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ABSTRACT

Batch normalization (BN) is a key component of most neural
network architectures. A major weakness of Batch Normal-
ization is its critical dependence on having a reasonably large
batch size, due to the inherent approximation of estimating
the mean and variance with a single batch of data. Another
weakness is the difficulty of applying BN in autoregressive or
structured models. In this study we show that it is feasible
to calculate the mean and variance using the entire training
dataset instead of standard BN for any network node obtained
as a linear function of the input features. We dub this method
Full Batch Normalization (FBN). Our main focus is on a fac-
torized autoregressive CRF model where we show that FBN
is applicable, and allows for the integration of BN into the
linear-chain CRF likelihood. The improved performance of
FBN is illustrated on the huge publicly available SKU dataset
that contains images of retail store product displays.

Index Terms— CRF, Batch normalization, FBN

1. INTRODUCTION

Batch normalization (BN) [1] is a technique for improving
the speed, performance and stability of artificial neural net-
works. BN also makes it possible to use significantly higher
learning rates, and reduces the sensitivity to initialization. It
has become a part of the standard toolkit for training deep
networks and has been widely used in various areas such as
machine vision [1, 2], speech [3] and natural language pro-
cessing [4]. BN stabilizes the distributions of layer inputs
by introducing additional network layers that control the first
two moments (mean and variance) of these distributions. It
can be inserted extensively into a network, either between a
linear mapping and a nonlinearity or after the non-linear ac-
tivation [2, 1, 5]. Normalization techniques typically make
neural networks more amenable to optimization, by allowing
the training of very deep networks without the use of careful
initialization schemes [6, 7]. While BN’s original motivation
was to reduce internal covariate shift during training [1], re-
cent work has proposed instead that its effectiveness stems
from making the optimization landscape smoother [8].

A major weakness of BN is its critical dependence on
having a reasonably large batch size, due to the inherent ap-

proximation of estimating the mean and variance with a sin-
gle batch of data. When trained with small batch sizes, BN
exhibits a significant degradation in performance [9, 10, 11].
Several approaches have addressed the issues encountered by
BN, by not relying on the stochastic minibatch altogether (e.g.
layer [12], instance [13], weight [14] and group normaliza-
tion [11]). Instead, they collect various types of statistics from
the current instance alone, i.e., from each individual element
in the minibatch separately. These methods have a much
smaller computational cost but typically achieve inferior re-
sults compared to BN [15].

Conditional Random Field (CRF) [16] is a popular prob-
abilistic graphical model that was originally applied to lan-
guage processing tasks [16]. The CRF pairwise potential ma-
trix can be forced to be low-rank as a form of regulariza-
tion [17, 18, 19]. This causes the training objective func-
tion to be non-convex and therefore more difficult to optimize.
The samples of linear-chain CRF are sequences of inputs and
their corresponding sequences of outputs. The likelihood of
the model is an autoregressive function of a sequence, where
the model weights are shared across multiple steps. Hence,
BN cannot be applied directly to learn minibatch statistics. A
recent study [20] proposed an approximated CRF likelihood
which allows for integrating BN in a simple and effective way
that shows significant improvement in performance.

In this study we present a variant of batch normalization
that can be combined into the exact likelihood function of
low-rank linear-chain CRF models. We can efficiently and ac-
curately compute BN statistics from the whole training data,
while still using minibatches for training. This method is di-
rectly applicable to any layer whose output is a linear function
of the model input.

We show here that in the case of linear-chain CRF with
a low-rank pairwise potential matrix, it is feasible to com-
pute the batch-normalization statistics over all the training
data even though we use minibatches to compute the gradi-
ents. Furthermore, when BN is computed this way, it can in
fact be integrated in the original CRF likelihood. The im-
proved performance of the proposed method is demonstrated
on a huge publicly available dataset that contains images of
retail store product displays, taken in varying settings and
viewpoints [20]. We show that we achieve better classifica-
tion results when applying our method on the approximated



CRF likelihood, and further improve the performance by a
wide margin when training the exact CRF likelihood.

