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Abstract

Localization, separation and tracking of acoustic sources are ancient challenges that lots of
animals and human beings are doing intuitively and sometimes with an impressive accuracy.
Artificial methods have been developed for various applications and conditions. The majority
of those methods are centralized, meaning that all signals are processed together to produce

the estimation results.

The concept of distributed sensor networks is becoming more realistic as technology ad-
vances in the fields of nano-technology, micro electro-mechanic systems (MEMS) and com-
munication. A distributed sensor network comprises scattered nodes which are autonomous,
self-powered modules consisting of sensors, actuators and communication capabilities. A va-
riety of layout and connectivity graphs are usually used. Distributed sensor networks have
a broad range of applications, which can be categorized in ecology, military, environment

monitoring, medical, security and surveillance.

In this dissertation we develop algorithms for distributed sensor networks with applica-
tions to speech processing, but some of the techniques can be applied also for other applica-
tions. Such wireless acoustic sensor networks (WASNs) can be found useful in lots of modern
scenarios. The first example that can be dealt is ambient immerse communications. Nowa-
days, almost everyone carries ‘his/her personal microphones’ as part of the cellular phone,
laptop computer or tablet. These spatially distributed sensors allow exploitation of spatial
information in addition to spectro-temporal information. Spatial information in this context
relates to location of active speakers and other acoustic sources. These sensors make the
establishment of an ad hoc (distributed) microphones network feasible and allow the appli-
cation of sophisticated signal extraction algorithms without the need to install expensive
audio systems. A second example is smart homes that became very popular in the recent
years. Intelligent networks of microphones are crucial components for control and monitoring

systems as well as for communication in emergency cases. The last example to be mentioned



here is law enforcement. Authorities like the police or homeland security use eavesdropping
and acoustic surveillance of public spaces as part of their regular procedure. This is usually
done under adverse conditions.

The availability of only partial information in the nodes, the dynamics of the network, and
the limited communication, connectivity and power capabilities call upon developing novel
algorithms that address these challenges. The latter challenges are typical to distributed
algorithms and cannot be found in classical array processing algorithms.

The contribution of the dissertation is fivefold. Firstly, distributed localization algo-
rithms are derived using a novel set of hidden variables that are estimated by static or
dynamic microphone arrays. It turns out that in addition to distributed computation, the
new set of hidden variables improves the convergence speed and accuracy compared to previ-
ous approaches, since they enable the usage of incremental expectation-maximization (IEM)
principle for the spatial domain. The distributed localization algorithms developed covers
the batch EM and the on-line recursive expectation-maximization (REM).

Secondly, we developed a few localization techniques that reduces significantly the effect
of reverberation on the performance. Processing that emphasizes the direct path is integrated
with our modified localization algorithm and is shown to improve the performance especially
when the number of concurrent speakers in the room is increased. In order to strengthen
the node of two microphones, we have shown that instead of the pair-wise relative phase
ratio (PRP), we can use the raw samples themselves with any known microphone geometry.
Those samples can be processed within a new model that takes into account the late tail of
the reverberation in addition to the direct path.

Thirdly, we have found out that the localization results of the mentioned algorithms can
be utilized also for blind source separation (BSS). A major contribution for the separation
algorithms is the hidden variables used for the EM mechanism. They were proven to be very
efficient spectral masks, since their physical meaning is association of time-frequency bins to
various speakers.

Fourthly, a major challenge with ad hoc networks is that the arrays locations are not
known. We suggest a solution for joint calibration of the arrays and localization of the
sources. They are all estimated relatively to an anchor array.

Finally, we address dynamic problems. Distributed tracking based on the recursive dis-
tributed expectation-maximization (RDEM) algorithm is described first for static arrays.

Tracking multiple concurrent speakers is highly challenging, since the signals and the room

i



impulse responses (RIRs) are varying in a complex way. For example, the speakers do not
utter speech continuously, but they might move continuously. It means that there are time
gaps that need to be filled or extrapolated. A possible way to deal with those gaps is to utilize
future information about the speakers. A short delay enables adding non-causal processing
to the classical non-Bayesian tracking mechanism. Another problem (actually more realistic)
is localization and tracking speakers using dynamic arrays of microphones. The movement of
a microphones pair is utilized to localize and track speakers using Bayesian and non-Bayesian

techniques.

il






Chapter 1

Introduction

Acoustic source localization, separation and tracking techniques, utilizing microphone arrays,
have attracted the attention of many researchers for the last thirty years, especially in hands-
free communication tasks (remote conference calls, smart lecture rooms, hearing aids, etc.).
Typical problems in this field are: noise reduction, speaker separation and de-reverberation.
The beamformer (BF) algorithms extend the dimension of the solutions and introduce spatial
filtering in addition to the classical temporal-spectral filtering. Usually, the received speech
signals are contaminated by interfering sources (such as competing speakers and noise) and
also distorted by the reverberating environment. Whereas single microphone algorithms
might show satisfactory results in noise reduction, they are not very-well suited in competing
speaker mitigation task, as they lack the spatial information, or the statistical diversity used
by multi-microphone algorithms. Despite the obvious advantages over single-microphone
systems, traditional microphone arrays still suffer from severe performance limitations.

