
2016 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 13–16, 2016, SALERNO, ITALY

INTRA-CLUSTER TRAINING STRATEGY FOR DEEP LEARNING WITH APPLICATIONS
TO LANGUAGE IDENTIFICATION

Alan Joseph Bekker1 Irit Opher2 Itsik Lapidot2 Jacob Goldberger1

1Engineering Faculty, Bar-Ilan University, Israel
2Afeka Center for Language Processing (ACLP), Afeka Acad. Coll. of Eng, ,Israel

ABSTRACT

In this study we address the problem of training a neural net-
work for language identification using speech samples in the
form of i-vectors. Our approach involves training a classi-
fier and analyzing the obtained confusion matrix. We clus-
ter the languages by simultaneously clustering the columns
and the rows of the confusion matrix. The language clusters
are then used to define a modified cost function for training
a neural-network that focuses on distinguishing between the
true language and languages within the same cluster. The
results show enhanced language identification on the NIST
2015 language identification dataset.

Index Terms— Confusion matrix, clustering, language
identification

1. INTRODUCTION

The purpose of automatic language recognition is to identify
which language is spoken from a speech sample. There are
many characteristics of speech that could be used to iden-
tify languages. Languages are made up of different sounds
that form phonemes, so it is possible to distinguish languages
based on the acoustic features present in the speech signal.
There are of course also lexical information. Languages are
separable by the vocabulary, or sets of words and syntactic
rules. In this study we focus on language identification that
is based solely on the acoustic information conveyed by the
speech signal. The applications of language identification
systems include multilingual translation systems and emer-
gency call routing, where the response time of a fluent native
operator might be critical. In the past few years, with the
growing focus on deep neural networks (DNN), new training
procedures [1] and optimization techniques were introduced
[2],[3], showing significant improvement in computer-vision,
speech recognition and language processing tasks. In particu-
lar the performance improvement obtained using DNNs for
automatic speech recognition (ASR) [4] has motivated the
application of DNNs to speaker and language recognition.
DNNs were trained for a different purpose to learn frame-
level features that are then used to train a secondary classifier

for the intended language recognition task [5][6]. DNNs have
also been applied to directly train language classification sys-
tems [7][8].

In this study we apply DNN to language recognition and
report performance on the NIST 2015 Language Recognition
i-vector Machine Learning Challenge [9]. In this task there
are i-vectors examples from 50 languages. The standard DNN
training procedure is based on a soft-max output layer that
provides a distribution over all possible classes. The training
score is the probability of the true class. In our task there
are pairs of languages that are very similar to each other (e.g.
Czech and Slovak) and languages that sound completely dif-
ferent (e.g. Spanish and Japanese). A classifier will rarely
misclassify a Spanish example as Japanese but it might clas-
sify Czech as Slovak. In this study we explore a training strat-
egy that is based on distinguishing between the true language
and similarly sound languages. We first exploit the structure
of the confusion matrix to cluster the language set. Both the
rows and the columns of the confusion matrix correspond to
the language set we want to cluster. In our approach we si-
multaneously cluster the row and the columns to obtain an
acoustic based language clustering. Next we propose a modi-
fied cost function that encourages the neural net to learn how
to distinguish between the intra-cluster examples rather than
distinguishing between examples from different clusters that
are assumed to be well separated. We show that the modified
cost function yields improved results on the NIST-2015 chal-
lenge dataset. Furthermore we show that the proposed clus-
tering method can be used at the training stage effectively,
in terms of classification performance. Finally we analyze
the differences between the linguistic and acoustic clustering
approaches and show how our approach can reveal language
relation information in cases where a precise linguistic de-
scription is not available.

2. INTRA-CLUSTER COST FUNCTION

Assume we want to train a multi-class neural-network. The
classifier output is a distribution on the possible classes p(y =
i|x;w) where x ∈ Rd is the feature vector, k is the size of the
class-set, y ∈ {1, ..., k} is the class label and w is the network

978-1-5090-0746-2/16/$31.00 c©2016 IEEE

parameter-set. The neural network classifier is based on non-
linear intermediate layers followed by a soft-max output layer
used for soft classification. Denote the non-linear function
applied on an input x by h = h(x) and denote the soft-max
output layer by:

p(y = i|x;w) = exp(u>
i h)∑k

j=1 exp(u
>
j h)

