to random

failure of nodes or links (because their percolation threshold vanishes for large
systems - see below) [12], and they have different critical exponents than ER

graphs (see below) [14].

® The normalization constant is found using the relation [12]:

) o - C s
lzgqp(k)zck;[mk idk:_/Hl(O—m )=c:

and thus: C = (/1 —l)m’l_l )

* An estimate of this cutoff can be found by the assumption that the tail of the distribution above K
is of the order of one site [12]:

i—iP(k)wT k=X oy
N & S S -A+1K —A+1

which gives: K ~ mN "

(0_ K A+ ) = mtIK A ,



1.2. Percolation

1.2.1. Percolation theory

Various phenomena in nature may be described by percolation theory, for
example: forest fires, epidemic spreading and conduction in disordered systems
[15]. A typical percolation system consists of a d-dimensional grid of length L, in

which the nodes or links are removed with some probability 1-p, or are
considered “conducting" with probability p [15, 16]. Below some critical
probability p, the system becomes disconnected into small clusters, i.e., it

becomes impossible to cross from one side of the grid to the other by following
the conducting links. However, above p. a spanning cluster emerges, similar to
the giant component in random graphs. Percolation may be considered as a
geometrical phase transition exhibiting universality, critical exponents, and an
upper critical dimension at d.=6 — see Figures 1-1 and 1-2.

Some of the system parameters which were found to have universal
behavior are the size of the largest cluster®: P. ~ (p—p, )ﬂ, the correlation length:
E~p-p. ", the mean size of finite clusters: S~ p—p. [, and the cluster sizes
distribution: n (p)~s— - f (( p— pc)s"). The exponents f,y,v etc. are called

"critical exponents". Table 1-1 gives the values of some of the critical exponents
for percolation systems. The "universality" of the critical exponents means that

they do not depend on the local structure of the grid (i.e. square, triangle etc.),

° P_ is defined as the probability that a randomly chosen node resides in the giant component.



rather only on the dimension d of the system. The critical threshold p., though, is
not a universal quantity. Notice also that for dimensions above the upper critical
dimension d.=6 the critical exponents do not change.

Stanley [15] found that at the percolation threshold p. the spanning cluster

is a fractal, i.e., the mass of the spanning cluster scales as: M ~ L , Where L is
the geometrical length of the system and dr is the fractal dimension which is
generally not an integer in the case of fractals. The fractal dimension d; is also a
universal quantity (see Table 1-1). Above and below the percolation threshold the
fractal behavior is still present only for length scales below the correlation length
&, thatis:
M {Ld‘ L<é&
L L>¢&

At criticality, £ — .

When measuring the distance between two points on a percolation cluster
we can distinguish between the “geometrical distance” L (or r) and the “chemical
distance” |. The geometrical distance is the regular Euclidian distance between
two points in a d-dimensional lattice, whereas the chemical distance is the
distance along the links of the percolation cluster®. Thus we also define a

"chemical dimension" d,, which gives the relation between the chemical size of

. . d e
the percolation cluster and its mass: M ~r“ ~1% . In random graphs, it is more

® For lattices with dimension d > dC = 6 a path along the percolation cluster is uncorrelated, and

like a random walk obeys I’ ~ | . Therefore, above the upper critical dimension, v, =2v, (see
[15, 16] for details)



convenient to refer to the chemical distance because the geometrical distance

has no meaning.

Size of Giant 1
Component

é:a S Correlation
Length

Pc P

Figure 1-1: A sketch of the dependence of the size of the giant component, the
mean finite cluster size, and the correlation length, on the conduction probability
p . At the critical threshold p, the giant component appears, clusters of all order
(size) are present, and the correlation length diverges (i.e., it is proportional to
the system size L).
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Figure 1-2: A demonstration of percolation on a two-dimensional grid. Below the
percolation threshold the system is composed of small clusters. At p=p, a

spanning cluster with a fractal structure appears, and clusters of all sizes are
present. Well above p, the finite clusters merge into the giant component. In this

particular case (square grid, d=2, bond percolation) p, =1/2.



ER SF
Exponent d= d=3 | d= d=5 d=6-¢ | Network | Network
(d=6) (3<4i<4)
1
B 5/36 | 0417 | 064 | 0.84 | 1-¢/7 1 703
4 43/18 | 1795 | 144 | 118 | 1+¢/7 1 1
v (geometric) | 4/3 | 0.875 | 0.68 | 0.57 %+§—j 112 ]
V, (chemical) 1 1
A-3
o 36/91 | 0.45 | 048 | 049 | —+0(&) 1/2 |4 2'
T 187/91 | 2.18 | 2.31 | 2.41 5 3 5/2 243
' ' ' 2 14 A-2
)
di 1.678 | 1.84 2 A=2
A-3
A-2
dr 01/48 | 2524 | 3.06 | 354 | 4-2%¢ 4 272
21 A-3
dc 6 6 6 6 6 6 2ﬂ
A-3

Table 1-1: Critical exponents for percolation systems of different dimensions

1.2.2. Percolation in networks

Percolation theory may be applied to random graphs. Randomly removing a

fraction 1— p of the links of an ER graph corresponds to changing the average

degree <k> to <kdi,uted>= p<k> in the diluted graph. According to the results of
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Erdds, a giant component exists as long as <kd“uted > = p<k> >1. Thus the critical

probability for the emergence of a giant componentis: p, = 1/<k>.

In finite dimensional grids, the number of neighbors each node may have
increases with the dimension d. In this sense, networks correspond to systems of
infinite dimension, because the number of neighbors each node may have
increases with the size of the system. To summarize, the process of randomly
diluting links (or nodes) from a network may be described by percolation theory,
where the system dimension is taken to be d =« . Note that all systems above

the upper critical dimension d, =6 behave the same near the critical point.

It was found by Albert et al. [17] that the Internet, which can be modeled
as a SF network with A ~2.5, is relatively resilient random removal of nodes.
Cohen et al. studied the corresponding problem of percolation on SF networks

[12, 14]. It was found that the general expression for the critical threshold is:

K
S o 2

Where x, -1 is the branching factor, i.e., the average number of links emerging

from a node reached by following a random link, and &, =<k2>/<k>_ For SF

networks whose degree distribution is described by equation (1.1),

o I\ K -t m, if 1>3

- -m P :
KO:(3_/JKH_mH~ m* K>, IT 2<A<3 (1.3)
K, if 1<A<2

10



where K =mN"%"_|n the case of 2< <3, the second moment of the degree

distribution diverges, and thus x, diverges with system size. The result of this is

3-4

that p, ~ N 1 -0 for large N.

It was also found [14], using the method of generating functions (see
Chapter 2.2), that the critical exponents in SF networks with 3<A<4 are
different than for ER graphs, thus creating a different universality class’, see
Table 1-1.

In Chapter 4 we will show that for networks of finite size N the percolation
threshold is not a sharp point; rather it has a width Ap,, such that in the range
p e[pC -Ap,, P, +Apc] all properties of criticality (e.g. a negligible number of

loops) are present.

1.3. Optimization in networks

1.3.1. Weighted networks

The function of most real world networks is to connect distant nodes, either by
transfer of information (e.g. the Internet), or through transportation of people and
goods (such as networks of roads and airlines). In many cases there is a “cost"
or a “weight" associated with each link, and the larger the weight on a link, the

harder it is to traverse this link. In this case, the network is called “disordered" or

" For A >4 the critical exponents are equal to those of ER graphs. For the anomalous regime
2 < A <3 the critical exponents are not fully known yet.

11



“‘weighted" [18]. For example, in the Internet each link between two routers has a
bandwidth or delay time, in a transportation network some roads may have only
one lane while others may be highways allowing for large volumes of traffic.
When modeling random weighted networks, it is commonly assumed that each

link is associated with a weight w; = exp(ar,), where r, is a random number taken

from a uniform distribution between 0 and 1, and the parameter a controls the
strength of the disorder. Networks with large values of a can be interpreted as
networks with large fluctuations in link weights: both very small and very large

weights are present.

1.3.2. Optimal path and the Shortest Path Tree (SPT)

We define the optimal path to be the path between two nodes on the network
such that the sum of weights along this path is minimal. This path may be much
longer than the shortest-hopcount-path, which is the shortest path without
regarding the weights on the links. One of the most popular algorithms for finding
the optimal path is Dijkstra’s Algorithm [19], which builds a tree of shortest paths
- the Shortest Paths Tree (SPT) - starting from some chosen node to all nodes of

the network.

1.3.3. The Minimum Spanning Tree (MST)

Another type of optimal tree that can be built on the network is the Minimum
Spanning Tree (MST). This is a tree that spans the whole graph, and whose total
weight is minimal. There are two algorithms to build this tree: Prim’s algorithm

and Kruskal’s algorithm [19]. It was shown [20] that any path between two nodes

12



along the MST is the path with the minimal barrier (i.e., minimal maximal-weight)
possible between those two nodes.

In Chapter 5 we will describe the structure of the MST using percolation
theory. We will show that the MST is composed of percolation clusters
interconnected by a scale-free tree. The optimal paths in networks with strong
disorder (a— «) follow the MST, and therefore their behavior can also be
described by percolation theory. Moreover, in networks with intermediate
disorder (i.e. intermediate values of the parameter a) the optimal path follows the

MST up to some characteristic length &=ap.. In this sense there is a similarity

between percolation systems near the critical point and disordered systems with

large fluctuations on the weights of the links.

1.4. Outlook and applications

In the last years, extensive research has been done on networks. Models for
generating networks were developed [5] and many important structural properties
were found (e.g. [5, 12, 13, 17]). However, most real world networks have a
weight associated with each link, and this was not taken into account.

In this dissertation we approach this problem by studying the relation
between percolation and optimization. We first study structural properties of
networks and their behavior near the percolation critical point. Then, we apply
percolation theory to optimization problems on weighted networks, and explain
the structure of minimum spanning trees and the behavior of the optimal paths on

the network. The ideas presented here demonstrate how optimization problems

13



in networks can be solved using statistical physics and percolation theory. From
a practical point of view, our results may be helpful for devising new searching
and routing algorithms on the Internet, and for generating efficient multicast trees

[21, 22].

14



Chapter 2: Methods and Previous Results

In this Chapter we present main results and common methods from the field of

complex networks, which will be used throughout this dissertation.

2.1. Chemical length of percolation cluster in

networks:

Let us consider a grid of dimension d=6, in which a fraction 1-p, of the links

have been removed. According to percolation theory the mass of the percolation
cluster scales as:

M~ LY~
Where L is the geometric size of the system® and | is the chemical length of the
percolation cluster. | is actually proportional to the average distance between
any two points on the percolation cluster when we are restricted to go only along
links lying inside the percolation cluster. The total number of nodes in the system
is:

N~ L

Thus:

[ ~ L(df/dl) ~ [N(l/d)](df/dl) _ N(df/d,d)

® The percolation cluster spans the system. Therefore L is also the geometric size of the
percolation cluster.
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Or: | ~N"™  where: Voot s::—;.