The relatively small aperture of conventional arrays is a limiting factor in the performance
of spatial processing algorithms, since they only sample the sound field locally, typically at
a relatively large distance from the target source(s). In these scenarios, low SNR and direct-
to-reverberant ratio (DRR) are expected, resulting in deteriorated performance of regular
small-aperture microphone arrays. Consequently, classical microphone-arrays cannot serve

as a complete solution in the following example scenarios:

1. Communication: State of the art telecommunication systems attempt not only to faith-
fully convey the semantics of a conversation, but also to enable natural experiences and
interactions among physically separated people, as if they share the same room. Many

telephone conversations, especially those held in hands-free mode, are corrupted with
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background noise, interfering signals and room reverberation.

2. Smart houses: A unified system for controlling all systems of the house (lights, air-
condition, electronic devices such as television, sound system etc.) becomes popular.
In this aspect, intelligent networks of microphones are crucial components for control

and monitor systems as well as for communication in emergency cases.

3. Smart classroom: It is very important for the success and for the social lives of many
children that have hearing disorder. Simple audio amplification provided by conven-
tional hearing-aids enables better access to the auditory information, hence better
detection, identification and recognition. However, amplification and even more so-
phisticated signal processing using only two arrays on the ears are insufficient. Many
children with well-fitted hearing aids continue to have listening difficulties in a noisy
reverberant environment such as the classroom. Background sounds, such as shuffling
of papers, children talking and noisy ventilation systems around the child may cre-
ate distractions and hinder the child’s ability to distinguish speech from background

sounds.

4. Military and law enforcement: Authorities, e.g., police and homeland security, use
eavesdropping and acoustic surveillance of public spaces as part of their regular pro-
cedure. This is usually done under adverse conditions. The microphones should be

deployed in a large area to ensure proper reception of the desired speakers.

A straightforward centralized approach is to place sensors in various locations and to
convey all available data from them to a fusion center, where the processing is performed.
Though optimal, this simple method requires transmission of huge amounts of data. More-
over, the aforementioned simple algorithm is sensitive to a failure of the fusion center, ren-
dering the sensor network useless. Another disadvantage caused by the structure of the
centralized solution, is the long communication link between sensors and the fusion center,
which might be comprised of several hops (when the fusion center and the sensors cannot
communicate directly) manifested as slow adaptation to the dynamically changing network
or environment [1, 2|.

Recent technological advances have made the vision of a distributed sensor network feasi-
ble. A wireless sensor network (WSN) comprises several nodes (or WSN modules) intercon-

nected in some manner via a wireless medium. Each node consists of one or more sensors, a



processing unit and a wireless communication module allowing them to exchange data.

The concept of the WSN is to split the system resources (sensors, processing units and
actuators) among the nodes and to provide a scalable, fully covering the environment, easy
to deploy, and robust structure. The wireless interface allows for the extension of the sensing
range beyond the limits of the wired fusion center systems. The distribution of the sensors
in a larger volume enables better coverage with higher SNR and DRR. For a survey on the
topic of WSN please refer to [1, 3, 4, 5].

This work aims at developing distributed signal processing algorithms. The derived al-
gorithms should maintain low complexity and communication band width (BW). However,
performance issues should not be sacrificed (although, sub-optimal algorithms can be ap-
plied). Another requirement introduced by the nature of the problem at hand is the need for
robust algorithms, which are not sensitive to failure of a few nodes, and which can handle
a dynamically changing connectivity of the network. Naturally, most applications require
algorithms that also adapt to changes in the environment, or to objects under observation.

Communication (especially in wireless networks) is often the most energy consuming op-
eration of a node. In addition, it consumes BW resources, which are common to all electronic
devices within a certain region. For ad hoc networks those resources might vary in time and
space. An alternative signal processing paradigm to the centralized one is the local process-
ing in which each node utilizes only its own measurement data, independent of other nodes,
rendering wideband communication unnecessary. Although minimizing communication load,
this method obviously imposes performance limitations, as only small subset of the data is
used in each processing unit. Common systems utilize compression schemes for reducing the
required bandwidth for conveying sensor data to the fusion center. Though straightforward,
these methods do not consider the signal processing algorithm that takes place. Compression
might destroy information that is relevant to a specific algorithm. Distributed algorithms
aim at achieving the performance of the fusion center paradigm, while considerably reducing
the required communication bandwidth. Each node performs a local calculation/filtering and
distributes the results in the network.

Besides communication other issues should be addressed when using ad hoc networks.
Firstly, in classical methods the geometry of the array is usually pre-determined to fit the
problem at hand. However, in some sensor network scenarios it is not possible to determine
the array’s layout. Secondly, designing distributed algorithms for WSN necessitates the

application of additional considerations. The computational power available at the nodes
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is limited. Furthermore, as each node uses independent clock, sampling frequency offsets
between nodes are inevitable. The latter results in non-equal sampling rates in the network,
and eventually performance degradation. These effects will be taken into account in our
algorithms.