, i = 1, ..., k (1)

such that u1, ..., uk are the soft-max parameters which form
a subset of the entire network parameter set w. In the

non-linear function

w\u

soft-max

u

x h y

training phase we are given n feature vectors x1, ..., xn with
corresponding labels y1, ..., yn. The standard cost function
we aim to maximize in the training step is the log-likelihood
score:

Slik(w) =
∑
t

log p(yt|xt;w). (2)

Two classes can be well separated by the neural network
or it can be difficult to distinguish between them. For instance
if we are dealing with a language classification problem, a
good classifier will rarely misclassify a “Spanish” example
as “Japanese” but it might classify it as another Latinate lan-
guage such as “Italian”. Assume that we cluster the k classes
into m clusters based on the confusion matrix (in the next
section we suggest a specific algorithm). Denote the cluster
index of a class i by c(i). We can use the clustering to de-
fine a modified score for training the NN. This score is aimed
at exploiting the structure of the confusion patterns by en-
couraging the neural net to learn how to distinguish between
the intra-cluster examples rather than distinguishing between
examples from different clusters that are assumed to be well
separated. Given the network parametric structure (1) we can
compute the posterior probability of the correct label given
the label cluster:

p(y = i|x, y ∈ c(i);w) = exp(u>
i h(x))∑

j∈c(i) exp(u
>
j h(x))

. (3)

Using Eq. (3) we define the following intra-cluster score:

Sic(w) =
∑
t

log p(yt|xt, c(yt);w). (4)

In this cost function we do not waste the information con-
veyed in the labeled data to train the classifier to distinguish
between unrelated classes. Instead we focus on the similar
classes which are often to be confused.

Dropout is an algorithm for training neural networks by
randomly dropping hidden units during training to prevent

non-linear function

x

w\u

1 2 3 4 5 6

u1 u6

Fig. 1. The dropout soft-max layer, where the edges that do
not belong to the cluster of the trained label are dropped. In
this illustration the correct class is 1 and c(1) = {1, 2, 6}.

their co-adaptation [1]. The cost function Sic(w) (4) can
be viewed as a dropout procedure applied to the units of the
soft-max output layer. In each training example the network
has a different topology of the soft-max layer in such a way
that only classes within the cluster of the true label are al-
lowed. The output layer dropout is illustrated in Figure 1.
The dropout procedure eliminates neurons randomly. In our
case, however, we eliminate outputs in a deterministic way.
We only consider classed that are within the cluster of the
true class.

The proposed intra-cluster cost function Sic(w) focuses
on the more frequent intra-cluster errors. A possible draw-
back of the proposed cost function is that it does not take out-
of-cluster errors into consideration. To deal with both error
types, the score function we actually optimize is a combina-
tion of the log-likelihood score (2) and the intra-cluster score
(4), i.e.:

S(w) = αSlik(w) + (1−α)Sic(w) (5)

where 0 < α < 1 balances the two components of the score
function. The parameter α can be tuned by a cross-validation
procedure. The partial derivative of the function S(w) (5)
with respect to the soft-max parameters is:

∂S

∂ui
=

n∑
t=1

(1{yt=i} − pti)h(xt) (6)

s.t.

pti = αp(yt = i|xt;w) + (1−α)p(yt = i|xt, c(yt);w).

At test time we do not know the label or its cluster and we use
the soft-max layer over all possible labels.

The proposed method resembles the hierarchical classifi-
cation approach where in the first step the classifier decides on
the label group and then finds a specific label within a group.
Hierarchical models for classification, however, suffer from
the fact that they have to make intermediate decisions prior

to reach a final category. These intermediate decisions lead
to the error propagation phenomenon that cause a decline in
accuracy. Here we do not use the class categories for hierar-
chical decisions. Instead, we still apply a flat decision pro-
cedure that addresses intra-cluster and out-of-cluster errors in
different ways.

3. CLUSTERING THE CONFUSION MATRIX

In this section we present a clustering method that is suitable
for the intra-cluster training method described above. Assume
we are given a classification task with features x1, ..., xn ∈
Rd and corresponding labels y1, ..., yn ∈ {1, ..., k}. Our goal
is to find a clustering algorithm of the class-setC = {1, ..., k}
based on the labeled data. One possible approach is to use the
feature vectors and their labels and apply a semi-supervised
procedure of clustering the feature vectors given the con-
straint that vectors with the same label should be assigned
to the same cluster [10]. This is an indirect approach since
the clustering is applied to the feature vectors and not to the
category set C. Another approach is to build a parametric
model for all the features of a given class and then cluster the
models. Yin et al. [11] represents the features of each class
by a Gaussian mixture model and then applied a clustering
procedure on the GMMs.