Because of universality, this relation holds also for random graphs (where
only the chemical distance | has a meaning). Random graphs may be treated as
infinite dimensional systems (d >d, =6)°.

For ER graphs:

d=6,d, =4,and d, =2 (see Table 1-1). Thus:

Lo 41
*Tdd 26 3
For SF graphs: (with'® 3<1<4)
d=2271 4 22272 and d =222 (see Table 1-1). Thus
A-3 A-3 A-3
A-2
v = df _ 21_3 _1—3
odd A-2 ,A-1 a-1
A-3 " 21-3

The mean distance between two points in a random graph scales as logN ,
where N is the number of nodes in the graph [6]. However, when the graph is
diluted such that a fraction 1-p, of its links are removed, the average distance

increases dramatically to | ~N'? (for ER graphs) or | ~ N“?*™ (for SF graphs

with 3< 4 <4), which is much longer than log N [18]. This conforms with results

® For random graphs d =0 > dC . This means that at the percolation threshold, the diluted graph
can be embedded into a space with dimension d_. This embedding dimension is d, =6 for
ER graphs and d, =2(4—1)/(4—3) for SF graphs (with 3 <A <4) - see Table 1-1.

1% Note that for 4 >4 , SF graphs behave like ER graphs (near the critical point).
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for finite dimensional systems [23], in which typical paths along the percolation
cluster were found to follow long and twisted trajectories — much longer than the

Euclidian distance - because of the fractal nature of the percolation cluster.

2.2. Generating functions

A general method for studying percolation on random graphs with arbitrary
degree distributions was first introduced by Molloy and Reed [24, 25], who
suggested viewing the giant component as being “explored”, and used differential
equations for the number of unexplored links and nodes to find the size of the
giant component'! and the degree distribution of the residual graph (i.e., the finite
clusters) 2.

An alternative method is to use generating functions [26]. This powerful
tool was introduced by Newman, Watts, and Strogatz [27], who used this method
to calculate the size of the giant component and the cluster sizes distribution in
SF networks. Later, Cohen et al. used this method to find the percolation critical

exponents [14] (see Table 1-1).

" We used a similar procedure in Chapter 3.

12 \We note that the problem of percolation on networks can be solved analytically due to the fact
that we are dealing with a system whose dimension d is above the upper critical dimension
(dc=6), or equivalently, due to the fact that the number of loops (at criticality) is negligible. This
is also termed in physics as the "mean-field" regime.
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2.2.1. Definition

Given a network with a degree distribution P(k), which is the probability that a

randomly chosen node will have k neighbors, we can define the probability

generating function:

o0

Gy (x)= 2 P(k)x" .

k=0

The coefficient of x* is the probability that a randomly chosen node will have k

o0

neighbors. Note that G,(1)=) P(k)=1 because the degree distribution is
k=0

normalized. The average degree is given by (k)=>"kP(k)=G, (1).

k=1
Now, choose a random link and consider a node at one of its ends. The

probability P (k) that a node thus reached by following a random link will have a

degree k is™: Pl(k) :LkP(k). For our purposes it is useful to consider only the

(k)
number of outgoing links — not including the incoming link. The corresponding

generating function is:

0

G, (%)= 2R (k)x"! :@gkp(k)xkl

k=1

Note that G, (x) = GOI((X)) , and that G, (x) is normalized such that G, (1)=1.
G, (1

3 This is equal to the fraction of edges in the network that connect to a node of degree k, which is
proportional to K - NP(k) (there are NP(k) nodes of degree k, and each one has k such
links connected to it).
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2.2.1.1. Example: Erdos-Réyni graphs

Take for example an ER graph. In the Erdos-Réyni (ER) model, we start with N
nodes, and then connect any two nodes with some small probability p. The

degree distribution is:

where <k> ~ pN and N—oo. Thus, the number of links, k, emerging from every

node is a random variable distributed according to a Poisson distribution with the

average degree <k> ~ pN . The generating functions are:

k
G, (x)= i P(k)x" = e‘<">i ({k)x) =g Wk — gkt

k=0 k=0 k'

and:

Notice that in ER graphs G,(x)=G,(x). However, this is not true in general (for

example, in SF networks).

2.2.2. Percolation

Given a random graph with a degree distribution P(k), we can find the
probability generating functions Go(x) and Gl(x). Assume that a fraction 1-p of
the links is randomly removed. How do the functions P(k), G,(x), and G, (x)
change ?
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After randomly removing a fraction 1- p of the links (bond percolation),

the probability for a randomly chosen node to have k remaining links in the

diluted graph is given by [12]:

The corresponding probability generating functions G,(x)=> P(k)-x* and

k=0

And':

5, (X _G/(X) _pG(1-p+px) G/ (1-p+px) — P+ px
SUTE T eel) U

kP(k)-(1-p+ px)k_1 is equal to

Ms

" It can be shown that: é1( X)=G,(1-p+px)=

<k>

=~
I
—_

G z , where < > and (k) are the average and distribution of
<kdlluted> k=1
the degrees in the original graph, and < d”uted> p<k> nd are the average and

distribution of the degrees in the diluted graph.
20



For example, in ER graphs,(.;-;1 (X) = Go (X) _ e<k>([1—p+ px]-1) _ e<k>p(x—1)-

This means that the dilution of links in an ER graph changes the average degree

from <k> to <kdiluted > = <k> p .
In the following sections, when dealing with percolation on networks, we

will refer to the generating functions P(k), G,(x), and G,(x) of the diluted

graph unless otherwise specified.

2.2.2.1. Calculating cluster sizes

Consider a random graph below the percolation threshold. In this regime all
clusters ("components") are trees, that is, the number of loops is negligible® [4,
5]. Let H1(x) be the generating function for the size of a component reached by
choosing a random link and following it to one of its ends. H¢(x) actually
describes the distribution sizes of a randomly chosen "branch".

H1(x) obeys the following self-consistent relation [27]:
H, (x)=xG, (H,(x)) (2.1)
This equation means that the probability to reach a branch of i nodes (by
following a link) is equal to the probability of following a link, reaching a single

node, and then branching out to reach a total of i—1 nodes through zero, one,

two, etc. branches (see Fig. 2-1).

" Our analysis regards only the finite clusters which have a tree-like structure. Below the
percolation threshold all clusters are finite, while above the percolation threshold an infinite
cluster (the "giant component") appears. The giant component has loops and has to be
explicitly excluded from the following analysis.
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Figure 2-1: A graphical sketch of the recursion relation (2.1). The probability to
reach a branch consisting of i nodes is equal to the sum of probabilities to reach
a single node, to reach a node connected to a single branch of size i—1, to reach
a node connected to two branches having a total size of i1, etc.

In order to demonstrate this, let us write: H, ( Zh x' and G, (x)= Z P (k

i=0 =1
Substituting into Eq. (2.1) we get:

(1)+
+P(2)-(hy +hx+hx* +..) +
(

hy +hx+h,x* +...=x[ P,

+P 3)-(h0 +hx+h,x* +...)2 +
(4)-(hy +hx+hyx? +...)3 +

]

P

+ 1
ny
We will take for our demonstration the coefficients of x”, x', x*, and x’ (See
Figure 2-2).
The coefficients of x°:

h, =0
The probability to follow an existing link and to reach no node is zero.

The coefficients of x':
22



h = P1(1)+P1(2)'h0+P1(3)'h02+Pl(4)'h03+“':

The probability to reach a branch consisting of a single node is equal to the
probability to follow a link into a node of degree 1 (There is also the possibility to
reach a node with higher degree, in which every outgoing link leads to a zero-
sized branch, but the probability for this is zero, as we have previously shown).

The coefficients of x*:

h, =R (2)-h + P (3)-201, + R (4)-30°h +. =

A two-node branch is reached if we follow a link to a node of degree 2, and follow
its single outgoing link into a branch of size 1 — see Fig. 2-2(b).

The coefficients of x*:

A three node branch can be built in two ways, as shown in Fig. 2-2(c):

a) By following a link to a node of degree 2 in which the single outgoing link
reaches a branch of size 2.

b) By following a link into a node of degree 3, in which every one of the two

outgoing links reaches a branch consisting of a single node.
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(@) (b) (c)

Figure 2-2: The possible ways for building a branch of (a) one, (b) two, and (c)
three nodes, as described by Eq. (2.1).

If we start from a random node, we have one branch at each end of every

link emerging from that node, and all these branches constitute the cluster

("component") in which our node resides in. We set Ho(x) to be the generating

function describing the size of a component in which a randomly chosen node

resides. Similar to Eq. (2.1) we can write [27]:
H, (X) = XG, (H, (x)) (2.2)
Given the generating functions Go(x), and Gl(x), In order to find the cluster

sizes (which are given by Ho(x)) we have to solve Eq. (2.1) for H¢(x) and
substitute into Eq. (2.2).

The above equations describe the finite components, which have a tree-

like structure. Below the percolation threshold, H,(1)=1 (and also H,(1)=1),

because this is the probability for a randomly chosen node to belong to a finite

cluster (or branch) of any size. However, above the percolation threshold Ho(x)

is not normalized, because it does not include the giant component. The size of

the giant component is given by:
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where u=H, (1) obeys the self consistent relation:
u=G,(u)
Or in terms of the probability distribution function (of the diluted graph):

00 - 1 0 ~
P(k)u* where: u=——YkP(k)u"".
2Pk LA

where p is the dilution probability '°.

P,(p)=1-

2.2.2.2. The critical threshold for percolation

Assume our graph is diluted such that it is below the percolation threshold (i.e.

p<p,). The cluster sizes distribution is described by the two equations:

H, (x)=xG, (H,(x)) and H,(x)=xG,(H,(x)).

8

Assume that H,(x)=> hx. The average cluster size (to which a
i=0

0

randomly chosen node belongs) is: (s)= > ih =H, (1). Using Eq. (2.2) we get:

(s)=H, (1)=1+G, (1)-H/ (1)

From Eq. (2.1) we have: H/'(1)=1+G/(1)H, (1)= Hl'(1)=+. Thus:

'® Note that the average degree in the diluted graph is (Kyeq)= P(K). where (k) is the
average degree of the original graph.
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At the percolation threshold components of all orders appear, i.e. the average

cluster size diverges. It can be seen that the average cluster size diverges when

G, (1)=1. Thus the percolation threshold is given by:

This conform well with previous results [12]. For example, for ER graphs:
G (x)=e""" and G/ (x)=(k)e""" " resulting in the well known result:

1

1
“Tom W
2.3. Summary and Conclusions

In this Chapter we gave a brief review of previous results, and have introduced
the main methods that will be used in this dissertation. The first result, derived
from percolation theory, shows that random graphs, when diluted to the critical
threshold, lose their relatively small average distance (also known as the "small

world" property), i.e., the average path length between two points increases
exponentially from logN to N™ .