The main issue of this research is finding and tracking the locations of speakers in a room
using ad hoc networks. Speaker localization and tracking algorithms have various civil [6]
and military [7] applications, e.g. surveillance systems, camera steering in conference calls,
BF, dereverberation, BSS, noise reduction, etc. This survey is organized in the following
way. We start this chapter with an overview on localization with emphasis on distributed
computations in Section 1.1. Section 1.2 deals with mitigation of reverberation in the context
of localization and tracking algorithms. Byproducts of our algorithms enable distributed BSS.
Other BSS techniques are mentioned in Section 1.3. A major challenge for ad hoc networks is
calibration. In Section 1.4 we give some background about joint calibration and localization.
In Section 1.5 we describe the work already done in the field of source tracking (centralized
and distributed versions). We focus on tracking of concurrent sources. Section 1.6 introduces
the structure of the rest of this dissertation. In Section 1.7 we list all our publications that

are relevant for this work.

1.1 Distributed localization of multiple sources

Localization has been dealt with for years in the acoustic field. For example in [8] TDOA
values are utilized for intersecting loci. Localization techniques can be divided into two
groups: Bayesian [9, 10, 11] or non-Bayesian [12, 13] approaches. With a non-Bayesian
technique, the maximum likelihood (ML) is widely used for localization. ML estimation
procedures for localization are usually characterized by high computational complexity and
by the nonexistence of closed-form solutions. It was therefore decided to apply either iterative
EM [14, 15] or REM procedures. The challenge of distributed localization is discussed in
Chapter 3.

1.1.1 Static arrays

State-of-the-art methods operate in the time-frequency domain and rely on narrowband ap-
proximation of the convolutive mixing process by complex-valued multiplication in each fre-

quency bin. The sparsity of speech signals in the short-time Fourier transform (STEFT)
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domain is widely used in the context of speaker localization [16, 17, 18]. In [16] for example,
the localization task was carried out by using spatially distributed (located in various posi-
tions around the room) microphone nodes (more specifically, each node was comprised of a
pair of microphones). Accurate location estimates can only be obtained if the microphones
are spatially distributed.

Recent technological advances have made microphones cheaper and smaller. This results
in multiple microphones integrated into many electronic devices (televisions, cell phones,
hearing aids, computers, toys, etc.) [19]. Sometimes, due to limited computational resources
in each node and the BW constraint on the communication link connecting the nodes, dis-
tributed computation is needed. Distributed networks can be utilized to jointly estimate
parameters [20, 21] or signals by applying BF techniques [22, 23].

The concept of a WSN [24] can be naturally adapted to the speaker localization problem.
In principle, algorithms that are tailored to WSNs are characterized by local processing of the
raw data, while only compact, intermediate results are communicated through the network to
perform the global task. Many of the drawbacks attributed to centralized processing can be
circumvented by distributed computations [25]. In the acoustic community, the term WSN is
replaced by WASN [22]. The WASNs were mainly used in speech enhancement and speaker
separation problems [22, 23]. In [23], the sidelobe canceler over WASN has been dealt with.

Centralized localization solutions that can be mentioned include [26, 27, 28]. Hierarchical
methods compute partial results in the nodes before combining them. In several hierarchal
localization methods, the nodes provide DOAs estimates that are later combined by trian-
gulation at a central processing point [29, 30]. In contrast, distributed algorithms carry out
most of the calculations (or even all of them) in the nodes of the network.

Distributed localization algorithms for WASN that only use the amplitude or power of
the received signals, but ignore phase information, can be found in [31, 32, 33, 34, 35, 36, 37].
It is well-known, from the radio frequency (RF) literature, that localization schemes based
on phase differences exhibit higher accuracy, robustness and lower sensitivity than schemes
that are solely based on the received signal strength [38].

An EM-based method for angle of arrival (AOA) estimation of multiple sources that uses
phase information extracted from stereo recordings was proposed in [39, 40, 41]. Acoustic
measurements by a spatially condensed array can only estimate the angle to the source [42,
43, 44, 45, 46]. In order to compute the sources’ two- or three-dimensional coordinates,

sensors have to be spatially distributed over a wider area.
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Extension to a two dimensional localization and tracking problems by an array of micro-
phone pairs can be found in [16]. The authors have defined a set of parameters and a set
of hidden variables and developed algorithms based on the EM and two tracking variants
of the REM technique. A detailed mathematical description of the application of the EM
to mixture of Gaussians (MoG) can be found in [47]. In [16] the Guassians were centered
around grid points around the room. The number of sources and their rough locations were

assumed to be known a priori.

