
Calibration of Medical Imaging Classification Systems
with Weight Scaling ⋆

Lior Frenkel and Jacob Goldberger

Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
{lior.frenkel,jacob.goldberger}@biu.ac.il

Abstract. Calibrating neural networks is crucial in medical analysis applications
where the decision making depends on the predicted probabilities. Modern neural
networks are not well calibrated and they tend to overestimate probabilities when
compared to the expected accuracy. This results in a misleading reliability that
corrupts our decision policy. We define a weight scaling calibration method that
computes a convex combination of the network output class distribution and the
uniform distribution. The weights control the confidence of the calibrated pre-
diction. The most suitable weight is found as a function of the given confidence.
We derive an optimization method that is based on a closed form solution for the
optimal weight scaling in each bin of a discretized value of the prediction confi-
dence. We report experiments on a variety of medical image datasets and network
architectures. This approach achieves state-of-the-art calibration with a guarantee
that the classification accuracy is not altered.

Keywords: network calibration · medical decision calibration · network inter-
pretability · temperature scaling · weight scaling

1 Introduction

A classifier is said to be calibrated if the probability values it associates with the class
labels match the true probabilities of the correct class assignments. Modern neural net-
works have been shown to be more overconfident in their predictions than their prede-
cessors even though their generalization accuracy is higher, partly due to the fact that
they can overfit on the negative log-likelihood loss without overfitting on the classifica-
tion error [6,16,9]. In a medical imaging application, we would like to defer images for
which the model makes low-confidence predictions to a physician for review. Skipping
human review due to confident, but incorrect, predictions, could have disastrous conse-
quences [17]. The lack of connection between the model’s predicted probabilities and
the model’s accuracy is a key obstacle to the application of neural network models to
automatic medical diagnosis [2,12,24].

Various confidence calibration methods have recently been proposed in the field
of deep learning to overcome the over-confidence issue. Post-hoc scaling approaches
to calibration (e.g. Platt scaling [23], isotonic regression [29], and temperature scaling
[6]) are widely used. They perform calibration as a post processing step by using hold-
out validation data to learn a calibration map that transforms the model’s predictions to
⋆ This research was supported by the Ministry of Science & Technology, Israel.
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be better calibrated. Temperature scaling is the simplest and most effective calibration
method and is the current standard practical calibration method. Guo at el. [6] investi-
gated several scaling models, ranging from single-parameter based temperature scaling
to more complex vector/matrix scaling. To avoid overfitting, Kull et al. [14] suggested
regularizing matrix scaling with an L2 loss on the calibration model weights. Gupta
et al. [7] built a calibration function by approximating the empirical cumulative dis-
tribution using a differentiable function via splines. Most of these calibration methods
extend single parameter temperature scaling by making the selected temperature either
a linear or a non-linear function of the logits that are computed for the class-set (see e.g.
[4,5]). Although network calibration is crucial for producing reliable automatic medical
reports, there are only few works that directly address the issue of calibrating medical
imaging systems (see e.g. [25,30,3]).

In this study we focus on calibration of neural networks that are applied for medical
imaging tasks and propose an alternative to temperature scaling which we dub weight
scaling. Weight scaling calibrates the network by computing a suitable convex combina-
tion of the original class distribution and the uniform distribution. We show that unlike
temperature, vector and matrix scaling [14] and other recently proposed methods (e.g.
[7]), we can obtain a closed form solution for the optimal calibration parameters. The
proposed calibration does not change the hard classification decision which allows it
to be applied on any trained network and guarantees to retain the original classification
accuracy in all the tested cases. Unlike previous methods, if a network is more confi-
dent on one patient than the other, it remains more confident after the calibration. We
evaluated our method against leading calibration approaches on various medical imag-
ing datasets and network architectures using the expected calibration error (ECE) [19]
calibration measure.

2 Calibration Problem Formulation

Consider a network that classifies an input image x into k pre-defined categories. The
last layer of the network architecture is comprised of a vector of k real values z =
(z1, ..., zk) known as logits. Each of these numbers is the score for one of the k possible
classes. The logits’ vector z is then converted into a soft decision distribution using a
softmax layer: p(y = i|x) = exp(zi)∑

j exp(zj)
where x in the input image and y is the image

class. The output of the softmax layer has the mathematical form of a distribution. How-
ever, the network is not explicitly trained to compute the actual posterior distribution of
the classes.