Our clustering is based not just in the labeled training data
but also on the classifier we want to train. We first use the la-
beled feature vectors to train a classifier. We then compute
the confusion matrix that summarizes the classifier’s perfor-
mance. The confusion matrix for a classifier is a square k× k
matrix M such that M(i, j) denotes the number of examples
of class i that were classified as class j. The rows of the con-
fusion matrix correspond to the categories we want to cluster.
The gist of our approach is to directly cluster the class-set via
clustering the rows of the confusion matrix.

One intuitive approach to using the confusion-matrix is to
view each row as a feature representation of its corresponding
class. We can then apply any clustering method to the matrix
rows. For example we can apply a k-means algorithm based
on the Euclidean distance between the rows. Since each row
defines a distribution on the categories, we can also apply in-
formation theory based clustering algorithms that use the KL-
divergence between the rows [12][13]. One problem with this
strategy is that the diagonal of the confusion matrix is very
dominant and therefore the rows are not expected to be simi-
lar. Another special characteristic of our setup is that both the
rows and the columns of the confusion matrix correspond to
the category set we want to cluster. Hence, any clustering of
the matrix rows induces a clustering of the matrix columns.
The category clustering approach we describe below is based
on simultaneous clustering of the rows and the columns of the
confusion matrix.

We start with a pre-processing step applied to the con-
fusion matrix that eliminates the contribution of the matrix

diagonal. We define a conditional distribution over a pair of
categories as follows: for each two different categories a and
b define:

Pab =
M(a, b)∑
c 6=aM(a, c)

, a, b ∈ C (7)

and for each category a ∈ C define Paa = 0. Pab is the con-
ditional probability, given that the true label is a, and that the
classifier made a wrong assignment, that the classifier deci-
sion is b. Let X1 and X2 be random variables (r.v.) defined
on the category set such that X1 is associates with the correct
label and X2 described the erroneous label decision by the
classifier. The modified confusion matrix P , by definition, is
the conditional distribution of X2 given X1, i.e.,

p(X2 = b|X1 = a) = Pab, a, b ∈ C. (8)

Assuming a prior uniform distribution over the categories, i.e.

p(X1 = a) =
1

k
, a ∈ A

we obtain the joint distribution of X1 and X2.
Let {A1, ..., Am} be a partition of the k object categories

intom clusters. The probability that both the random variable
X1 and X2 will be in cluster Ai is:

p(X1 ∈ Ai and X2 ∈ Ai) = (9)∑
a∈Ai

p(X2 ∈ Ai|X1 = a)p(X1 = a) =
1

k

∑
a∈Ai

∑
b∈Ai

Pab.

The intuitive clustering score, which we want to maximize, is
the probability that the true category and the classified cate-
gory are in the same cluster, i.e.:

Score(A1, ..., Am) =

m∑
i=1

p(X1 ∈ Ai and X2 ∈ Ai). (10)

However, the clustering that maximizes this criterion is the
one formed by a single cluster that contains all the data points.
Even if we require all the m clusters to be non-empty, this
score still favors partitions that are very unbalanced. To over-
come this tendency, we define the following score function:

Score(A1, ..., Am) =

m∑
i=1

p(X2 ∈ Ai|X1 ∈ Ai)

=

m∑
i=1

1
k

∑
a∈Ai

∑
b∈Ai

Pab

|Ai|
k

=

m∑
i=1

1

|Ai|
∑
a∈Ai

∑
b∈Ai

Pab

(11)

This score measures the probability that frequently confused
labels are clustered together. The intuition behind this score
is that in a good clustering we expect that even when a classi-
fier makes a wrong category decision, the classification result
is still expected to be in the same cluster of the correct object

category. In other words, we look for a category partitioning
such that an object classifier seldom transitions from one cat-
egory cluster to another. The optimal clustering is the one that
maximizes the clustering score (11). Note that the score (11)
does not encourage all the clusters to have the same size. It is
also not necessarily optimized by having a huge cluster that
includes almost all the categories.