Both [16] and [39] used centralized computation approaches. The distributed expectation-
maximization (DEM) usage was presented in [48] for clustering stochastic variables using a
MoG model. [49] also presented a DEM algorithm for MoG in a slightly different way.
In [50], three distributed strategies were presented for the MoG EM (incremental, consensus
and diffusion). The general idea in this kind of algorithms is that the hidden variables of
the EM are local and that the majority of the calculations is applied in the nodes (locally)
in a way that enables sharing a compact set of results between the nodes. This set is often
called sufficient statistics (SS). We adapt those principles to our algorithms for localization,

tracking and source separation.

An incremental variant of the EM, denoted TEM, was suggested by Neal and Hinton [51].
They proved that the hidden variables can be estimated incrementally rather than in a single
batch step. The classical EM steps are replaced by partial steps. One version is to run partial
M-step followed by the regular E-step. The second version, which we adapt here applies a
partial E-step and a regular M-step.

The convergence speed and accuracy of IEM was analyzed and demonstrated in [52, 53]. Tt
was shown through many examples that the incremental strategy enables faster convergence.
In addition, the [EM has a higher probability to converge to the ML. In other words, it
does not tend to converge to a local optimum. There is no mathematical proof for these

properties, but they are explained intuitively and demonstrated empirically.

They also dealt with the REM mechanism, which contains almost the same idea in time
axis. We adapt here the Titterington recursive expectation-maximization (TREM) algo-
rithm [54], which is based on a Newton search for the maximization of the likelihood. We

adapt this idea both for our localization algorithms and for the tracking.
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1.1.2 Localization using moving arrays

Localization using static sensors has been dealt with theoretically and practically for var-
ious signal processing applications including passive or active radio detection and rang-
ing (RADAR). Passive sonar using moving hydrophones has been dealt for years [55]. In
particular, approaches for acoustic sensors deal with the specific challenges of reverberation,
see, e.g., [16, 56, 57, 58]. In general, most sound source localization approaches in the lit-
erature utilize either time of arrival (TOA) [59], TDOAs or DOAs as measurements of the
source in order to reconstruct the Cartesian source position. A common assumption is that
the acoustic sensor is static and that its position is known. Nonetheless, spatial diversity of
an acoustic sensor installed on a moving platform could be exploited for improved inference
of the source position. Moving microphone arrays are particularly suitable for the field of
robot audition [60, 61, 62, 63], where microphone arrays can be installed in the limbs and
head of an autonomous robot.

The movement of microphone arrays is particularly useful in situations where the sensor
moves faster than the sources. In this case, the displacement of the sensors over time can be
interpreted as a synthetic widening of the array aperture in space. This interpretation was
first implemented for synthetic aperture radar (SAR) [64]. We implement this principle for
localizing the coordinates of a source with a single pair of microphones.

At the end of Chapter 3 we address the challenge of sound source localization from a

moving platform by considering and comparing two philosophically different approaches.

1.2 Reverberation mitigation for localization

Many localization algorithms are highly sensitive to reverberation. The challenge of localizing

a number of concurrent acoustic sources in reverberant enclosures is addressed in Chapter 4.

1.2.1 Localization in highly reverberant environment

A vast number of algorithms for localization of sources employing multiple concurrent sen-
sor measurements have been developed [65, 66]. Important distinguishing aspects between
methods are the sensor configuration, assumptions on the signal propagation, measurement
type and probabilistic modeling.

Some approaches deal with the localization [67] or tracking [68] of a single source. In [68],
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Bayesian estimation based on a Kalman filter, applied to tracking, was described. Distributed
algorithms for multiple sources were already mentioned in the previous section. Their per-
formance highly depends on the reverberation level.

Acoustic signals often suffer from high level of reverberation that hamper localization
accuracy and sometimes also from noise of various types. The main obstacles that hamper
localization and DOA estimation accuracy are reverberation level, diffused noise or sensor
noise [69, 70, 71]. The next distinguishing criterion for localization algorithms is the assump-
tion regarding strong unimpeded direct path signals. As many algorithms rely on a strong
signal from the direct path, reverberations degrade the localization performance, especially
in indoor scenarios [72]. This problem becomes more severe when the number of speakers
increases, since each speaker produces additional reflections. Several approaches are appli-
cable without relying on the direct path from the target to the sensor [73]. In the method
proposed in [74], direct-path dominance is not mandatory and various room shapes are sup-
ported. Methods that utilize the multi-path signals are limited by a set of assumptions about
the room and might be more sensitive to changes in room characteristics [75, 76, 77, 78, 79].
The set of techniques vary from un-supervised through semi-supervised to fully supervised.
Our proposed approach is un-supervised, which uses multiple distributed sensor nodes and
assumes that the direct path is dominant in at least part of them.

Next, we may also distinguish between algorithms according to the type of measurements
used. A large number of acoustic localization and direction finding methods employ correla-
tion between the microphone signals in order to determine the TDOA. If a node is equipped
with more than a single microphone, the DOA can be estimated from TDOA values. Some
approaches use full band measurements and some use subbands [80] or different frequencies.