The hard decision predicted class is calculated from the output distribution by ŷ =
argmaxi p(y = i|x) = argmaxi zi. The network confidence for this sample is defined
by p̂ = p(y = ŷ|x) = maxi p(y = i|x). The network accuracy is defined by the
probability that the most probable class ŷ is indeed correct. The network is said to be
calibrated if for each sample the confidence coincides with the accuracy. For example,
assume there are hundred images and for each we have a clinical prediction with identi-
cal confidence score of 0.9. If the network is well calibrated we expect that the network
decision would be correct in ninety cases.
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Expected Calibration Error (ECE) [19] is the standard metric used to measure model
calibration. It is defined as the expected absolute difference between the model’s accu-
racy and its confidence, i.e., Ex,y |P(y = ŷ|x)− p̂|, where P is the true probability that
the network decision is correct. In practice, we only have a finite amount of validation
set samples (x1, y1), ..., (xn, yn), with associated predictions and confidence values
(ŷ1, p̂1), ..., (ŷn, p̂n). Hence, we cannot directly compute the ECE using this definition.
Instead, we divide the unit interval [0, 1] into m bins, where the ith bin is the interval
bi =

(
i−1
m , i

m

]
. Let Bi = {t|p̂t ∈ bi} be the set of samples whose confidence values be-

long to the bin bi. The accuracy of this bin is computed as Ai =
1

|Bi|
∑

t∈Bi
1 (ŷt = yt),

where 1 is the indicator function, and yt and ŷt are the ground-truth and predicted labels
for xt. Ai is the relative number of correct predictions of instances that were assigned
to Bi based on their confidence value. Similarly, the confidence Ci is the average con-
fidence values of all samples in the bin bi, i.e., Ci = 1

|Bi|
∑

t∈Bi
p̂t. Note that if the

network is under-confident at bin bi then Ai > Ci and vise versa. The ECE can be thus
computed as follows:

ECE =

m∑
i=1

|Bi|
n

|Ai − Ci| . (1)

ECE is based on a uniform bin width. If the model is well trained then, hopefully,
most of the samples lie within the highest confidence bins. Hence, low confidence bins
are almost empty and therefore have no influence on the computed value of the ECE.
For this reason, we can consider another metric, Adaptive ECE (adaECE) [20]:

adaECE =
1

m

m∑
i=1

|Ai − Ci| (2)

such that each bin contains 1/m of the data points with similar confidence values. Even
though the drawbacks of ECE have been pointed out and some improvements have
been proposed [15,21,7,31], the ECE is still used as the standard calibration evaluation
measure.

3 Weight Scaling based on the Predicted Confidence

Temperature Scaling (TS), is a simple yet highly effective technique for calibrating
prediction probabilities [6]. It uses a single scalar parameter T > 0, where T is the
temperature, to rescale logit scores before applying the softmax function to compute
the class distribution. The optimal temperature T for a trained model, is found by min-
imizing the negative log likelihood for a held-out validation dataset. Alternatively, the
adaECE measure can be used as the objective score when finding the optimal T . Let
Ai and Ci be the accuracy and confidence of the validation-set points in the i-th set Bi.
Denote the average confidence in bin i after temperature scaling of all the instances in
Bi by a temperature T by Ci(T ):

Ci(T ) =
1

|Bi|
∑
t∈Bi

k
max
j=1

exp(ztj/T )∑k
l=1 exp(ztl/T )

(3)
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s.t. zt1, ..., ztk are the logit values computed by the network that is fed by xt. The
optimal temperature T can be found by minimizing the following adaECE score:

LTS(T ) =
1

m

m∑
i=1

|Ai − Ci(T )| . (4)

The minimization is carried out by a grid search over the possible values of T . Direct
minimization of the adaECE measure (2) on the validation set was shown to yield better
calibration results than maximizing the likelihood on a validation set [18].