2. CRF WITH FACTORIZED PAIRWISE
POTENTIAL MATRIX

In this section we describe the factorized CRF model and ex-
plain the challenges we face when trying to use BN in the
training phase. We are given a sequence of observations and
the goal is to classify each item in the sequence to one of k
predefined classes (see example in Fig. 1). The Conditional
Random Field (CRF) [16] model has conditional distribution
p(y|x) that obeys a conditional Markov property. The proba-
bility distribution of a linear-chain CRF is:

p(y|x) = 1

Z

n∏
t=1

exp(y>
t−1Pyt + x>

t Uyt + b>yt) (1)

where x = (x1, ..., xn) is the input sequence, y = (y1, ..., yn)
is the corresponding sequence of the target labels and Z is the
partition function defined as the global probability normal-
ization over all possible sequence label-assignments of length
n. The CRF model parameters are P , U and b where P is a
k × k pairwise potential matrix that models the relationship
between labels of consecutive items, U is a unary potential
matrix modeling the information in the input features and the
vector b is the label bias. Note that we use a one-hot encoding
for the labels.

In case the number of classes is large, the pairwise po-
tential matrix P has many parameters. In order to properly
learn and generalize the massive variety of possible neigh-
boring patterns, we can enforce a low-dimensional structure
on the large and sparse matrix P . We can thus assume that
P = R>Q where the dimensions of R and Q are d × k s.t.
d � k. Substituting P = R>Q in the CRF function (1) we
get a factorized CRF model:

p(y|x) = 1

Z

n∏
t=1

exp((Ryt−1)
>Qyt + x>

t Uyt + b>yt). (2)

The columns of Q can be viewed as low-dimensional embed-
dings of the right-side classes yt, and the columns of R are
embeddings of the classes of the left-side object yt−1. As a
byproduct of the matrix factorization, the computation com-
plexity of the dynamic programming inference algorithms
(either Viterbi or forward-backward [21]) is reduced from
O(nk2) to O(nkd).

We can easily normalize the coordinates of input vector
xt in a pre-processing step to have zero mean and unit vari-
ance. However, the pairwise component (Ryt−1) depends on
the model parameters and hence its normalization cannot be
done before training. It is not trivial to normalize this term
during training since the parameters are shared across all the
instances in the sequences. The CRF gradient is computed by

Fig. 1: Examples of an input sequence x from the SKU retail
dataset [20].

a dynamic programming procedure [21] which cannot be car-
ried out if BN simultaneously uses all the time steps. A simi-
lar situation occurs in LSTM where it was suggested to learn
the BN statistics in each time step independently [22]. An-
other solution is the approximated CRF likelihood [20] which
learns the CRF parameters by optimizing a pairwise surrogate
likelihood:

p(y|x) =
n∏
t=1

p(yt|xt, yt−1) (3)

where the normalization is done for each time-step separately.
Minibatches are composed here of adjacent pairs 〈xt, yt−1〉

randomly taken from the training sequences. The minibatch
instances in this case are ordered pairs of xt the input in-
stance at step t and its neighboring label yt−1. The likelihood
takes the form of a regular instance classifier and standard
BN statistics can easily be collected from the instances in the
minibatch. It was shown that optimizing (3) with BN yields
better performance than directly optimizing the exact CRF
without BN (2) [20].

3. NORMALIZATION BASED ON THE WHOLE
TRAINING DATA

In this section we show that in case of factorized CRF, where
BN is applied to a linear function of the input Ryt−1 (2), it
is feasible to compute the BN statistics based on the entire
training dataset even though the optimization is carried out in
minibatches.

Given a particular node in the deep network, producing a
scalar value z for each input example, the minibatch values of
the node are z1, ..., zm wherem is the minibatch size. The BN
is defined as ẑi ← zi−µ

σ where µ and σ2, the empirical mean
and variance of z, are calculated using the current minibatch.
Assume now that z is a neuron in the first hidden layer and
BN is applied between the linear and the non-linear transfor-
mations, i.e. ϕ(BN(z)) = ϕ(BN(w>x)) s.t. x is the input
feature vector. The first two moments of the input, µ = E(x)
and C = Var(x), can be computed in a pre-processing step
using the entire training dataset. Even unlabeled data can be
used here since these statistics do not depend on the label val-
ues. Applying BN z based on the whole data we obtain:

FBN(z) =
z − Ez√
Var(z)

=
w>(x− µ)√
w>Cw

. (4)