The simplest estimator for finding the TDOA between two observed signals is the cross-
correlation method and its variants, mainly the generalized cross correlation (GCC) [81] with
phase transform (PHAT) normalization. In [82, 83], a generalization of the GCC-PHAT to
an array of microphones in far-field scenarios is proposed. Performance degradation is often
demonstrated in multiple speakers and reverberant environments. The challenge of multiple
speaker localization using generalized cross correlation with phase transform (GCC-PHAT)
is presented in [84]. The separation of concurrent speakers in time domain is limited when
there are significant energy differences and when their TDOAs are too close. Another way
to apply GCC-PHAT for multiple sources is given in [85] for DOA estimation. A plethora of
methods are based on the GCC-PHAT [86] or the steered response power-phase transform
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(SRP-PHAT) [27, 87], which are full-band TDOA estimation algorithms. Some algorithms
compute subband TDOAs in order to improve the robustness and to facilitate concurrent

speaker direction finding [88, 89].

Biologically inspired approaches use multiple frequency bands as well [90, 91]. The benefit
of applying modeling of the sound processing in the human cochlea and mid-brain [92, 93]
stems from the ability to include a number of mechanisms that render the estimation robust.
The approaches summarized in [93] focus on the binaural case including GCC based methods.
They present direction finding by subband GCC. This includes modeling of the precedence

effect, which focuses on the first wavefronts from the direct path [94].

One of the consequences of the precedence effect is the neural onset dominance [95], which
can be implemented in mono channel processing [57]. Methods that use phase locked spikes
centered on the maxima in certain frequency bands [96] can be advantageous [57] as compared

to the more common zero crossing methods [92, 90].

More generally, the fact that only high SNR segments are used [97] can be exploited in
tracking applications [98]. These principles were shown to add robustness in tracking with
multiple microphone arrays [99] and were combined with auditory scene analysis (ASA)-

oriented processing for application to distributed nodes [30].

The next distinguishing criterion between localization algorithms refers to the probabilis-
tic modeling used. Many algorithms employ the ML criterion, which is often implemented
by applying the EM procedure, to localize sources. This procedure is adopted for estimat-
ing the DOA [100], or the source position after triangulation [28], by utilizing the mea-
sured TDOAs. The EM often faces a convergence problem. The random swap expectation-
maximization (RSEM), based on MoG distribution [101], reduces the dependency of the EM

algorithm on initial conditions.

In contrast to the methods that use a global MoG [47, 16], distributed localization versions
will be suggested in Chapter 3. We define there multiple local MoGs that share a set of
weights, referred to as the global parameters. Although exhibiting good performance in a
wide range of acoustic conditions, high reverberation still degrades the performance. This
may be attributed to the influence of multiple secondary reflections on the phase information
embedded in the direct-path of the acoustic propagation [39, 16] or in the respective TDOA

measurements.
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1.2.2 Single array direction of arrival estimation

An estimate of the speakers’ DOAs is required in many applications, including navigation,
surveillance, beamforming, source separation, target acquisition and tracking. In reverberant
environments, sound reflections may result in erroneous DOA estimates. The existence of
multiple speakers in the reverberant environment, may even further degrade the accuracy of
the DOA estimates.

In [102], a maximum likelihood estimator (MLE) of multiple DOAs in noisy environments
was derived. The speech and the noise components were described as zero-mean Gaussian
vectors, with rank-1 power spectral density (PSD) and full-rank PSD matrices, respectively.
A closed-form MLE for the speech and noise PSDs was derived. The MLE for the DOAs
was obtained by a Newton search. The sparsity assumption of the speech was not utilized.
In [103], the de-reverberation task for hearing aids was addressed. The reverberation was

modeled as a diffuse field with time-varying level.

1.3 Single and multiple arrays blind source separation

Localization results are often used for source separation algorithms. Within this scope, we
are also interested both in a basic array (a pair), arrays with more than two microphones and
in multiple arrays approaches. The challenge of blind source separation in different scenarios

is discussed in Chapter 5.

1.3.1 Separation based on distributed and centralized arrays of

microphones

The BSS is an unsupervised technique for recovering the underlying signals from a set of
their combinations. In acoustic applications [104], as a cocktail party problem [105, 106],
the sources (speakers) are typically mixed in a convolution manner. The respective source
separation is referred to as a convolution BSS or de-convolution.

The convolution BSS problem is much more challenging compared with the instantaneous
one, since the separation filter will have thousands of coefficients in a typical room environ-
ment. The instantaneous BSS framework still can be used for convolution mixture separation
in the frequency domain [107]. However, once this domain is used, the inherent scaling and

permutation ambiguity of BSS methods [108] will appear in each frequency band and have
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to be resolved for obtaining meaningful separation results.

Additional difficulty may arise for audio applications in the under-determined case (the
number of sources is greater than that of the sensors). In this case, the linear separation
scheme will fail to separate the sources. However, this scenario is still tractable if the signals
have a sparse representation [109]. Audio sources (such as speech and music) are often
attributed by a sparse representation in the STFT domain [110]. The sparseness of the
speech attracted significant attention in the signal processing community in general, and
in source separation in particular [111, 112, 113]. Separation in the time-frequency (T-F)
domain is achieved by clustering the T-F bins into groups, while each group is associated
with a source signal. The clustering usually relies on features such as TDOA [110, 41, 114].
In [115] the BSS problem is solved using GCC-PHAT for a single array of microphones.
Distributed source separation techniques can be found in [22, 23]. However, for impulse
responses estimation, dedicated portions of the signals are needed. We will refer to this issue

in our research about distributed BSS.