Ji et al. [11] extended TS to a bin-wise setting, denoted Bin-wise Temperature Scal-
ing (BTS), by setting separate temperatures for each bin. BTS is trained by maximizing
the log-likelihood function. We can also directly minimize the gap between the confi-
dence and the accuracy in each bin by minimizing the following adaECE score:

LCTS(T1, ..., Tm) =
1

m

m∑
i=1

|Ai − Ci(Ti)| , (5)

We need to apply a grid search to find Ti that satisfies Ai = Ci(Ti). We denote this
calibration method Confidence based Temperature Scaling (CTS). Similar to the case
of a single temperature, it can be shown that CTS consistently yields better calibration
results than BTS. We use CTS as one of the baseline methods that are compared with
the calibration method we propose next.

Varying the distribution temperature T from 1 to ∞ induces a continuous path
from the original class distribution p = (p1, ..., pk) to the uniform distribution u =
(1/k, ..., 1/k). The notion of temperature scaling of a distribution originated in statis-
tical physics. There is no intrinsic reason to specifically use a temperature to make the
network output distribution smoother. The relevant features of temperature scaling as a
smoothing procedure are that the entropy increases monotonically and the confidence
decreases monotonically as a function of T , the order of probabilities from smallest to
largest is preserved in the smoothing operation and it is a continuous function of T .
In this study we put forward a different way to make a distribution smoother. For each
weight α ∈ [0, 1] we define a smooth version of the original distribution p as follow:

pα = αp+ (1− α)u. (6)

Varying the weight α from 1 to 0 induces a different
path from the class distribution p to the uniform distri-
bution u. We denote the calibration approach based on
shifting from p to pα (6) as Weight Scaling (WS). The
figure at the right shows the trajectories of temperature
scaling and weight scaling from p = [0.6, 0.3, 0.1] to
u = [1/3, 1/3, 1/3].
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It can be easily verified that the entropy H(pα) is a concave function of α and ob-
tains its global maximum at α = 0. Hence, as pα moves from p to u, the entropy
of pα monotonically increases. The confidence after weight scaling by α is simply
p̂α = αp̂+ (1− α)1/k where p̂ is the confidence before calibration.

Both temperature scaling and weight scaling preserve the order of the predicted
classes and therefore do not change the original hard classification decision. Another
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Algorithm 1 Confidence based Weight Scaling (CWS)
training input: A validation dataset x1, ..., xn where each xt is fed into a k-class classifier
network to produce class distribution pt1, ..., ptk.
Compute the confidence values: p̂t = maxj ptj , t = 1, ..., n.
Order the points based on their confidence and divide them into equal size sets B1, ..., Bm.
Compute the average accuracy Ai and confidence Ci based on the points in Bi, and compute
the calibration weight:

αi = max(0,min(1,
Ai − 1

k

Ci − 1
k

)), i = 1, ...,m

training output: weights α1, ..., αm and a division of the unit interval into m bins.

Calibration procedure:
- Given a point x with class distribution p1, ..., pk, compute the confidence: p̂ = maxj pj .
- Find the index i ∈ {1, ...,m} s.t. p̂ is within the borders of i-th bin.

- The calibrated prediction is: p(y = j|x) = αipj + (1− αi)
1
k
, j = 1, ..., k

desired property of a calibration method is preserving the order of clinical decisions in
different patients based on the decision confidence. However, as it can easily be verified,
a network that is more confident at patient x than at patient y can become less confident
at x than y after a temperature scaling calibration using the same temperature in both
cases. In contrast, since weight scaling is a monotone function of the confidence, it
preserves the ranking of patients based on the clinical decision confidence after weight
scaling by the same α.

We next use the adaECE score to learn a calibration procedure based on weight
scaling instead of temperature scaling. In the case of weight scaling let

Ci(α) =
1

|Bi|
∑
t∈Bi

k
max
j=1

(αptj + (1− α)
1

k
) = αCi + (1− α)

1

k
(7)

be the confidence in bin i after scaling by a weight α where pt1, ..., ptk are the soft-
max probability values computed by the network that is fed by xt. In the case of single
parameter weight scaling, we look for a weight α that minimizes the following adaECE
score:

LWS(α) =
1

m

m∑
i=1

|Ai − Ci(α)| =
1

m

m∑
i=1

|Ai − αCi − (1− α)
1

k
|. (8)