In the second part of this Chapter we introduced a simplified formulation of

the method of generating functions, and showed how this method may be used
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to derive the critical probability for percolation, and the size of the giant
component for random graphs with an arbitrary degree distribution. In the next

Chapters we will apply these methods to Erdds-Réyni and scale-free networks.

27



Chapter 3: Tomography of scale-free

networks

3.1. Introduction

In this Chapter we study the structure of scale-free networks with a degree
distribution of the form P(k)~k™. We examine the “Tomography” [28, 29] of

these networks, i.e. the structure of layers around a single network node. It is
shown that the distance distribution of all nodes from the maximally connected
node of a random scale-free network consists of two regimes. The first is
characterized by a rapid growth in the number of nodes, and the second decays
exponentially. We also show analytically that the nodes degree distribution at
each layer is a power law with an exponential cut-off. Empirical results from the
Internet show a similar behavior to our model.

The Chapter is organized as follows: first, we describe the process of
generating the network, and define our terminology. Then, we analyze the
degree distribution at each layer surrounding the maximally connected node. The

results presented here are based on [28, 29].

3.2. Model description

We base our construction on the Molloy-Reed model [24, 25], also described in

the introduction. The construction process tries to gradually expose the network,
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similar to the method introduced in [13], thus creating a hierarchy in the Molloy-
Reed model, and enabling us to define layers in the graph.
We start by setting the number of nodes in the network, N. We then

choose the nodes degrees according to the scale-free distribution function

P(k)=cK™, where ¢~ (1-1)m*" is the normalizing constant and the degree k is

in the range [m,K], for some chosen minimal degree m and the natural cutoff

K =mN"%" of the distribution [12]. At the first stage each node in the network
has a given number of outgoing links, which we term "open connections" (or
"stubs"), according to its chosen degree. Let us define V as the set of N chosen
nodes, C as the set of unconnected outgoing links from the nodes in V, and E as
the set of edges in the graph. Using these definitions, the set of links in E is
empty at this point, while the set of outgoing open links in C contains all
unconnected outgoing links in the graph. In the Molloy-Reed construction

described in the introduction, the links in C are randomly matched, such that at

the end of the process, C is empty, and E contains all the matched links <u,v>

that connect pairs of nodes u,v eV in the network.

Instead, here we proceed as follows: we start from the maximal degree
node, which has a degree K, and connect it randomly to K available open
connections, thus removing these open connections from C (see Fig. 3-1(a)).
The nodes that were now connected to the maximal degree node are termed as
the first "layer". We have actually exposed the first layer (or chemical shell) of
nodes, indexed as |=1. We now continue to fill out the second layer I=2 in the
same way: We connect all open connections emerging from nodes in layer 1 to
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randomly chosen open connections from C. These open connections may be
chosen from nodes of layer 1 (thus creating a loop) or from other links in C. We
continue until all open connections emerging from layer 1 have been connected,
thus filling layer I=2 (see Fig. 3-1(b)). Generally, to form layer [+1 from an
arbitrary layer |, we randomly connect all open connections emerging from | to
either other open connections emerging from | or chosen from the other links in C
(see Fig. 3-1(c)). Note, that when we have formed layer I+1, layer | has no more
open connections. The process continues until the set of open connections, C, is

empty.

3.3. Theory

We proceed now to evaluate the probability for nodes with degree k to reside

outside the first | layers, denoted by R(k). The number of open connections

outside layer |, is given by:

The probability that a detached node with degree k will be connected to an open

connection emerging from layer | is:

, Where y, is the number of open
2+

connections emerging from layer | (see Fig. 3-1(b)). Therefore, the conditional
probability for a node with degree k to be also outside layer 1+1, given that it is

outside layer |, is the probability that it does not connect to any of the y, open

connection emerging from layer [, that is:
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(a) (b)

I+1

Figure 3-1: lllustration of the exposure process. The large circles denote
exposed layers of the giant component, while the small circles denote individual
sites. The sites outside the large circles have not been reached yet. (a) We begin
with the highest degree node and fill out layer 1. (b) In the exposure of layer |+1
any open connection emerging from layer | may connect to any open node (T,

connections) or loop back into layer | (y, connections). (c) The number of
connections emerging from layer 1+1 is the difference between T, and T,,,, after
reducing S,,,, which is the number of incoming connections from layer I.
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(3.1)

k | k
P(kI+1[1)=]1- ~exp| ———
T 1+T,/

for large enough values of y;.

Thus, the probability that a node of degree k will be outside layer [+1 is:

R (K)=R (K)P(kI+1[1)=P (k)exp(_L]

1+, / 7

Thus we derive the exponential cutoff:

P (k)= P(k)exp[——] (3.2)
where:

BRI S (3.3)

gives the evolution of the cutoff!” with .

' The exponential cutoff may be derived also using the following “mean field” approximation:
Each node is treated independently, where the interaction between nodes is inserted through
the expected number of incoming connections. At each node, the process is treated as

equivalent to randomly distributing 7, independent points on a line of length y, +TI and
counting the resultant number of points inside a small interval of length k. Thus, the number of
incoming connections K, from layer | to a node with k open connections is distributed
according to a Poisson distribution with an expected value of:

k
<kin> —m% ,

and:

The probability for a node with k open connections not to be connected to layer |, i.e. to be
outside layer I+1 also, is:
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Now let us find the behavior of y, and S;, where S;+1 is the number of links

incoming to the 1+1 layer (and approximately'® equals N;.1, the number of nodes

in the 1+1 layer). The number of incoming connections to layer [+1 (S,,,) equals
the number of connections emerging from layer | (), minus the number of

connections looping back into layer |. The probability for a link to loop back into

layer | is:
X
P(loop|l)=
( ) ViRl
and therefore:
S = 2 (1— 4 J (3.4)
n+T

The number of connections emerging from all the nodes of layer I+1is T, -T,_,,.

This is also the sum of the number of incoming connections from layer | into layer

I+1, which is equal to S,,,, and the number of outgoing connections y,.,.

I+17
Therefore:

Zia =T =T

[F

S (3.5)

1+1

_ k
P(k1+1/1)=P. (k =0]k)=e ¥ = .
( L | ) I+l( in | ) € exp[ 1+T|/Z|]

Thus the total probability to find a node of degree k outside layer [+1 is:

P..(K)=R (k)P(k,1+1]1)=PR (k)exp[‘ﬁ]

and one obtains the exponential cutoff.

'® This holds true assuming that almost no site in layer I1+1 is reached by two connections from
layer I. This is justified in the case where m=1 (where most of the nodes have only one
incoming link), and also for the first layers in case of m>1 (in which loops are not yet formed).
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At this point we have the following relations: T\+1(Ki+1) (Equations (3.1) and (3.2)),
Sit(x, 1) (3.4), Kiwt(Kixi,Ti) (Eq. (3.3)), and Xi+1(Ti,Ti+1,S1+1) (Eq. (3.5)). These
relations may be solved numerically to give the degree distribution and number of
nodes at each layer'®. Approximate analytical results for the limit N — « can be

found in [13].

3.4. Simulations

In order to check our analysis we simulated a SF network with 2<1<3, and
used the Breadth-First-Search (BFS) algorithm [19] to extract the number of
nodes at each layer starting from the maximal connected node. The BFS
algorithm is implemented as follows (see Fig. 3-2): we start from a chosen node
and insert it into a queue, assigning it a layer number |=0. We then extract it from
the other side of the queue and take all its neighbors and insert them into the end
of the queue, assigning them a layer number I=1. The algorithm continues in the
same way: at each iteration we extract the first node (with layer number I) from
the beginning of the queue and insert its neighbors to the end of the queue,
assigning them a layer number [+1. However, each node that is inserted into the
queue is marked so that it will not be inserted again. In this way the algorithm
"explores" the graph layer by layer until there are no more nodes.

Figure 3-3 shows results from simulations (symbols) for the number of

nodes on layer |, which can be seen to be in agreement with the analytical curves

19 We begin with Ko=K (the natural cutoff of the network), Yo =K, =K, and P, (k) =ck™.
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of S, (lines). We can see that starting from a given layer I=L the number of nodes

decays exponentially. We believe that the layer index L is related to the radius of

the graph, which scales as loglog N for scale-free networks with 2 <4 <3 [13]. It
can be seen that S, is a good approximation for the number of nodes at layer |I.

This is true in cases when only a small fraction of sites in each layer | have more
than one incoming connection. An example for this case is when m=1 so that

most of the sites in the network have only one connection. Figure 3-4 shows

results for R(k) with similar agreement. Note the exponential cutoff that

becomes stronger with | (i.e. K, is a monotonically decreasing function of I).

It is important to note that the simulation results give the probability
distribution for the giant component, while the analytical reconstruction gives the
probability distribution for the whole graph. This may explain the difference in the
probability distributions for lower degrees (and large |): many low degree nodes
are not connected to the giant component and therefore the probability
distribution derived from the simulation is smaller for low values of k.

In another study, Brunet et al. [30] analyzed the layer structure for the
Barabasi-Albert model [17] and its randomized variations [31]. They found that in
the Barabasi-Albert model there are more nodes in the first layers due to
dissortative mixing [32], which means that in Barabasi-Albert model there is a

tendency for high degree nodes to connect to high degree nodes.

35



3.5. Empirical results

Figures 3-5 and 3-6 show similar analysis for a "cut" (i.e., a large
subnetwork) of the Internet at router level, taken from the Lucent mapping project
[33]. The actual probability distribution is not a pure power law; rather it can be
approximated by A4 =2.3 for small degrees and 1 =3 at the tail. Our analytical
reconstruction of the layer statistics assumes 4 =3, because the tail of a power
law distribution is the important factor in determining properties of the system.
This method results in a good reconstruction for the number of nodes in each
layer, and a qualitative reconstruction of the probability distribution in each layer.
Similar behavior was found in real maps of multicast trees [22, 29].

In general, large degree nodes of the network mostly reside in the lower
layers, while the layers further away from the source node are populated mostly
by low degree nodes [22]. This implies that the tail of the distribution affects the
lower layers, while the distribution function for lower degrees affects the outer
layers. Thus the deviations in the analytical reconstruction of the number of
nodes per layer for the higher layers may be attributed to the deviation in the
assumed distribution function for low degrees (that is: 4 =3 instead of 1=2.3).