Maximizing the score (11) is known to be NP hard even
for m = 2 [14]. Variants of the spectral clustering algorithm
can be applied to find an optimal solution for a relaxation of
the proposed criterion (11). Here we used a greedy sequen-
tial optimization approach that was found to work better than
spectral methods in terms of both performance and compu-
tational complexity [15]. The sequential clustering algorithm
starts with a random clustering of the k categories intom clus-
ters. We then go over the data points in a circular manner and
check for each point whether its removal from one cluster to
another can increase the clustering score (11). This loop is it-
erated until no single-point transition offers an improvement.
Since there is no guarantee that the algorithm will find the
global optimum, we can run the algorithm using several ran-
dom initial partitions and choose the best local optimum. Al-
ternatively we can use a multi-level clustering or a bottom-up
agglomerative approach.

In the case where the category set is large we can com-
pute the basic optimization step in an efficient way. In the
basic step of the greedy optimization algorithm we remove a
category a from its current cluster and assign it to a cluster
such that the cost function (11) of the obtained clustering is
maximized. Since only the clustering affiliation of one cate-
gory is changed, most clusters remain unchanged and we do
not need to recompute the entire clustering score. We dub the
proposed object category algorithm which as the Confusion
matrix Clustering algorithm (CMC).

Note that the score definition (11) is related to the clas-
sical normalized-cut (Ncut) criterion for pairwise clustering
[16] [17]. Suppose we are given m objects and a symmet-
ric notion of pairwise similarity wij ≥ 0. The goal of pair-
wise clustering is to divide the data points into several groups
such that points in the same group are similar and points in
different groups are dissimilar to each other. The main dif-
ferences between pairwise data clustering and our category
clustering problem is that in the pairwise clustering setup the
input is provided by a symmetric similarity score between ob-
ject pairs. The score is then transformed into a joint object
distribution by the Laplacian representation of the data graph.
In our problem the (non-symmetric) relations between cate-
gories are provided by the confusion matrix which is a condi-
tional distribution defined on pairs of categories.

4. EXPERIMENTS

The NIST 2015 language recognition challenge [9] covers 50
target languages labeled data (300 speech segments per lan-

Input: Training data x1, ..., xn ∈ Rd with corresponding
labels y1, ..., yn ∈ {1, ..., k}.

Algorithm:

1. Train a DNN and compute the k×k confusion ma-
trix:

Mab =

∑
t p(y = b|xt;w)∑

t 1{yt=a}
, a, b = 1, ..., k

2. Eliminate the diagonal of the confusion matrix:

Pab =
Mab∑
c6=aMac

, a, b = 1, ..., k

3. Choose a random partition A1, ..., Am of the set
{1, ..., k} .

4. Loop over the k classes until there is no change

• Move class a into the cluster such that the
clustering score (11) is maximized.

5. Train a DNN using the cost function (5).

Table 1. Training a DNN based on the Confusion Matrix
Clustering (CMC) algorithm.

guage). The speech duration of the audio segments used to
create the i-vectors for the challenge were sampled from a
log-normal distribution with a mean of approximately 35s.
The speech segments were derived from conversational tele-
phone and narrow-band broadcast speech data. Each speech
segment is represented by an i-vector of 400 components [18].
The NIST challenge also contains an unlabeled dataset that
was not used in this study. The classifier we used here is a two
fully connected hidden layer Deep Neural-Network (DNN)
comprising 200 and 100 neurons each and a soft-max output
layer. The activation function was set to be ReLU and the
optimization procedure used was mini-batch stochastic gradi-
ent descent with momentum. We also used a Dropout with
a ratio of 0.5 to prevent over-fitting [1]. The fifty-class la-
beled dataset was used for evaluation with a 10-fold cross-
validation. In the experiments described below we first ap-
plied the proposed clustering on the DNN confusion matrix
results. Then we used this clustering to form a modified cost
function for neural-network training.

4.1. Language Clustering

In order to analyze the data linguistically, we used the Ethno-
logue Catalog of Languages [19], that provides statistics and
information on more than 7000 living languages. The NIST

Table 2. Linguistic Families.
Cluster Languages (Sub)Family

1 Hausa, Somali, Oromo, Arabic, Amharic Afro-Asiatic
2 Indonesian, Tagalog Austronesian
3 Ukrainian, Polish, Slovak, Czech, Russian, Bosnian Balto-Slavic
4 Hindi, Urdu, Punjabi, Bengali Indo-Aryan
5 Pashto, Kurdish, Tajik, Farsi, Dari Iranian
6 Romanian, French, Portuguese, Spanish Italic
7 Shona, Swahili, Zulu Niger-Congo
8 Burmese, Cantonese, Mandarin, Tibetian Sino-Tibetan
9 Laotian, Thai Tai-Kadai