Here there is no closed form solution for the optimal α. In a way similar to CTS, we
can allow assigning a different weight in each confidence bin. To find the weight set
that minimizes the following adaECE score:

LCWS(α1, ..., αm) =
1

m

m∑
i=1

|Ai − Ci(αi)| , (9)

we can perform the minimization in each bin separately. To determine the number of
bins we compute the adaECE score on the validation set and choose the number of bins
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that yields the minimal adaECE score. In the case of weight scaling (unlike temperature
scaling) there is a closed form solution to the equation:

Ai = Ci(αi) = αiCi − (1− αi)
1

k
(10)

which is

αi =
Ai − 1

k

Ci − 1
k

. (11)

The definition of confidence as the probability of the most likely class implies that
always 1/k ≤ Ci. If 1/k ≤ A ≤ Ci then αi ∈ [0, 1]. In the (rare) case of accuracy less
than random, i.e. Ai < 1/k, we set αi = 0 and in the (rare) case of under-confidence,
i.e. Ci < Ai, we set αi = 1. The obtained calibration method is denoted Confidence
based Weight Scaling (CWS) and is summarized in Algorithm box 1.

4 Experimental Results

We implemented the proposed calibration methods on various medical imaging classifi-
cation tasks to evalute their performance. The experimental setup included the following
medical datasets:

– ChestX-ray14 [28]: A huge dataset that contains 112,120 frontal-view X-ray im-
ages of 30,805 unique patient of size 1024 × 1024, individually labeled with up
to 14 different thoracic diseases. The original dataset is multi-label. We treated the
problem as a multi-class task by choosing the samples contain only one annotated
positive label. We used a train/validation/test split of 89,696/11,212/11,212 images.

– HAM10000 [27]: This dataset contains 10,015 dermatoscopic images of size 800×
600. Cases include a representative collection of 7 diagnostic categories in the
realm of pigmented lesions. We used a train/validation/test split of 8,013/1,001/1,001
images.

– COVID-19 [22]: A small dataset of X-ray images obtained from from two different
sources. 127 COVID-19 X-ray images was taken from [1] and 500 no-findings and
500 pneumonia frontal chest X-ray images was randomly taken from the ChestX-
ray8 database [28]. Here, we used a train/validation/test split of 901/112/112 im-
ages.

Each dataset was fine-tuned on pre-trained ResNet-50 [8], DenseNet-121 [10] and
VGG-16-BN (with batch normalization) [26] networks. The models were taken from
PyTorch site 1. These network architectures were selected because of their widespread
use in classification problems. The last FC layer output size of each of them was ad-
justed to fit the corresponding number of classes for each dataset. All models were fine-
tuned using cross-entropy loss and Adam optimizer [13] with learning rate of 0.0001.

Compared methods. WS and CWS were compared to TS, vector scaling (VS) and
matrix scaling (MS) [14]. The optimal TS was found by minimizing the ECE score
over a validation set [18]. We also implemented our CTS algorithm, which calculates

1 https://pytorch.org/vision/stable/models.html

https://pytorch.org/vision/stable/models.html
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Table 1: ECE for top-1 predictions (in %) using 10 bins (with the lowest in bold and
the second lowest underlined) on various medical imaging classification datasets and
models with different calibration methods.
Dataset Architecture Acc (%) Uncalibrated TS VS MS WS CTS CWS

ChestX-ray14
ResNet-50 52.7 2.14 2.14 2.00 3.67 2.13 1.81 1.67
DenseNet-121 52.3 4.18 4.18 2.99 3.49 3.65 3.20 2.75
VGG-16-BN 52.3 2.46 2.46 1.81 4.73 1.94 2.49 1.79

HAM10000
ResNet-50 88.8 5.17 1.76 5.28 3.08 3.53 1.93 1.58
DenseNet-121 87.4 4.91 2.36 7.59 3.30 3.71 2.00 1.71
VGG-16-BN 89.0 7.73 2.94 3.57 1.78 6.09 1.92 1.59

COVID-19
ResNet-50 91.1 6.08 2.76 21.39 15.35 4.65 3.99 3.78
DenseNet-121 90.2 6.25 6.55 29.70 20.78 6.15 5.69 4.65
VGG-16-BN 88.4 8.92 6.82 9.30 8.31 4.27 5.58 4.09

Table 2: adaECE for top-1 predictions (in %) using 10 bins (with the lowest in bold and
the second lowest underlined).