1.3.2 Separation based on arrays of more than two microphones

Noisy observations may result in wrong or biased DOA estimates and may deteriorate the
separation performance. A scenario with a varying unknown number of active speakers was
addressed in [116], where clustering of the STFT bins that are associated with each desired
source was obtained via DOA estimation. In [117], an EM-based separation algorithm is
presented, which utilizes spectral cues and phase-based spatial cues. Spatial filtering for
sound acquisition in the presence of noise and interfering sources is presented in [118], where
DOA estimates are used to indicate the activity of a source within a specific location. The

frequency-domain association problem for BSS is an important challenge [119].

The estimation of multiple DOAs by EM was proposed in [39, 16]. The noise spatial
characteristics was not explicitly modeled. In [102], an ML estimator of multiple DOAs in
noisy environment was derived using an array of microphones. Closed-form estimators of
the speech and noise power spectral densities were derived, while the ML for the DOAs was

obtained by a grid-search.
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1.4 Calibration for ad hoc networks

Localization and tracking using multiple sensor arrays are often handled under the assump-
tion that the locations of the microphone arrays are known precisely. The recent usage of
ad hoc networks introduces a new challenge of estimating the array locations in parallel
to routine tasks, such as speaker localization [120, 121, 122, 16, 123], noise or reverberation
reduction [124, 103, 125]and speaker separation. The new algorithm we present in the calibra-
tion chapter combines three tasks: DOA estimation, direct positioning determination (DPD),
and calibration for ad hoc networks.

The DOAs estimation in the presence of various noise types can be formulated as a ML
estimation problem of deterministic parameters [102, 126, 127, 128]. The DOA challenge in
the presence of an unknown noise field was dealt with in [126]. The DOA estimation of the
speakers can be obtained by applying a Newton search. The W-disjoint assumption [110] is
often exploited for such tasks [129].

A straightforward solution to higher-dimension localization problems involves triangula-
tion of the 1D problems solved locally by each array of the network [130]. It has the ad-
vantage of simplification, especially for distributed network computations. There are many
approaches that use triangulation of DOAs to solve the 2D or 3D localization problem. An
example of such an approach for an acoustic ad hoc network was given in [131].

Because only part of the information is used during the first step of the estimation, these
solutions are not necessarily optimal. In a small room, a near-field solution is essential using
a more general model.

A possible general solution, which directly estimates the location without any intermediate
steps, is frequently referred to as DPD [132]. For acoustic localization, this idea was suggested
by [16]. However, they use a non-realistic assumption within the context of ad hoc networks
relying on perfect knowledge of array positions. This is often referred to as the calibration
problem.

In several algorithms, the nodes positions are assumed to be unknown [133]. Even if
they are not measured beforehand, methods for automatic calibration of positions can be
employed [58, 134, 135]. Recently, self-calibration methods that can be applied online were
introduced [136, 137].

Array-shape calibration has been analyzed from a theoretical point of view for both far-

field [138] and near-field scenarios [139]. For acoustic arrays, some approaches have already
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been suggested for calibration, some of which are suitable for scenarios with a dedicated
time for calibrations [140]. Other algorithms use ambient sound to find the inter-distances
of microphones [141, 142].

Calibration performed jointly with localization or tracking of sources presents a greater
challenge. A family of algorithms called simultaneous localization and mapping (SLAM) for
robots was described in [143, 144]. They find the trajectory of a single moving array, the
positions of static sources, and major reflectors (for example, walls).

Another popular problem is estimation of static array locations jointly with tracking of
moving acoustic sources [145, 146]. The problem is sometimes referred to as simultaneously
localizing and tracking (SLAT) [147]. A genetic algorithm was recently presented for a
scenario where speakers move around a table in the middle of the room [148]. The arrays
are located on the table and the algorithm estimates the arrays’ locations and tracks the
speakers.

It seems that the most effective algorithms that have been demonstrated are for dynamic
scenarios, in which multiple locations of each speaker can be used to calibrate the positions
of the microphones. However, approaches that are suitable for static scenarios also exist (for
example, [149, 150]). They rely on TDOAs between adjacent microphones. The challenge of

self-calibration for static scenarios is discussed in Chapter 6.

1.5 Tracking using static and dynamic arrays

Tracking based on acoustic signals is a widely covered field. One of the methods proposed
for that purpose is probability hypothesis density (PHD) [151]. A PHD for MoG has been
presented in [152]. We also use MoG for our localization and tracking algorithms, as will be
explained in Chapter 7.