Note that our model does not take into account the correlations in node
degrees, which were observed in the Internet [30, 32], and hierarchical structures
[34]. This may also explain the deviation of our measurements from the model

predictions.
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3.6. Summary and conclusions

In this Chapter we introduced a structural characterization for networks, which we
termed "Tomography". The Tomography of a network reveals the statistical
properties of layers inside it (in particular, the number of nodes in each layer and
their degree distribution). We show that, when applied to real world networks, the
Tomography reveals their non-random nature with respect to the Molloy-Reed
model. In general, the Tomography can be used as a simple local test for
evaluation of different modeling schemes for the Internet [29], and also for the
design of better network algorithms that take advantage of the network structure,
for example: in estimation of the expected number of clients in a multicast trees

[22].
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layer=ao
layer—1
layer=2

layer=3

CEnRn

layer=a

Figure 3-2: An illustration of extracting the layers in the network using the BFS
algorithm. Starting from the maximal connected node, the graph is "exposed"
layer by layer until there are no more nodes.
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Figure 3-3: Approximate number of nodes (S)) vs. layer index | for a network with
N=10° nodes, A=2.85, and m=1. Symbols represent simulation results while solid
lines are a numerical solution for the derived recursive relations. Bottom: from the
semi-log plot we see that there is an exponential decay of S, for layers I>L
starting from a given layer L, which we believe is related to the radius of the
graph.
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Figure 3-4: Log-log plot of P(k) for different layers 1=0,1,2,... (from top to
bottom), for a network with N=10° nodes, A=2.85, and m=1. Symbols represent
simulation results while solid lines are a numerical solution of the derived

recursive relations.
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Figure 3-5: Real data results. Shown is the number of nodes at each layer for a
router level cut of the Internet with N =112,969 nodes. Analytical reconstruction
for S, was done with A =3,and m=1.
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DA WwN=0

Figure 3-6: Real data results. Shown is a log-log plot of R (k) for different layers

1=0,1,2,... for a router level cut of the Internet with N =112,969 nodes.

Qualitative analytical reconstruction was done with 2=3, and m=1. The
exponential cutoff can be seen at the tail of the distribution.
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Chapter 4: Width of percolation threshold in

complex networks

It is known that the critical probability for the percolation transition is not a sharp

threshold; actually it is a region of non-zero width Ap, for systems of finite size. In

this Chapter we will show that for complex networks Ap, ~ p, /I, where | ~N"™ is

the average (chemical) length of the percolation cluster, and N is the number of

nodes in the network. For Erdos-Reyni (ER) graphs v, =1/3, while for scale-free
(SF) networks with a degree distributon P(k)~k™ and 3<i<4,
Vo =(4=3)/(A-1). We show analytically and numerically that the survivability

S(p,l), which is the probability of a cluster to survive | chemical shells at

conduction probability p, behaves near criticality as

S(p,l)zS(pC,I)-exp{pL(p—pc)l}. Thus for probabilities inside the region

c

Pe

|p—pc|<|— the behavior of the system is indistinguishable from that of the

critical point. The results presented here are based on [35].

4.1. Introduction

In this Chapter we will study the behavior of networks near the percolation
threshold. The problem of percolation on networks has been studied extensively

(e.g. [5])- Using percolation theory we can describe the resilience of the network
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to breakdown of sites or links [12, 36], epidemic spreading [5, 37, 38], and
properties of optimal paths [18].
A typical percolation system consists of a d-dimensional grid of length L, in

which the nodes or links are removed with some probability 1-p, or are
considered “conducting” with probability p (e.g. [15, 16]). Below some critical
probability p, the system becomes disconnected into small clusters, i.e., it

becomes impossible to cross from one side of the grid to the other by following
the conducting links. Percolation is considered a geometrical phase transition
exhibiting universality, critical exponents, upper critical dimension at d.=6 etc. It

was noted by Coniglio [39] that for systems of finite size L the transition from

connected to disconnected state has a "width" Ap, ~ﬁ where v is the critical

exponent related to the correlation length®.
Percolation on networks has been studied also from a mathematical

viewpoint [4-6]. It was found that in Erdds-Réyni (ER) graphs with an average

degree (k) the percolation threshold is: pC:L

(k)

Below p, the graph is

% To see this, consider a percolation system in a d-dimensional lattice. At the percolation
threshold . the spanning cluster spans the whole system (& — ). Near the percolation

threshold a typical cluster spans a length of & ~ | p- pc|7v, which is the "correlation length". If
the system has a finite geometrical length L, then for probabilities close enough to p, such that
L<&~ | p- pc|_v , the typical cluster size ¢ is larger than the system size, and thus in effect
there is a cluster spanning the system. Thus, for probabilities inside the range

|p— pc| <Ap, ~ L™ the behavior of the system is indistinguishable from its behavior at the
critical point.
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composed of small clusters (most of them trees). As p approaches p, trees of
increasing order appear. At p= p, a giant component emerges and loops of all

orders abruptly appear. However, for graphs of finite size N the percolation

threshold has a finite width Ap, ~ [4], meaning that all attributes of criticality

N1/3

are present in the range pe[pc—Apc,pc+Apc]. For example: The number of
loops is negligible below?" p_ + Ap, .

In this Chapter we study the Survivability of the network near the critical
threshold. The survivability S(p,l)is defined to be the probability of a connected
cluster to “survive" up to | chemical shells in a system with conductance

probability p [40] (i.e the probability that there exists at least one node at

chemical distance | from a randomly chosen node on the same cluster). At the
critical point pc, the survivability decays as a power-law: S(pc,l)~ ™, where x is
a universal exponent?®.

Below p, the survivability decays exponentially to zero, while above p, it

decays (exponentially) to a constant. Here we will derive analytically and

numerically the functional form of the survivability above and below the critical

21 0. Riordan and P. L. Krapivsky (private communication).

22 For directed percolation we have X= /v [41]. This conforms with our results for networks,

1
as will be derived in this Chapter, because [ =1 for ER graphs and [ = 3 for SF
networks (with 3 < A <4), while v, =1 for both cases (see Table 1-1).
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point. We will show that near the critical point S(p,!)= S(pc,l)'exp{pi( p— pc)l]

c

Thus, given a system that has a maximal chemical length | at the percolation

Pe

threshold, for probabilities inside the range |p—pc|<T the behavior of the

system is indistinguishable from that of the critical point. Hence we get Ap, <%.

The maximal chemical length | at the critical threshold, i.e. the length of
the percolation cluster, was found to be: | ~ N [18] where N is the number of

nodes in the network (see Chapter 2). For Erdos-Reyni (ER) graphs v, =§,

while for scale-free (SF) networks with a degree distribution P(k)~k"1 and

3<A<4, vy =(2-3)/(2-1).

4.2. General formalism

Consider a random graph with a degree distribution P(k), i.e., a randomly chosen
node has a probability P(k) to have k links. The probability to reach a node of

degree k by following a randomly chosen link is Pl(k):LkP(k) [27] where (k)

(k)
is the average degree. Accordingly, we write the two corresponding probability-

generating functions (e.g. [27]):

G, (x)= 3. P(k)x"

k=0

And:
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« :Go,(X):L N K = < k!
G, (x) & () <k>§kp(k) 2R (k)

Where Gl(x) describes the probability that a node reached by following a
random link has k outgoing links, not including the incoming link. For example, in
ER graphs: G, (x) =G, (x)=e""".

After randomly removing a fraction 1-p of the links (bond percolation),

the probability for a randomly chosen node to have k remaining links in the

diluted graph is given by [12]:

K, =0 k=0
=Y P(k,)(1-p+px)* =G, (1- p+ px)
kp=0

And:

< Gy (x) _ PG, (1-p+px)

G (x)= 0 06 (1) =G, (1- p+ px)

For example, in ER graphs, é1 (x) = éo (X) _ o {Ml=pepxl-t) _ ()p(x-1)
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We next define M, (x)=m,+mx+m,x*+... to be the generating function

for the number of sites that exists on layer (i.e. chemical shell) | starting from a

random node on the diluted graph, and N, (x)=n,+nx+n,x’+.. to be the

corresponding function for the number of sites that exists on layer | from a node

reached by following a random link. In order to find IVIL(X) for some layer L>1

we can write the following recursive relations [27, 42]:

For 1<l <L-1:

Ni. (X) =G, (N, (x)) (4.1)

M, (x)=G, (N (x)) (4.2)

1+1

Eq. (4.1) means that the probability ni( ) for reaching a branch having i nodes at

layer I+1 is composed of the probability of reaching a node by following a link,
and then reaching i nodes at layer | by following all possible branches emerging

from that node - see sketch in Fig. 4-1.
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Figure 4-1: A graphical sketch of the recursion relation (4.1). The probability to
reach a branch having i nodes at layer 1+1 may be represented as the sum of
probabilities to reach a single node, to reach a node connected to a single
branch having i nodes at layer |, to reach a node connected to two branches
having a total of i nodes at layer |, etc.

As a simple demonstration, let us evaluate the probability no('”) to
encounter zero nodes at layer I+1 of a branch. Taking the zeroth power in Eq.
(4.1) we have: n" = I51(1)+Pl(2).n0(')+Pl(3)-[n0(')}2 +..., which means that the
probability to reach zero nodes at layer I+1 (by following a link) is composed of

the probability f}(l) to reach a node with no emerging branch, the probability

I51(2)-n0(') to reach a node that has a single emerging branch with zero nodes at

layer |, the probability F~{(3).[no(')}2 to reach a node having two branches such

that both of them have zero nodes at layer | etc. (see Fig. 4-1). Similarly, Eq.

(4.2) refers to M (x), which gives the probability for the number of nodes at

layer L reached by starting from a random node, rather than by following a

random link [27].
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Notice that M (0)=m, is the probability that there are zero nodes at layer
L from a random node, i.e., the probability to die before layer L. Thus
g =1-M_(0) is the probability to survive up to layer L. Similarly, ¢ =1-N,(0)
(where 1<1<L-1) is the probability for a branch to survive up to layer I. From

Eq. (4.1) we have:
Nm(o):él(Nl (0))
1-£.,,=G,(1-5)=G,(1- p+p[l-¢])
Thus for 1<I<L-1:
&, =1-G,(1-pg) (4.3)
And for the final layer L we have (Eq. (4.2)):
e =1-G,(1-pe_,), (4.4)

which gives the survivability at layer L [42].