We denote the BN procedure based on statistics collected
from the whole training set Full Batch Normalization (FBN).
Although the FBN is based on the whole training set, the
computation of an FBN layer only requires the current in-
put sample x. As a byproduct, it makes the computational
graph implementation of the back-propagation much sim-
pler than standard BN, and reduces time and memory con-
sumption. There are BN alternatives based on a single in-
stance [13, 12, 11]. However, they are typically inferior to
standard BN if the batch size is large enough [15]. Here we
take the largest batch size we can have – the whole training
data. This makes the collected statistics much more accu-
rate and stable. In the test phase, instead of using a moving
average of minibatch means and variances, we can use the
training data mean and variance. We thus avoid the train-test
discrepancy that exists in standard batch normalization [9].
In addition, FBN decouples the batch-size parameter used for
stochastic gradient optimization from the batch-size param-
eter used for normalization, a constraint in BN which may
cause sub-optimal convergence [23]. Moreover, FBN can
overcome the difficulties many tasks encounter when they
cannot increase their batch size due to memory constraints
(e.g. high-resolution image analysis or manipulation) and
therefore cannot effectively use standard BN [11, 24].

We next apply FBN to the task of learning a factorized
CRF. Let p = (p1, ..., pk)

> be the train-set object class statis-
tics. Let y be a one-hot representation of a label of a single ob-
ject. The mean and variance of y are p and diag(p1, ..., pk)−
pp> respectively where diag() is a k × k diagonal matrix.
Let Ri = (ri1, ..., rik) be the i-th row of the factorized CRF
parameter R. The FBN operation of Riy, where the normal-
ization is computed on the entire training set is:

FBN(Riy) =
Riy − E(Riy)√

Var(Riy)
=

Ri(y − p)√∑k
j=1(r

2
ijpj)− (Rip)2

.

(5)
The label statistics p can be computed from the training data
in a pre-processing step and is fixed during the training proce-
dure. Hence, although the statistics of the FBN operation (5)
are computed on the entire training set, during the optimiza-
tion they are only a function of the current instance label y
(and the model parameter R). We can thus replace minibatch
based statistics in (3) by the statistics of the entire training set.
In addition to faster convergence and improved performance
the optimization is much simpler since FBN computation only
requires the current instance. Furthermore, we can now easily
integrate FBN into the of the exact factorized CRF objective:

p(y|x) = 1

Z

n∏
t=1

exp(FBN(Ryt−1)
>Qyt + x>

t Uyt + b>yt).

(6)

Table 1: FBN for CRF with normalized deep class embed-
ding algorithm

Training data: A data sequence x with corresponding label
sequences y.

Optimize the likelihood function:

L(R,Q,U, b) = p(y|x) =

1

Z

n∏
t=1

exp(FBN(Ryt−1)
>Qyt + x>

t Uyt + b>yt)

s.t. FBN(Riy) =
Ri(y − p)√∑k

j=1(r
2
ijpj)− (Rip)2

.

and p = (p1, ..., pk)
> is the train-set object class statistics.

4. EXPERIMENTAL RESULTS

In this section we describe the principal experiments con-
ducted in this study that enable full batch normalization in
CRF training. We applied FBN on the large-scale SKU
dataset and obtained substantial improvement in performance.
Due to paper length restrictions, full implementation details
and additional experiments will be published separately.

4.1. SKU Dataset

The SKU dataset was published by [20] and contains se-
quences of fixed-size image patches, originated from photos
of retail store displays taken on-site. The objects are the in-
ventory items positioned at the front of the displays, and the
classes are their stock-keeping-unit (SKU) unique identifiers.
Each object was originally annotated by its class label, while
the object bounding-box coordinates were either manually
annotated or extracted by a suitable detector [25]. The image
patches were cropped and reshaped into single-object images
of size 150 × 450 pixels, and grouped into shelves; i.e., se-
quences of horizontal layouts, arranged from left to right.
Each image-patch xt was fed into a pre-trained ResNet50
CNN [2] to acquire the feature vector ht = h(xt) – the ac-
tivations of the last hidden Global Average Pooling (GAP)
layer [26, 27], and was later standardized element-wise.

The benchmark contains 76,081 sequences of 460,121
single-object images, originated from 24,024 photos of store
displays. Each object is labeled as one of 972 different
classes. Sequence lengths vary from 2 to 32, and are typically
between 4-12. The average sequence length is 6 with a SD of
2.4.

The model was trained using a single Tesla V100 GPU.
The time to train a single batch was 0.15 seconds, and the
training typically converged after 15-20 epochs (˜90 minutes).
At test time we ran the forward-backward algorithm [21] to



Table 2: Classification results on SKU dataset [20].