Another approach dealing with distributed multi-target tracking (MTT) has been de-
scribed in [153]. Many algorithms for tracking were developed for RF sensors, driven mainly
by the military needs of the United States of America during the previous century. We can
learn a lot from that field and borrow some ideas. For example, in [154], WSNs were applied
for tracking.

Distributed tracking has been proposed in [155] for the case of a ship moving on a two-
dimensional surface. In [156], a three-dimensional distributed tracking algorithm based on

GCC was calculated for multiple arrays. The whitened version of GCC is compared to
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adaptive filtering for under water WASN in case of tracking of moving sources [157] (shallow
water).

Outdoor approaches for multi-sources tracking are mainly noise limited [158]. Another
outdoor approach dealt with the locations and capabilities of the nodes [159]. We are mainly
focused on a different environment: the indoor, which contains significant reverberations.

Some works try to jointly solve the detection and tracking tasks, as described in [160].
They used particle filter (PF) for those tasks and a distributed solution. Tracking by PF
was also suggested in [161, 162, 163]. In [163], both simulation and real data results can
be found. There are works that suggest a solution for three challenges together: detection,
tracking and classification. For example, [164] solved those problems for ships (on the water
surface). In [165], those challenges were solved for sources inside the water.

Distributed tracking is quite a new field in the acoustic community. However, centralized
tracking techniques that are widely covered can be modified. Very popular tracking mecha-
nisms are Kalman filter and its modifications. Tracking with various Kalman methods using
the temporal information has been dealt with in [166].

Tracking speakers is a great challenge due to several obstacles. The first obstacle is the
non-stationarity of the signals produced. During a certain time frame, a speaker might be
active or non-active. Even when its signal’s energy is high enough, PSD might significantly
vary from one time slot to another. The second obstacle in tracking acoustic sources results
in irregular variations of the RIR. Changes in RIR are significant even for small movements
of the source or the microphones. It means that knowing its values for one location might
not be relevant for estimation in the next location.

The other obstacles that should be mentioned relate to two groups. The first group
consists of the regular tracking issues of multiple sources like crossing paths, dominant source
masking others, etc. The second group relates to the distribution of the computations, which
might result in sub-optimal solutions compared to the centralized solutions. This challenge

is discussed in Chapter 7.

1.5.1 Tracking using static arrays

The task of multiple target tracking (or dynamic localization) using static or quasi-static
arrays has significant importance in military and surveillance applications [167, 168, 169, 170].

Classical tracking support only a subset of expected trajectories, since it can assume certain
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things about the velocity, acceleration and jerk of the target.

When the targets emit acoustic radiation, main applications of tracking are speech separa-
tion, indoor robotic assistance, automatic steering of cameras, as well as security and military
technologies. Various tracking algorithms for distributed microphone arrays were suggested
in [73, 77, 160, 171, 172, 173, 174]. Some of them are more focused on outdoor cases, where
sensor noise is usually dominant and others deal with indoor environment [175, 176], which
contains significant reverberation.

Classical tracking focuses on a subset of expected trajectories, since it can make cer-
tain assumptions regarding the velocity, acceleration and jerk of the targets, enabling a
Bayesian approach to the parameters’ estimation have been proposed. Well-known Bayesian
approaches to target tracking are PHD, particle filters and other statistical based meth-
ods [11, 177, 178, 179].

For the task of online speakers dynamic localization, a recursive version of the EM is
more suitable, since it allows the tracking of time-varying parameters, and does that with
relatively low computational and memory loads. General REM algorithms were proposed,
where the parameter estimate is updated by using the new observed data. A recursive version
of the EM algorithm was first suggested by Titterington [54], based on a Newton search for
the maximization of the likelihood, and assuming that the observations are independent. An
almost sure convergence of the TREM algorithm was proved by Wang and Zhao in [180],
based on the results of Delyon [181]. A stochastic approximation version for the EM algorithm
was proposed by Delyon et al. in [182], and its convergence was proven therein. A further
study of the REM approach appears in [183] for the problem of DOA estimation, using
TREM and another recursive algorithm suggested by the authors. The authors show that
both algorithms converge with probability one (w.p.1.) to a stationary point of the likelihood
function.

A different recursive-EM approach was proposed by Cappé and Moulines [184] for
exponential-family distributions, where the parameter and the sufficient statistic of the prob-
lem are updated iteratively. In the E-step, the sufficient statistic is recursively updated using
the latest observation, and in the M-step, the parameter is optimized accordingly. This se-
ries of parameter estimates is proven to converge to local minima of the Kullback-Leibler
divergence (KLD) in the case of independent observations [184].

REM-based algorithms for speaker dynamic localization in noisy and reverberant envi-

ronments were presented in [16], where both the Titterington’s REM [54] and the Cappé-
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Moulines” REM [184] were applied to the problem. Spatially distributed microphone nodes
were used in [16], but computation was carried out in a central processing unit.

Since the methods in [16] apply only regular recursion, silent periods result in reduced
estimation accuracy. Given a set of measurements, exploiting both past and future obser-
vations constitutes a preferable estimation of the current state, especially for non-stationary
signals. The estimation pertaining to the past data is usually referred to as forward filtering,
while the state estimation pertaining to the future data is referred to as backward filtering,
which runs backwards. In online applications, the usage of future observations adds latency
to the overall system, and should therefore be restricted.