10 Tatar, Turkish, Kyrgyz, Uzbek, Azerbaijani, Kazakh Turkic

11
Georgian, Greek, Japanese, Khmer,
Kosovo, Creole , Armenian, Korean Singleton

Table 3. Language clustering based on the CMC algorithm
Cluster Languages

1 Kurdish, Oromo,Amharic,Somali, Arabic, Hausa
2 Punjabi, Bengali, Pashto, Tagalog, Zulu, English
3 Ukrainian, Polish, Slovak, Czech, Russian
4 Hindi, Urdu
5 Tajik, Farsi, Dari
6 Creole, French
7 Shona, Swahili
8 Tibetan, Cantonese, Mandarin
9 Burmese, Khmer, Laotian, Thai

10 Tatar, Turkish, Kyrgyz, Uzbek, Azerbaijani, Kazakh

11
Georgian, Greek, Japanese, Portuguese, Romanian,
Kosovo, Indonesian, Bosnian, Spanish,
Armenian, Korean

dataset contains 50 languages which, from a purely linguistic
point of view, can be grouped into 11 clusters, each repre-
senting a different subfamily, such as Balto-Slavic or Afro-
Asiatic. There were also 8 singleton languages of two kinds:
languages that constitute a family of their own (no known sis-
ter languages), such as Japanese, and languages that belong
to a broader linguistic family, such as English which is a Ger-
manic language, but were the only representative of this fam-
ily in our data set. Another interesting unique member of
the training set is Creole, which is basically a family of lan-
guages. Table 2 shows a possible knowledge based grouping
of the training set languages according to linguistic knowl-
edge. Note that some of these clusters can be further split
into finer clusters, as is the case of the Balto-Slavic cluster in
our table, which is composed of 3 sub-clusters: Slavic East
(Ukrainian & Russian), Slavic South Western (Bosnian) and
Slavic West (Polish, Czech & Slovak). The latter can be split
again into Lechitic (Polish) and Czech-Slovak (Czech & Slo-
vak).

Since the cost function we defined in Eq. (11) is not con-
vex, the optimization procedure as defined in the previous
section does not guarantee achieving the global maximum.
In the general case we can try several standard unsupervised
initializations. In our case we already have a linguistic based
clustering that can serve as a good initialization point. This
way we can also incorporate linguistic features into our CMC
clustering via initialization, as was done in [20]. The results
of this procedure are shown in Table 3.

As mentioned above, Creole is a not a single language, but
rather a general term for about 100 such languages, represent-
ing the evolution of a pidgin language which is a mixture of
languages. In our dataset, there was no information regarding
the nature of the Creole in the dataset, hence Creole was as-
signed to a singleton cluster, as it was impossible to classify it
linguistically from the NIST Challenge description. Looking
at the acoustic clustering revealed that the Creole used in our
dataset is a French family based Creole.

Fig. 2. Language classification accuracy as function of the α
parameter for several language grouping methods.

4.2. Language Classification

We next illustrate the usage of language clustering to improve
the performance of a language identification neural-network.
We trained a language identification system using the intra-
cluster cost function (5). Figure 2 depicts the performance
of the proposed intra-cluster cost function (5) as a function
of α using cross-validation. We also show classification re-
sults based on two other language groupings. The first group-
ing is based on linguistic similarity, as described in Table 2.
The second grouping was created by applying a k-means al-
gorithm on the 50 vectors carted by averaging all the i-vectors
of each language. As can be seen in the plot, the best classi-
fication result was achieved around α = 0.7 for all the meth-
ods and this value was used for the analysis described below.
The value α = 1 corresponds to the standard training method
based solely on likelihood optimization (2). Figure 2 demon-
strates that training a classifier based on the proposed cost-
function (5) outperforms standard likelihood-based training.
Further, the clustering based on the CMC method yields better
results than the alternatives. We also tried a random grouping
which achieved no improvement at all.

Given a language clustering, two types of language clas-
sification errors can be defined. The classification error re-
sult can be in the same cluster of the correct language (intra-
cluster error) or it can belong to another cluster (inter-cluster
error). Table 4 presents the inter-cluster and intra-cluster error
analysis for the three language clustering methods described
above. It also shows how the errors in the standard train-
ing method (without any clustering) are split between intra-

Table 4. Language classification error results for several
language-grouping methods.