Dataset Architecture Acc (%) Uncalibrated TS VS MS WS CTS CWS

ChestX-ray14 ResNet-50 52.7 2.15 2.14 1.95 3.81 2.12 1.99 1.69

the optimal temperature in each bin (5). Note that VS and MS may change the model’s
accuracy and reduce the initial performance, while the other methods preserve it. For
each method we evaluated the ECE score (computed using 10 bins) after calibration
of the test set. Although adaECE was used as the objective function in our algorithm,
ECE is still the standard way to report calibration results, so we used it to compare our
calibration results with previous studies.

Results. Table 1 shows the calibration results. CWS achieved the best results in
almost all cases, except one where it reached the second best result. Moreover, the ECE
score after WS calibration was lower than the ECE after TS in more than a half of
the cases. ChestX-ray14 is a large dataset with many classes. We can see in this case
the advantage of WS over TS that is not calibrating at all (the optimal temperature
was T = 1). The results also show that vector and matrix scaling collapse when using
a small amount of classes, such as the COVID-19 dataset. We next verified that the
calibration performance of CWS is still better than the other compared methods when
adaECE is used for evaluation. Table 2 shows calibration results in one case evaluated
by the adaECE score.

An advantage of WS is that it preserves the order of confidence of two samples, un-
like TS that may violate this order. Fig. 1 presents two pairs of samples from HAM10000
with the same label (Benign keratosis). In each pair, the confidence of the first image
before calibration was higher and after TS calibration the confidence became lower.
Overall, TS changed the confidence order of 3% of the image pairs in the HAM10000
test dataset.
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0.55 > 0.53 0.59 > 0.53
WS 0.54 > 0.51 0.59 > 0.51
TS 0.46 < 0.49 0.45 < 0.51

Fig. 1: Two pairs of samples of benign keratosis taken from the HAM10000 dataset.
For each image we show confidence before calibration (top row), after WS calibration
(middle row) and after TS calibration (bottom row).
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Fig. 2: Difference between average confidence Ci and average accuracy Ai for each
class i of the (a) ChestX-ray14 and (b) HAM10000 datasets trained on ResNet-50.

We investigated the level of confidence of each class in the ChestX-ray14 and
HAM10000 datasets. Fig. 2 presents the difference between average confidence and
average accuracy of each class before calibration and after applying the CWS algo-
rithm for (a) ChestX-ray14 and (b) HAM10000 trained on ResNet-50. Positive differ-
ence symbolizes an over-confident class and negative difference represents an under-
confident class. The labels of ChestX-ray14 are Atelectasis, Cardiomegaly, Effusion,
Infiltration, Mass, Nodule, Pneumonia, Pneumothorax, Consolidation, Edema, Emphy-
sema, Fibrosis, PT, Hernia and No findings. The labels of HAM10000 are Actinic Ker-
atoses, Basal cell carcinoma, Benign keratosis, Dermatofibroma, Melanoma, Melanocytic
nevi and Vascular skin lesions. The classes indexes of the model output displayed in Fig.
2 match this order. The results show that there are some classes in each dataset that are
less calibrated than the others (like Emphysema in ChestX-ray14 and Melanocytic nevi
in HAM10000) and some classes that are already relatively calibrated. They also show
that CWS improves calibration for most of the classes and reduce the model’s confi-
dence in the few cases where the ECE gets higher.
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To conclude, calibrated confidence estimates of predictions are critical to increase
our trust in the using of neural networks for clinical decisions. As interest grows in de-
ploying neural networks in medical decision making systems, the predictable behavior
of the model will be a necessity. In this work, we introduced a simple and effective cal-
ibration method based on weight scaling of the prediction confidence. Most calibration
methods are trained by optimizing the cross entropy score. CWS function learning can
be done by explicitly optimizing the ECE measure. We compared our CWS method
to various state-of-the-art methods and showed that it was on par in term of the ECE
measure. We believe that it can be used in place of the standard temperature scaling
method. In general, a calibrated prediction has a concrete probabilistic interpretation
that hopefully enables practitioners build better trust on AI systems.
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