4.3. Erdos-Réyni graphs

For Erdés-Réyni (ER) graphs: G, (x)=G, (x):e<k>(x‘1) and Eq. (4.3) gives:

€ = [—glllipalt) _ g _gmplka _
2 k 2
=1- 1—p<k>€|+p <2> Elz— =
2
k
—£5| " (k) &’ +
P 2
Where p, :L. Setting 6 = p—p,, we get:

(k)
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where we have left only terms of second order?® in &,0 . We thus get:

de 1,
Wzgm —é :_E‘gl T8
At criticality, =0, and the solution to this equation is: ¢ ~I1"'. The additional
term suggests the following solution near criticality: & ~1°' -exp(i&]. Note that
P

for ER graphs Equations (4.3) and (4.4) are the same, and thus the survivability

¢_ at the final iteration also has the same form: ¢ ~ L ~exp{i5L]. The above

c

result can be written as:

S(p,l):S(pc,l)-exp[pL(p—pc)lj (4.5)

c

In order to check this result we numerically calculated the survivability S(p,l)
near p, according to the recursive relations (4.3) and (4.4)*.

Fig. 4-2(a) shows the survivability S(p,l) for different values of p. For
p = p. the survivability decays as a power law, while above and below there is an

exponential decay, either to zero (for p < p,) or to a constant (for p> p,). Fig. 4-

% We assume that p < p, and thus &, <1 for large | .

** We start with &, =1, and use Eq. (4.3) also for | =0.
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2(b) shows that all curves of the survivability S(p,l) from (a) can be rescaled

such that they all collapse. Moreover, scaled survivabilities from all different
graphs with different values of <k> (i.e., different values of p,) also collapse on
the same curve. However, equation (4.5) is true only below the percolation
threshold where there is no giant component. Above the percolation threshold

there is an exponential decay to a non-zero constant, and the generalized

expression is:

S(p,l):S(pC,I)-exp(—pL|p—pc|lj+Pw (4.6)

c

where P, is the probability for a randomly chosen node to be inside the

percolation cluster”®. Indeed, setting &, =¢ in the recursive relation

& —1-e "M the resulting "steady state" solution is g =P, [4, 6].

4.4. Scale-free graphs

Scale-free graphs can be taken to have a degree distribution of the form

P(k)=ck™, where c~(A-1)m*" and m is the minimal degree [12]. In order to

solve equation (4.3) we have to evaluate:

_ L

(k)

G, (1-pg) =+ kP(K)(1-pg)"
k=1

> §(p,1 > ) is the probability that if we start from a randomly chosen site, we will survive an
infinite chemical distance. This equals to the probability P, that the chosen site resides in the

giant component. In ER graphs P_ obeys the transcendental equation: P, =1—e7<k>pp°° [4, 6].
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Figure 4-2: (a) The survivability S(p,!l) for an ER graph with (k) =5, numerically
calculated for different values of p: p,, p,+5x107*, p ,£3x107*, p,+1x107*,
p, £6.66x107, and p,+3.33x10”. For p=p, the survivability decays to zero
according to a power law: S(p,,l)~I"". For p<p,, S(p,I)— 0, while for p> p,,
S(p,I)— Const. The decay is exponential (to zero or to a constant) according to

equations (4.5) and (4.6). (b) Scaling of the survivability for different values of p,
l, and (k). Shown is [S(p,l)—S(p,oo)]/S(pc,l) vs. |p—p,|l/p, for ER graphs

with (k)=5 (unfilled symbols) and (k)=10 (filled symbols). The collapse of all
curves on an exponential function (for large |) supports the scaling relations (4.5)

and (4.6).
Expanding by powers of ¢, and inserting P(k)=ck™ with 3<1<4, we get [43]

(See also appendix A):
i kP(k)(1-&)" =(k)—(k(k —1)>g+§r(4—/1)gH

Thus equation (4.3) becomes:

1

G0~ )P S 2)(ps) -

p C A=2 A2
=g -———T(4-1)p" ¢
b, 2(k) (4=4) |

Sl =1-
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k
where P, = <—>1 [12]. Taking p=p.+7, and substituting

A=<—k>1“(4—/1) p.”*, we get:
b=t 0 e C 4oy (p o) e =
1+1 pc | 2<k> c |
5 s
:g,+—-g,—A{l+—} g 7~
P, P
A-2 J -2
~ g - Ag +F[3,—A(/1—2)-5, ]
For large |, & <«1. Taking into account that 1-2>1 we have &*° <zg,.
Therefore:
de

N B 42 O
&, —& =—AgT +—-¢

dl P,

For 6 =0 the solution is ¢ ~1™* with x:l/(/l—3). The additional term suggests

the following solution near criticality: & ~17* -exp(iél} The last iteration (Eq.

c

(4.4)) can be shown to give the same behavior for ¢ . A similar form can be

found also for®® 1>4. The scaling form for SF networks is confirmed by

numerical simulations as shown in Figures 4-3(a) and (b).

% |n this range the behavior is similar to ER graphs [14].
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Figure 4-3: (a) The survivability S(p,lI) for a SF network with 1=3.5,
numerically calculated for different values of p: p,, p,+6x107, p,+4x107,
p,£2x107, p,+1.33x107, and p,+6.66x10°. For p=p, the survivability
decays to zero according to a power law: S(p,l)~I?. For p=p,, S(p.l)

decays exponentially (to zero or to a constant) according to equations (4.5) and
(4.6). (b) Scaling of the survivability for different values of p, I, and 4. Shown is

[S(p.1)=S(p,)]/S(p.l) vs. |[p-pl/p, for SF graphs with A=3.5 (filled

symbols) and 1=35 (unfiled symbols). For all cases m=2. Due to numerical
difficulties only curves with p < p_, are shown.

4.5. Summary and conclusions

We have shown analytically and numerically that the survivability in ER and SF
graphs scales according to equations (4.5) and (4.6) near the critical point. Thus,
the scaling form of the survivability near the critical probability obeys the following
scaling relation (for p < p,):

S(p’|)=s(pca|)'eXp[%j

C
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P

where Ap, ~|—°. Given a system with a maximal chemical length | at criticality,

for all values of conductivity p inside the range [pC —Ap,, P, +Apc] the survivability

behaves similar to the power law S(p,,1)~17* found at p = p,. Thus, the width of

the critical threshold is Ap, ~—%, where | is the chemical length of the percolation

P
I
cluster. For ER graphs, |I~N"’, while for SF networks with 3<i<4,
| ~ N#E

It is important to remember that real world networks do not have an infinite
number of nodes. Some networks are rather small, for example, the transcription
regulation network of the bacteria E. coli has roughly 400 nodes [44]. The
importance of the results presented in this Chapter is that they allow us to use
percolation theory also in real world systems of finite size. Furthermore, the

scaling form of the survivability can be used in the modeling of epidemic

spreading on networks [38].

4.6. Appendix 4.A: Derivation of G (1-¢)

We wish to evaluate G ——Z 1 g H for a degree distribution
k=1

)

P(k)=ck™, where c~(A-1)m*" and & is small. We expand the function:
F(g):ZkP(k)(l—g)"’1 by series according to &. For a function with n-1
k=1

derivatives at ¢ =0, the Taylor expansion is:
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F(&') = F(0)+ F’(O)é“l'l F”(O)é‘2 +_,_+# F(n—l)(o)gn—l i Rn
2 (n-1)!

Now:
F(O):ng(k):<k>
F’(O)=—Zk(k—l)P(k):—<k(k—1)>

F7(0) = 3ok (k1) (k~2)P(k) =(k (k1) (k~2))

n
. . . . & ~ ~
The remainder of the series expansion is: R, = F™ (&), where: 0<&é<¢.Inour
n!

case we take £~¢ because ¢ is small. In the case of a power-law (scale-free)

distribution P(k)~k™ with 3<1<4, the 2" derivative diverges. Thus we can

expand only up to order n=2. The remainder is:

82 82 0 82 )
R,=—-F(e)=" [ k(k=Dk=2)ck ™ (1- )" dk < [ ke k.
k=0 k=0
Taking x =¢k gives:
2 L] 2 o 3-2 2 0
R, =% ce* I kHe‘gkdk:g—ce“I Xﬁ e‘X%:g—ce“ 17 Ix”e‘XdXz
2 2 gt e 2 gt
k=0 x=0 x=0
C o
~—&"TM@4-1
5% (4-4)
Thus we get:
S KP()(1- )" = (k) —(k(k —1)>g+%r(4—;t)g*-2,
k=1
as required.
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Chapter 5: Optimization in weighted

networks

Optimization problems in networks are important for many applications in
computer science. For example, when constructing a communications network or
implementing a routing algorithm, one wants the system to be optimal in the
sense that the data packets will arrive with minimal delay time and with minimal
waste of network resources. In this Chapter we will show how the problem of
optimization can be approached using tools from percolation theory and

statistical physics. The results presented here are based on [35, 45-47].

5.1. Introduction

Many real world systems exhibit a web like structure and may be treated as
‘networks.” Examples may be found in physics, sociology, biology, and
engineering [1-3]. The function of most real world networks is to connect distant
nodes, either by transfer of information, e.g., the Internet, or through
transportation of people and goods such as networks of roads and airlines. In
many cases there is a “cost” or a “weight” associated with each link and the
larger the weight on a link, the harder it is to traverse this link. In this case, the
network is called "disordered" or "weighted" [18]. For example, in the Internet,
each link between two routers has a bandwidth or delay time; in a transportation
networks, some roads may have only one lane while others may be highways

allowing for large volumes of traffic. Another important example is in biological
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networks such as the transcription regulation network of bacteria, where the
weights represent chemical binding affinities between proteins and the DNA.
These weights are fine-tuned by evolution in order to adapt to the environment
[48].

Consider two nodes A and B on such a disordered network. In general,
there will be a large number of paths connecting A and B. Among these paths,
there is usually a single path for which the sum of the weights along the path is
minimal. This path is called the “optimal path”, and all optimal paths emerging
from a certain node and reaching all nodes of the network create a shortest-path-
tree (SPT) from that node. A standard algorithm for finding the optimal path (and
the SPT) is Dijkstra's algorithm [19]. The optimal path may be much longer than
the shortest-hopcount-path [23], i.e. the path with the minimum number of links
between nodes A and B, as demonstrated if Fig. 5-1.

The problem of finding the optimal path is one example for an
"optimization" problem. Another example is the minimum-spanning-tree (MST),
which is a tree that reaches all nodes of the graph and for which the sum of the
weights of all the links (total weight) is minimal. In this Chapter we will explain the
behavior of the optimal path, the SPT and the MST and their dependence on the

nature of the disorder.
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Figure 5-1: A sketch of a two-dimensional weighted network. In order to cross
from node A to B along the optimal path we have to take a long detour, whereas
the shortest-hopcount-path is a straight line.

5.2. Scale-free substructures emerging from

weighted networks

In this subsection we will show that any weighted random graph has an internal
scale-free structure. We will then show that the minimum spanning tree (MST) is
related to this network, and is composed of percolation clusters, which we regard
as “super-nodes”, interconnected by a scale-free tree. We will then use these

results to understand the structure of optimal paths in disordered networks.

5.2.1. Scale-free topology

Scale-free topology is very common in natural and man-made networks.