Training Method Accuracy AP RP=0.75 RP=0.95

Log-linear CRF 0.856 0.904 0.898 0.644
Factorized CRF [20] 0.883 0.938 0.935 0.780
Approximate CRF + BN [20] 0.878 0.931 0.937 0.756
Approximated CRF + FBN (ours) 0.889 0.938 0.943 0.783
Factorized CRF + LN [12] 0.899 0.944 0.949 0.833
Factorized CRF + FBN (ours) 0.904 0.953 0.954 0.852

extract object marginal probabilities, which took less than 0.1
seconds to classify all the objects in a single image.

4.2. Compared methods

First, we reproduced the following experiments described
in [20]: (a) Log-linear CRF: learning the log-linear parame-
ters of the linear-chain CRF (1). (b) Factorized CRF: learning
a linear-chain CRF with the factorized parameters of the pair-
wise weight matrix as defined in Eq. (2). (c) Approximate
Factorized CRF + BN: the previous state-of-the-art model
proposed by [20] where the CRF pairwise weight matrix
was factorized, and the network was trained by the surrogate
likelihood (3), with batch-normalization for the embedding
features in the matrix factor R.

Next, we performed the following experiments: (d) Ap-
proximate Factorized CRF + FBN: This time we only re-
placed the BN with FBN whereas the remainder of the model
parameters remained identical to the previous experiment.
This change alone improved performance by a considerable
margin. (e) Factorized CRF + FBN: BN cannot be applied
directly to CRF because the minibatch statistics are shared
across various nodes in the sample, and are also part of the
complex sequence-level normalization factor. However, FBN
does not require computing any minibatch statistics and hence
can easily be incorporated into the exact CRF formula. We
trained the likelihood defined in Eq. (6).

As described earlier, BN is mostly preferred when appli-
cable and works better with large batches. FBN provides an
accurate batch normalization of the largest batch size pos-
sible. However, it is noteworthy to consider other popular
normalization methods. Instance Normalization (IN) [13]
and Group Normalization (GN) [11]) are designed for multi-
channel CNNs and are therefore irrelevant for our case of
normalizing the class embedding matrix. Layer Normaliza-
tion (LN) [12, 28] normalizes the inputs across the features
rather than the batch, and is often used in recurrent models.
Given the current embedding vector z ≡ Ryt−1 the nor-
malization formula is LN(z) = z−µ

σ , where µ and σ2 are
the empirical mean and variance of z instance-level features.
In our case, layer normalization in fact helped in avoiding
numerical instability issues. Unsurprisingly, however, it was
unable to perform as well as FBN since the LN formulation
is very different from the desired BN operation.
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Fig. 2: Precision-Recall curves for different training methods.

4.3. Quantitative results

Table 2 lists the test results in terms of Accuracy, Average
Precision (AP), and the recall values attained for precision
of 0.75 (RP=0.75) and 0.95 ( RP=0.95). Figure 2 depicts
the Precision-Recall curve. FBN, when applied to the ap-
proximate method proposed by [20] instead of standard BN
(Approximated CRF + FBN), improves the accuracy by more
than 1%. This improvement is even more evident for the ma-
jor objective for this dataset of maximizing recall while pre-
serving high precision. The method that used FBN obtained
3% higher recall while preserving 95% precision.

In our full method (Factorized CRF + FBN), we trained
the exact CRF likelihood with FBN (6). The accuracy over the
former state-of-the-art method [20] increased by more than
2%. and the recall attained for 95% precision increased by
almost 10% compared to [20] and more than 20% compared
to the standard CRF. It can be seen that our full method is
particularly useful for very high recall values by contrast to
the approximate alternatives (Figure 2). Our full method also
outperforms the other BN alternatives by a considerable mar-
gin. Note that the test set is very large and thus the results are
statistically significant as every minor improvement in accu-
racy rate corresponds to a large number of additional correctly
classified objects. For instance, we increased the number of
correct classifications by more than 9,200 objects over the for-
mer SOTA [20] while attaining 95% precision.

To conclude, BN is motivated by the well-known fact that
whitening inputs stabilizes the training procedure. Standard
BN implementations extract the BN statistics from the cur-
rent minibatch. In this work, we proposed a BN procedure
in which the data statistics can be computed using all the data
available in the training phase. We thus sever the ties between
normalization and minibatch. The proposed FBN algorithm
yields a more accurate normalization than BN at a reduced
complexity of the computational graph since only the current
instance is explicitly involved in the FBN operation. The im-
proved performance of FBN was demonstrated on learning
the parameters of a factorized CRF model. A possible future
research direction would involve extending the applicability
of FBN to intermediate hidden layers as well.
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