Clustering Method Classification Error
intra inter total

no clustering (CMC,α = 1) 10.3 4.1 14.4
linguistic 7.4 6.8 14.2
k-means 7.3 6.5 13.8
CMC 6.8 6.7 13.5

and inter-cluster errors according to the clusters defined by
the CMC method. As could be expected, most of the errors
of the standard training method are within the same cluster
of the correct language. The clusters of the CMC algorithm
were built exactly to minimize the inter-cluster error as de-
tected in the confusion matrix of the baseline method. In all
other methods there is the same proportion of intra-cluster
and inter-cluster errors. Table 4 also shows that, for all the
language-clustering methods we compared, training neural-
network based on the CMC algorithm achieved the best re-
sults.

5. CONCLUSION

To conclude, this study introduced a modified cost function
for training a neural-network that improved language clas-
sification results. We also proposed a language clustering
method based on the confusion matrix of a classifier. We fo-
cused here on the tasks of language clustering and language
identification. However, the methods proposed here are gen-
eral and can be applied any to classification task.

6. REFERENCES

[1] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” The Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[2] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the im-
portance of initialization and momentum in deep learning,” in
Proceedings of the 30th international conference on machine
learning (ICML-13), 2013, pp. 1139–1147.

[3] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” in
Int. Conference on Machine Learning (ICML), 2015.

[4] G. Hinton et al., “Deep neural networks for acoustic modeling
in speech recognition,” IEEE Signal Processing Magazine, vol.
29, no. 8, pp. 82–97, 2012.

[5] Y. Song, B. Jiang, Y. Bao, S. Wei, and L.-R. Dai, “I-vector
representation based on bottleneck features for language iden-
tification,” Electron. Lett., pp. 1569–1580, 2013.

[6] P. Matejka, L. Zhang, T. Ng, H. S. Mallidi, O. Glembek, J. Ma,
and B. Zhang, “Neural network bottleneck features for lan-
guage identification,” in IEEE Odyssey, 2014, pp. 299–304.

[7] I. Lopez-Moreno, J. Gonzalez-Dominguez, D. Martinez O. Pl-
chot, J. Gonzalez-Rodriguez, and P. Moreno, “Automatic lan-
guage identification using deep neural networks,” in ICASSP,
2014, pp. 5374–5378.

[8] F. Richardson, D. Reynolds, and N. Dehak, “Deep neural net-
work approaches to speaker and language recognition,” IEEE
Signal Processing Letters, vol. 22, no. 10, pp. 1671–1675,
2015.

[9] “NIST language recognition i-vector machine learning chal-
lenge,” https://ivectorchallenge.nist.gov/,
2015.

[10] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl, “Con-
strained K-means clustering with background knowledge,”
in Proceedings of the International Conference on Machine
Learning (ICML), 2001, pp. 577–584.

[11] B. Yin, E. Ambikairajah, and F. Chen, “Improvements on hi-
erarchical language identification based on automatic language
clustering,” in ICASSP, 2008, pp. 4241–4244.

[12] N. Tishby, F. Pereira, and W. Bialek, “The information bottle-
neck method,” in Allerton Conf. on Communication, Control
and Computing, 1999.

[13] N. Slonim, N. Friedman, and N. Tishby, “Unsupervised doc-
ument classification using sequential information maximiza-
tion,” in Int. ACM SIGIR Conf. on Research and Development
in Information Retrieval, 2002.

[14] D. Wagner and F. Wagner, “Between min cut and graph bi-
section,” in Proceedings of the 18th International Symposium
on Mathematical Foundations of Computer Science, Springer,
1993, pp. 744–750.

[15] I. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts with-
out eigenvectors: A multilevel approach,” IEEE Trans. on Pat-
tern Analysis and Machine Intelligence, vol. 29, no. 11, pp.
1944–1957, 2007.

[16] J. Shi and J. Malik, “Normalized cuts and image segmenta-
tion,” IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, vol. 22 (8), pp. 888–905, 2000.

[17] M. Meila and J. Shi, “A random walks view of spectral seg-
mentation,” in AISTATS, 2001.

[18] N. Dehak, P. A. Torres-Carrasquillo, D. Reynold, and R. De-
hak, “Language recognition via Ivectors and dimensionality
reduction,” in Interspeech, 2011.

[19] “Ethnologue,” https://www.ethnologue.com/.

[20] R. Caruana, M. Elhawary, N. Nguyen, and C. Smith, “Meta
clustering,” in International Conference on Data Mining,.
IEEE, 2006, pp. 107–118.