Examples vary from social contacts between humans to technological networks
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such as the World Wide Web or the Internet [1-3]. Scale free (SF) networks are

characterized by a power law distribution of connectivities, i.e. the degree

distribution is P(k)~k™*, where k is the degree of a node and the exponent \

controls the broadness of the distribution. Many networks are observed to have

values of \ around 2.5. For values of 2<)\<3 the second moment of the

distribution, <k2>, diverges, leading to several anomalous properties [12, 13], for

example, the percolation threshold in such networks vanishes ( p. — 0), and the
radius (i.e., the average of the shortest-hopcount-path) scales as r ~loglogN , a

phenomenon also known as "ultra-small world".

5.2.2. The clusters network

Consider an Erdds-Réyni (ER) graph with N nodes and an average degree <k>
thus having a total of N<k>/2 links. To each link we assign a weight chosen
randomly and uniformly from the range [0,1]. We define "black" links to be those

links with weights below the percolation threshold p, :1/<k> [4]. Two nodes

belong to the same cluster if they are connected by black links (Fig. 5-2(a)). From

percolation theory [15, 16] follows that the number of clusters containing s nodes

scales as a power law, n, ~s, with 7=2.5 for ER networks®’. We next merge

*" ER networks can be regarded as having an infinite dimension since space does not play any
role. For example, in a d-dimensional rectangular grid, each node may have 2¢ neighbors,
whereas in random graphs the number of possible neighbors of each node diverges with
network size.
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all nodes inside each cluster into a single “supernode”. We define a new
“supernode network” (Fig. 5-2(b)) of N, supernodes?®. The links between two

supernodes (see Figs. 5-2(a) and 5-2(b)) have weights larger than pc.

The supernode network is scale-free with a degree distribution P(k) ~ k7.

This can be explained as follows: every node in a supernode has the same
(finite) probability to be connected to a node outside the supernode. Thus, the

degree k of each supernode is proportional to the cluster size s, which obeys

n,~s . Hence, P(k)~k™* with \x=2.5, as supported by simulations shown in Fig.

S

5-3.

Next, we check if the supernode network is a random SF network (thus
having anomalous properties such as ultra-small world etc.). We link-randomize
the supernode network, in a way that preserves the degree distribution [31], This
is done by the following algorithm: choose randomly two links A>B and C->D,
and switch the endpoints, that is, disconnect those two links and connect A>D
and C->B (Fig. 5-4(b)). We observe (Fig. 5-4(a)) that the "tomography" of the
resulting randomized network, i.e. the number of nodes at each chemical shell
from the maximal degree node (see Chapter 3), is the same as in the original
supernode network, thus indicating that the supernode network is indeed

random.

% Ng, = N /2 in Erdos-Renyi networks, as will be shown below.
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(a) Original Network (c) MST of original Network

Black links
= === Gray links

(b) Supernode network (d) MST of Supernode network

_____

Figure 5-2: Sketch of the “supernode network”. (a) The original ER network,
partitioned into percolation clusters whose sizes s are power-law distributed, with

n,~s ", where r=2.5 for ER graphs. The “black” links are the links with weights
below p., the “dotted” links are the links that are removed by the bombing

algorithm, and the “gray” links are the links whose removal will disconnect the
network (and therefore are not removed even though their weight is above p).
(b) The “supernode network”: the nodes are the clusters in the original network
and the links are the links connecting nodes in different clusters (i.e., “dotted” and
“gray” links). The supernode network is scale-free with P(k)~k™* and 1=2.5.

Notice the existence of self loops and double connections between the same two
supernodes. (¢) The minimum spanning tree (MST), which is composed of black
and gray links only. (d) The MST of the supernode network (“gray tree”), which is
obtained by bombing the supernode network (thereby removing the “dotted”
links), or equivalently, by merging the clusters in the MST to supernodes. The
gray tree is also scale-free, with 1 =2.5.
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Figure 5-3: The degree distribution of the supernode network of Fig. 5-2(b),
where the supernodes are the percolation clusters, and the links are the links
with weights larger than p; (O). The distribution exhibits a scale-free tail with
A=2.5. If we choose a threshold less than p., we obtain the same power law
degree distribution with an exponential cutoff. The different symbols represent
slightly different threshold values: p.—0.03 (o) and p.—0.05 (A). The original ER

network has N=50,000 nodes and an average degree <k>:5. Note that for

k ~ (k) the degree distribution has a maximum.
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(b)

Figure 5-4: (a) The "tomography" of the supernode network (o) and the link-
randomized supernode network (A). It can be seen that the number of nodes at
each layer is the same, thus indicating that the supernode network is random.
The tomography here was obtained by averaging over many realizations of the
network. Hence, for large |, we get a fractional number of nodes on average. (b)
An illustration of the link-randomizing algorithm. Note that the number of links
connected to each one of the nodes A,B,C, and D does not change in the
switching process. Thus the degree of each node is preserved.

65




5.2.3. The minimum spanning tree — definition and algorithms

We next show that the minimum spanning tree (MST) of an ER graph is related
to the supernode network, and therefore also exhibits scale-free properties. The
MST on a weighted graph is a tree that reaches all nodes of the graph and for
which the sum of the weights of all the links (total weight) is minimal [19].

Standard algorithms [19] for finding the MST are Prim’s algorithm which
resembles invasion percolation [15], and Kruskal's algorithm which resembles
normal percolation. We first explain Prim's algorithm:

(a) Create a tree containing a single vertex, chosen arbitrarily from the graph.

(b) Create a set containing all the edges in the graph.

(c) Remove from the set an edge with minimum weight that connects a vertex in
the tree with a vertex not in the tree.

(d) Add that edge to the tree.

(e) Repeat steps (c-d) until every edge in the set connects two vertices in the
tree.

Note that two nodes in the tree cannot be connected again by a link, thus

forbidding loops to be formed.

Prim's algorithm starts by choosing a random node in the network, and
then growing outward to the "cheapest" link which is adjacent to the starting
node. Each link which is "invaded" is added to the growing cluster (tree), and the
process is iterated until every site has been reached. Bonds can only be invaded
if they do not produce a loop, so that the tree structure is maintained [20]. This

process resembles invasion percolation in the Physics literature.
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A direct consequence of the invasion process is that a path between two
points A and B on the MST is the path whose maximum weight is minimal, i.e.,
the minimal-barrier path®. This is because if there were another path with a
smaller barrier (i.e. maximal weight link) connecting A and B, the invasion
process would have chosen that path to be on the MST instead.

The minimal-barrier path is important in cases where the "bottleneck" link
is important. For example, in streaming video broadcast on the Internet [21, 22],
it is important that each link along the path to the client will have enough capacity
to support the transmission rate, and even one link with not enough bandwidth
can become a bottleneck and block the transmission. In this case we will choose
the minimal-barrier path rather than the optimal path®.

An equivalent algorithm for generating the MST is Kruskal's algorithm:

(a) Create a forest F (a set of trees), where each vertex in the graph is a
separate tree.

(b) Create a set S containing all the edges in the graph.

(c) While S is nonempty:
e Remove an edge with minimum weight from S.
e If that edge connects two different trees, then add it to the forest,

combining two trees into a single tree.

e Otherwise discard that edge.

» This path is sometimes referred to as the "min-max path" [49].

% |n this example the weight of the link is related to its inverse capacity (the capacity of a link is
roughly proportional to its bandwidth) and is also proportional to its delay time. The optimal path
is thus the path with a minimum total delay time, which is less important for video broadcast.
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Note that an edge cannot connect a tree to itself, thus forbidding loops to be
formed.

Kruskal's algorithm resembles the percolation process because we add
links to the forest according to increasing order of weights. The forest is actually

the set of percolation clusters growing as the conductance probability p (i.e. the
weight of the link that is currently being added) is increasing (as long as p < p,,

see below).

It was noted by Dobrin et al.[20] that the geometry of the MST depends
only on the unique ordering of the links of the network according to their weights.
It does not matter if the weights are nearly the same or wildly different, it is only
their ordering that matters. Given a network with weights {ri} on the links, any
transformation which preserves the ordering of the weights (e.g., the link which
has the fiftieth largest energy is the same before and after the transformation)
leaves the MST geometry unaltered. This property is termed "universality" of the

MST. Thus, given a network with weights {ri}, with r, being a random variable
distributed uniformly in the range [0,1], a transformation of the weights to {ri}

such that z, = exp(ar,) (for a>0) will leave the MST unchanged.

5.2.4. Structure of the minimum spanning tree

5.2.4.1. The bombing optimization algorithm

An equivalent algorithm for finding the MST in a weighted random network is the

“bombing optimization algorithm” [18]. We start with the original ER network and
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remove links in order of descending weights. If the removal of a link disconnects
the graph, we restore the link and mark it “gray” [50]; otherwise the link (shown
dotted in Fig. 5-2(a)) is removed. The algorithm ends and an MST is obtained
when no more links can be removed without disconnecting the graph.

Let us apply the bombing algorithm on a weighted ER graph, with weights
distributed uniformly between 0 and 1. Because the weights are randomly
distributed, the bombing algorithm resembles a percolation process in which the

links (above some weight p) are removed with probability 1- p. However, in the

bombing algorithm only links that close a loop can be removed (otherwise the
graph will be disconnected). It is known that for ER networks the loops are
negligible below criticality [5], i.e., the percolation clusters have almost no loops.
Therefore the bombing process does not modify the percolation clusters —
where the links have weights below p.. Thus, the bombing modifies only links
outside the clusters, so actually it is only the links of the supernode network that
are bombed. Hence the MST resulting from bombing is composed of percolation
clusters connected by gray links (Fig. 5-2(c)).

From the MST of Fig. 5-2(c) we now generate a new tree, the MST of the
supernode network, which we call the “gray tree”, whose nodes are the
supernodes and whose links are the gray links connecting them (see Fig. 5-2(d)).
Note that bombing the original ER network to obtain the MST of Fig. 5-2(c) is
equivalent to bombing the supernode network of Fig. 5-2(b) to obtain the gray

tree, because the links inside the clusters are not bombed.
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To summarize, the MST on a weighted ER network (with weights r.

distributed uniformly between 0 and 1) is composed of two components (see Fig.
5-2(c) and (d)): (i) the percolation clusters, which consist of links with weights
below p, (we will refer to these as the "black” links because they are not affected
by the bombing), and (ii) the "gray tree" — a tree connecting the percolation
clusters, and whose links have weights above p,. We will next describe the
properties of these two components.

Note that because of the universality of the MST, the above description

applies to any random distribution of weights that can be mapped monotonously

to the uniform distribution between 0 and 1. For example, in the case where the

weights are distributed uniformly in the range [a,b], or where the weights are

given by the expression: r, =exp(ar,), where r. is distributed uniformly in the

range [0,1] and a > 0. MST's on SF networks have a similar structure [46].

In the following two subsections we will describe the properties of the

percolation clusters and the gray tree, which together compose the MST.

5.2.4.2. The percolation clusters
The percolation clusters are described by percolation theory for d >d, =6. The

average length along the largest cluster scales as | .. ~ N'” for ER networks and

perc

as | ~N" for SF networks [18] (See Chapter 2).

perc
The number of clusters Ng at the critical threshold (which is also the

number of supernodes N, in the supernodes network and the gray tree) may be
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calculated as follows: The MST consists of a total of N -1 links — one incoming
link per node except for the tree root [19]. These may be divided into two groups:

gray and black links (see Fig. 5-2(c)). The original network has a total of N <k>/2
links>". The bombing algorithm leaves a fraction p. of "black" links inside the

percolation clusters. Hence Ny, =N(k)p,/2. The number of gray links is

N N

+ —1 (see Fig. 5-2(d)). Thus:

gray

NMST = Nblack + Ngray

N —1=Nypg +(Ng —1)
Ny =N =Ny =N=N(k) p,/2=N(1-(k) p,/2)

For ER graphs, p,=1/(k), thus N, =N/2, whereas for SF networks we get:

5.2.4.3. The "gray tree"

We find (Fig 5-5(a)) that the gray tree has also a scale-free degree

distribution P(k), with X\=2.5 - same as the supernode network®. We also find

* By definition, the average degree is <k> =2E/N , where E is the total number of links and N
is the total number of nodes.

% MST's on scale-free networks with X\=2.5 were found to retain the original network’s degree
distribution [51, 52, 53]. The origin of this phenomenon is yet unknown.
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(see Fig. 5-5(b)) that the average path length l4.y on the gray tree scales as>®
lyray ~10g(N, ) =log(N/2)~logN [47]. Note that even though the gray tree is
scale-free, it is not ultra-small [13], since the average length does not scale as
loglog N . This is because the gray tree is not a random scale-free tree; rather it

is optimal (i.e. it is the MST of the supernode network).
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Figure 5-5: (a) The degree distribution of the “gray tree” (the MST of the
supernode network, shown in Fig. 5-2(d)), in which the supernodes are
percolation clusters and the links are the gray links. The distribution exhibits a
scale-free tail with 1=2.5, same as the supernode network. (b) The average
path length | on the gray tree as a function of original network size. It is seen

that I, ~log(N,)~1logN.

gray

% Although Braunstein et al. [18] found that the length of the optimal path is |Opt ~ (log N )H , for

SF networks with 2<X\<3 in the strong disorder limit, this is valid only when multiple links
between nodes do not exist. For SF networks that have multiple links, such as in our case (Fig.
5-2(b)), we find a shorter optimal path: I, ~log N for 2<\<3.
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5.2.5. The "minimal barrier" path

As explained above, the MST is optimal in two senses: (i) the total weight of all
links is minimal (ii) a path between any two nodes on the MST will encounter the
smallest maximal barrier (weight) between these nodes. The last property is
common to many physical systems. We will also see that the optimal path follows
the "minimal-barrier" path in cases where the weights in the network are strongly
fluctuating ("strong disorder"). Accordingly, we study the weights encountered
when traveling along a typical path on the MST.

We consider all pairs of nodes in the original MST of N nodes (Fig. 5-2(c))

and calculate the typical path length |, which is the average path length on the

typ’

MST. For each path of length |, we rank the weights on its links in descending

order. For the largest weights (“rank 1 links”), we calculate the average weight

w,_, over all paths. Similarly, for the next largest weights (“rank 2 links”) we find

r

the average w._, over all paths, and so on up to r =1, . Fig. 5-6 shows w, as a

e -

function of rank r for three different network sizes N = 2000, 8000, and 32000.

We can distinguish between two types of weights on the minimal-barrier path:

(a) Weights below p. — these belong to the black links inside the supernodes
(i.e. clusters). Their weights are uniformly distributed because the bombing

algorithm cannot remove links inside the clusters. The number of black links

scales as |,,,, ~ N'” for ER graphs (see Chapter 2).

(b) Weights above p. — these belong to the “gray links”, which were removed

and restored by the bombing algorithm. Therefore they are not uniformly
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distributed. As shown above, the number of gray links along the optimal

path scales as |, ~logN . Notice also that the highest weights (e.g. w,_

gray
and w,_, ) are independent of the network size N.

We explain these findings as follows: the black links represent a "global"
phenomena — an extensive part of the optimal path lies along the giant
component (the largest percolation cluster), which is a fractal and whose radius
scales as N [18] (see Fig. 5-2(c) and Chapter 2). As opposed to this, the gray
links are associated with the finite clusters (or supernodes), which are "local"
phenomena. High weights are associated with small clusters which have a small
number of external links. The bombing process is limited in removing links
connected to small clusters, because removal of such a link is more likely to
disconnect the cluster from the graph. Hence, the weights of the highest gray
links along the "minimal barrier", being a local phenomena, path do not depend
on the network size.

However, the average length of the minimal-barrier path (i.e., the length of

the average path on the MST) is dominated by the largest percolation cluster®*

yst = ot +lgray =O(N"?)+0(logN) ~ N"*.

* The question of exactly which proportion of the average minimal-barrier path follows largest
percolation cluster is currently under research. Some discussion may be found in [46].
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0.15|

Figure 5-6: The average weights w, along the optimal path of an ER graph with
<k> =35, sorted according to their rank. Different symbols represent different
system sizes: N = 2000 (O), N = 8000 (o) and N = 32000 (A). Below p, =0.2, the
weights are uniformly distributed, and their number scales as N'°. Above p, the

number of weights along the minimal-barrier path scales as log(N), and their
values are independent of network size N.

5.3. The transition from strong to weak disorder

In this subsection we will apply our findings from previous sections to study the

behavior of optimal paths on networks with different types of disorder.
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5.3.1. Strong and weak disorder

Consider a disordered random network, i.e. with each link we associate a "cost"

or "weight". A common procedure to implement disorder on a network is as

follows [18, 47, 54]: one assigns to each link i of the network a random number

r., uniformly distributed between 0 and 1. The cost associated with link i is then:
r; =exp(ar),

where the parameter a controls the broadness of the distribution of link costs, or
the "strength" of disorder.

When the parameter a is small, all weights in the network are of the same

order of magnitude, e.g. r; :{1.1,2.5,3,4.7,5,...}. In this case the network is said to
be "weakly disordered". However, when a—«, the weights are of different
orders of magnitude, e.g. 7, :{1,1000,106,10",...}, and the network is in "strong

disorder".
It was found by simulations [18] that the length of the optimal path in weak

disorder scales as logN , similar to the shortest-hopcount path. However, in the
strong disorder regime, the optimal path length scales as N"* , where Vo =1/3

for ER networks, and v, =(4-3)/(4-1) for SF networks (with 3<1<4) — see

Table 5-1. It can be seen that the length of the optimal path in strong disorder
scales the same as the length of the percolation cluster on the network, which is

exponentially larger than the shortest-hopcount path.
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Shortest- Optimal path, Optimal path,
hopcount path weak disorder strong disorder
ER graphs logN logN N3
SF networks log N log N N (=341
(3<1<4)
SF networks loglog N - logN
(2<1<3)

Table 5-1: Scaling (with N) of the average length of the optimal path in
disordered networks [18]. It can be seen that for strong disorder the optimal path
length is exponentially larger than the shortest-hopcount path, i.e., the optimal
path in strong disorder scales as a power of N rather than a logarithm. In weak
disorder the optimal path is larger only by a multiplication factor. The behavior for
scale-free networks in the anomalous regime 2 < 4 <3 is similar, with the optimal
path in strong disorder being exponentially larger than the shortest-hopcount
path. The behavior in weak disorder is yet unclear due to numerical difficulties.

These results may be explained as follows: take a typical optimal path

between two nodes A and B on the network. This path is chosen such that its

total cost ZTi is minimal. When the system is in strong disorder, all weights

along the optimal path are of different orders of magnitude. Thus the maximal

weight z___ is of higher order of magnitude than all other weights along the path,

X

and it dominates the sum, i.e., Zri ~7_ . Hence, in strong disorder the optimal

path is chosen such as to minimize the maximal weight z__ . In other words, in

strong disorder the optimal path is equivalent to the minimal-barrier path.
We have seen in previous sections that the minimal-barrier path lies on

the MST, which is composed of percolation clusters and gray links. Hence, the

77




optimal path in strong disorder (a — « ) follows (on average) the minimal-barrier

path, whose length is dominated by the length of the percolation cluster N" .
We now ask the following question: how does the optimal path behave for

intermediate values of disorder strength a - between strong and weak disorder ?

5.3.2. Transition in average length of the optimal path

We have seen that the optimal path length scales differently for strong and weak

disorder:

logN a1
I(@) ~ 1/3
N a>1

We propose the following scaling form:

|(a)=|w-F(i'i] (5.1)

p. @

Where |, =1(x)~ N"* is the optimal path length for a — «, and:

logu u>s1
F(u)~ u
const. uxl

The motivation for this scaling form is as follows: the weights along the
optimal path for a —»o (which lies on the MST) are 7, =exp(ar,), where the
values r, along the optimal path may be sorted according to their rank as shown

in Fig. 5-7 (because of the universality of the MST, the monotonous

transformation {z;} — {r} leaves the MST unchanged). We now take any two
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consecutive-rank "black" links 7, =exp(ar;) and z, =exp(ar,), such that r <r,
(and® r,r, < p,).

From the figure it can be seen that® Ar:rz—rl:%, and thus

o0

Q:exp(aAr):exp(a-r—C]. The criterion for strong disorder is that all
z-l

[e]

consecutive rank weights will be of different orders of magnitude, i.e. %»1.

0

This suggests that the control parameter of the scaling is Z ELIi. When Z «1
P. @

we are in the strong disorder regime, and when Z >1 we are in weak disorder.
The scaling form of Eq. (5.1) is confirmed by simulations, as shown in Fig.

5-8. The optimal path for infinite disorder strength, |_, was found using Prim's
algorithm for finding the minimal-barrier path, and the optimal path I(a) was

found using Dijkstra's algorithm. The collapse of all curves confirms that

VA zllﬁ is indeed the control parameter of the transition from strong to weak
P. @

disorder. Similar results can be obtained on SF networks [47] and finite-

dimensional lattices [55].

% We do not take weights above p. because the "gray" links are a local property and their effect
on the optimal path length is much smaller than that of the "black" links.
% The number of gray links along the optimal path in strong disorder is much smaller than the

number of black links. Thus, the number of black links may be well approximated by |, .
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Figure 5-7: Weights r. along the typical optimal path (in strong disorder), sorted

according to their ranks, for a network of N=2,000 nodes. There are
approximately | "black" links whose weights are uniformly distributed in the

range [0,p.). The difference between two consecutive "black" weights is

Arzrz—rlzlp—c.

0
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Figure 5-8: The order-disorder transition. Shown is I(a)/l, vs. Z Epi% for

networks different size N (which determines |, ), average degree (k) (which
determines p_), and disorder strength a. Different symbols represent different
values of (k): (k)=3 (0),(k)=5 (o), and (k)=8 (A). The collapse of all curves

on one function F(Z) shows that a single control parameter Z Epi% controls

the transition.
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5.3.3. Scaling of the optimal-path-lengths distribution

We now ask the following question: How are the different optimal paths in a
network distributed? The distribution of the optimal paths lengths is especially
important in communication networks, in which the overall network performance
depends on the different path lengths between all nodes of the network, and not
only on the average.

Recent works have studied the distribution form of the shortest paths
lengths on minimum spanning trees [21, 42], which correspond to optimal paths
on networks with large variations in link weights (i.e., strong disorder a — «).
The exact analytical form of the distribution is not known, but a good fit was
found for a Maxwellian function [42].

However, the results in the previous section suggest that the optimal-

paths-lengths distribution function obeys the following scaling form:

p(|,N,a):|iG(ll,pi'§J (5.2)

Where P(I,N,a) is the probability to have an optimal path of length | in a

network of size N and disorder strength a. Notice that the parameter Z zilﬂ

p, a

determines the functional form of the distribution.
Relation (5.2) is supported by simulations for both ER and SF graphs,
including SF graphs with 2<4<3, for which p, >0 with system size N. We
simulate ER graphs with weights on the links for different values of graph size N,

control parameter a, and average degree (k) (which determines p, =1/(k); see
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Table 5-2). We then generate the shortest path tree (SPT) using Dijkstra’s
algorithm [19] from some randomly chosen root node. Next, we calculate the

probability distribution function of the optimal paths lengths from this node to all

nodes in the graph. In Fig. 5-9 we plot I_P(I,N,a) vs. I/l for different values of
N, a, and <k> A collapse of the curves is seen for all graphs with the same
value of Z =(1/p,)(l./a).

Figure 5-10 shows similar plots for SF graphs - with a degree distribution

of the form P(k)~ k* and with a minimal degree®” m. A collapse is obtained for

different values of N ,a, 1 and m, with 1 >3 (see Table 5-3).

Next, we study SF networks with 2<A1<3. In this regime the second

moment of the degree distribution <k2> diverges, leading to several anomalous

properties [12-14]. For example, the percolation threshold approaches zero with

" 0, and the optimal path length |, was found

system size: p,~N 7
numerically to scale logarithmically (rather than polynomially) with N [18].
Nevertheless, as can be seen from Fig. 5-11 and Table 5-4, the optimal paths
lengths probability distribution for SF networks with 2 <1 <3 exhibits the same

collapse for different values of N and a (although its functional form is different

from that 1 >3).

%" Note that the minimal degree is m=2, thus ensuring that there exists a giant component for any
\, and thus 0 < p, < 1. For the case of m=1 there is almost surely no infinite cluster for \x>\.~4

(or for a slightly different model, \.=3.47875 [56], resulting in an effective percolation threshold
p. =(k)/(k(k—1))>1. See [28, 56] for details.
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Figure 5-9: Optimal paths lengths distribution, P(1), for ER networks with (a), (b)
Z=(1/p,)(l,/a)=10 and (c), (d) Z=3. (a) and (c) represent the un-scaled

distributions for Z=10 and Z=3, respectively, while (b) and (d) are the scaled
distributions. Different symbols represent networks with different characteristics

such as size N (which determinesl ~N'?), average degree <k> (which

determines pC:1/<k>), and disorder strength a (see Table 5-2 for details).
Results were averaged over 1500 realizations.
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1 €

N (k) o Pe a =—— Symbol
P a
4000 3 42.48 1/3 12.73 10 X
8000 3 60.59 1/3 18.16 10 O
4000 5 44.01 1/5 22.00 10 A
8000 5 58.42 1/5 29.19 10 8
4000 8 45.99 1/8 36.78 10 <&
8000 8 58.25 1/8 46.60 10 O
4000 3 42.48 1/3 42.45 3 X
8000 3 60.59 1/3 60.55 3 0
4000 5 44.01 1/5 73.33 3 A
8000 5 58.42 1/5 97.31 3 8
2000 8 34.94 1/8 93.15 3 o
4000 8 45.99 1/8 122.62 3 O

Table 5-2: Different disordered ER graphs with same value of Z =(1/p,)(l,/a).
The symbols refer to Fig. 5-9.
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Figure 5-10: Optimal paths lengths distribution, P(l), for SF networks with (a),
(b) Z=(1/p,)(l./a)=10 and (c), (d) Z=2. (a) and (c) represent the un-scaled
distributions for Z=10 and Z=2, respectively, while (b) and (d) are the scaled
distributions. Different symbols represent networks with different characteristics
such as size N (which determines I, ~ N"™), 2 and m (which determine p,), and

disorder strength a (see Table 5-3). Results were averaged over 250
realizations.
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N Y m o Pe a = Symbol
Pe @
4000 3.5 2 29.02 0.27 10.51 10 e
8000 3.5 2 34.13 0.26 12.88 10 O
4000 2 57.70 0.5 11.54 10 FAN
8000 5 2 72.03 0.5 14.40 10 *
4000 3.5 2 290.02 0.27 52.56 2 e
8000 3.5 2 34.13 0.26 64.44 2 O
4000 2 57.70 0.5 57.70 2 FAN
8000 5 2 72.03 0.5 72.03 2 b

Table 5-3: Different disordered SF graphs with same value of Z =(1/p,)(l,/a).

The percolation threshold was calculated according to: p, :<k)/<k(k—1)>. The
symbols refer to Fig. 5-10.
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Figure 5-11: Optimal path lengths distribution function for SF graphs with
A=25, and withZ =(1/p,)(l,,/a)=10. (a) represents the un-scaled distribution

for Z=10, while (b) shows the scaled distribution. Different symbols represent
graphs with different characteristics such as size N (which determines | ~InN

and p, ~N™'"7), and disorder strength a (see Table 5-4). Results were averaged
over 1500 realizations.

N A m € Pe a Zzif—x Symbol
Pe @
2000 2.5 2 13.19 0.048 27.01 10 X
4000 25 2 14.66 0.037 38.70 10 (|
8000 2.5 2 16.14 0.029 54.50 10 A
16000 2.5 2 17.69 0.022 77.48 10

Table 5-4: Different disordered SF graphs with same value of Z =(1/p,)(l,/a).
Notice that p, ~N™"" — 0 for N — . The symbols refer to Fig. 5-11.
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5.3.4. Discussion

We have seen that both the average optimal path length and the optimal-paths-
lengths distribution follow the simple scaling relations (5.1) and (5.2), and are

controlled by a single parameter: Z zil&

p.a
We suggest the following explanation for this phenomenon: At strong
disorder (a — « ) the optimal path follows the percolation cluster®, whose radius
scales as N'’. Because a is very large, this optimal path takes long detours and
twists in order to avoid links with large weights, resulting in an effective "dilution”
of these links. For smaller values of a, the percolation cluster is followed only up

to a characteristic length &=ap_,. Then, the optimal path takes a "shortcut"

outside the percolation cluster. These shortcuts shorten® the optimal path from

N'? (strong disorder) to logN (weak disorder); see sketch in Fig. 5-12. The

control parameter Z EIL is actually the number of "shortcuts" taken. Hence it
ap,

determines the length of the average optimal path and also the functional form of
the optimal-paths-lengths distribution.

In order to prove this argument, consider some portion of the optimal path
that follows the percolation cluster at strong disorder. Assume that the length of

this portion is |,, and the values of r, are uniformly distributed in the range [0, p,)

(see Fig. 5-7). The sum of weights S along this portion is:

% More accurately, the optimal path, which is equivalent to the minimal-barrier path, follows the
MST, and an extensive portion of it (consisting only of "black" links) follows the largest
percolation cluster.

* This resembles the shortcuts in the "small-world" model [57].
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b l
= —_— _1 = r *

c

Where:

r*=éln{L—b§[exp(apc)—1]}:

c

=éln(l—b}éln{[exp(apc)—lj}z

ap,
~ lln (I—bJ + P,
a ap,
by

and we have assumed that: exp(ap,)>1. Hence we get: S=> 7 =exp(ar*)
i=1

where r*=~ pc+lln(|—bj. Thus, taking a shortcut link outside the percolation
a \ap,

cluster instead of following all these |, links (inside the percolation cluster) will

reduce the cost of the optimal path, but only if the weight r,, ., of this link will
obey:

exp(@lon_qr ) < exp(ar*),
or:

e
Pe < Fnort—cut < r~ P. +—In .
a | ap,
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If I, << ap,, such link cannot exist. However, if |, >ap,_, there starts to be a finite

probability for such a link to exist. Therefore the optimal path will follow the

percolation cluster up to a characteristic length*® &= ap, .

The above results are consistent with results found for finite dimensional

systems [23, 58, 59]: In a finite dimension, the parameter controlling the

/v

transition is , Where L is the system length and v is the correlation length

ap,
critical exponent (for random graphs v, =1 when calculated in the chemical path

metric). The expression L"" is proportional to the number of "red bonds"*' -

bonds that, if cut, would disconnect the percolation cluster [15, 39]. The length of
the optimal path changes most considerably when the optimal path deviates from
the percolation cluster instead of passing through one of its "red bonds". Thus, in

finite dimensional systems, the “red bonds” control the order-disorder transition.

5.4. Summary and conclusions

In this Chapter we have studied optimization problems in networks. We have
shown that the minimum spanning tree is composed of percolation clusters,
interconnected by a scale-free tree. We then used this to study the average and
distribution of the optimal paths lengths in networks with different types of

disorder. The analysis presented in this Chapter demonstrates how statistical

% Note that in the case of SF networks with 2 < A1 <3, p. approaches zero (with increasing N)
and consequently & =ap, — 0. This suggests that for any finite value of disorder strength a,

a SF network with 2 < A <3 is in the weak disorder regime.
*! The "red bonds" are also termed "cutting bonds".
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physics and percolation theory can be used to solve optimization problems in

networks, which are of practical importance for the design of efficient routing and

searching algorithms.

Figure 5-12: A sketch of the optimal path for a finite value of disorder strength a.
The optimal path (red curve) follows the percolation cluster up to a characteristic
length & =ap,, after which it becomes beneficial to take a shortcut (dotted red
lines) outside the percolation cluster. The optimal path in the case of strong
disorder (blue curve) follows the percolation cluster, and it is much longer than
the shortest-hopcount path.
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