A bi-directional version has been presented in [185] for video signals, where the data is
processed offline in order to use the future samples in addition to the past samples. Some
of the Bayesian approaches deal with specific problems of speech with techniques developed
originally for communication applications. A maximum a posteriori (MAP) approach that
exploits Viterbi algorithm was presented in [186], where a forward-backward recursion is used

to cope with pauses of the speech signal.

1.5.2 Tracking using moving arrays

The ability of robots to engage in verbal dialogs is a fundamental prerequisite for intuitive
interaction between humans and machines. To focus on desired sound sources subject to in-
terference and noise, autonomous systems, such as robots, rely on BF [187] in the direction of
salient acoustic events. However, in realistic environments, reverberation causes localization
errors and spurious detections due to dominant early reflections [188].

For improved robustness of source localization, spatial diversity of microphones installed
on moving platforms can be exploited constructively (using the robot movements) in order to
infer the source-sensor distance and to disambiguate the direction of impinging sound waves

due to the direct path of a source [189, 190, 191].

1.6 Dissertation structure

The structure of the dissertation follows next. We briefly introduce the chapters’ topics and
their sections. We give references to our publications on each of the subjects.
We start from problem formulation in the next chapter. It deals with a few versions

needed throughout the dissertation.
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In Chapter 3 we survey our first papers on distributed localization of concurrent speakers.
In Section 3.1 we present the DEM concept based on local hidden variables. The next sections
presents the articles that we published for DEM localization.

The first article [192] (Y. Dorfan, G. Hazan, and S. Gannot, “Multiple acoustic sources
localization using distributed expectation-maximization algorithm” in 4th Joint Workshop
on Hands-free Speech Communication and Microphone Arrays (HSCMA), May 2014, pp.
72-76) introduced the new hidden variables and a directed ring based algorithm as presented
in Section 3.2.

In Section 3.3 an extension to other network topologies and the recursive version are given
based on [193] (Y. Dorfan and S. Gannot, “Tree-based expectation-maximization algorithms
for localization of acoustic sources,” IEEE Transactions on Audio, Speech and Language
Processing, vol. 23, no. 10, pp. 1692-1703, 2015).

The implementation analysis and comparison is given in Section 3.4. Simulation and
experimental results of those articles are given in Section 3.5.

In Section 3.6, a modification of the IDEM for a moving pair is derived. It is applied
to robot audition utilizing motion for spatial diversity and compared to a Bayesian algo-
rithm [194] (Y. Dorfan, C. Evers, S. Gannot, and P. A. Naylor, “Speaker localization with
moving microphone arrays” in Proc. European Signal Processing Conf. (EUSIPCO), Bu-
dapest, Hungary, Aug. 2016).

In Chapter 4, we develop localization algorithms for high reverberation levels. In Sec-
tion 4.1 an algorithm is proposed that enables to estimate location of more than two con-
current speakers in higher levels of reverberation. This section is based on [195] (Y. Dor-
fan, A. Plinge, Hazan G., and S. Gannot, “Distributed expectation-maximization algorithm
for speaker localization in reverberant environments,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 26, no. 3, pp. 682 - 695, Mar. 2018.).

Section 4.2 is dedicated for presenting a new model that takes into account the diffused
nature of the late reflections. An arbitrary array of microphones (at least two in any planar
geometry) is used for DOA estimation of multiple concurrent speakers [196] (O. Schwartz, Y.
Dorfan, E.A.P. Habets, and S. Gannot, “Multiple DOA estimation in reverberant conditions
using EM” in International Workshop for Acoustic Echo Cancellation and Noise Control
(IWAENC), Xi’an, China, 2016).

In Chapter 5 the topic of BSS is considered for centralized and distributed algorithms. Sec-

tion 5.1, is dedicated to derivation of a distributed BSS which enables even a single pair of mi-
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crophones to filter any speaker based on the shared global parameters that were presented for
our IDEM localization algorithm [197] (Y. Dorfan, D. Cherkassky, and S. Gannot, “Speaker
localization and separation using incremental distributed expectation-maximization” in Eu-
ropean Signal Processing Conference (EUSIPCO), 2015, pp. 1256-1260.).

In Section 5.2, it is shown how the hidden variables of our DOA estimation algorithm
from the previous chapter can be utilized (as already done in our previous work described in
the first section) for construction of an efficient spectral mask [198] (Y. Dorfan, O. Schwartz,
B. Schwartz, E. A. P. Habets, and S. Gannot, “Multiple DOA estimation and blind source
separation using estimation-maximization” in IEEE Science of Electrical Engineering (IC-
SEE), Eilat, Israel, 2016). The geometry of the array is general, although the experimental
part analyzes a linear array of four microphones.

In Chapter 6 we discuss a major challenge in the field of ad hoc networks: the calibration.
The idea is to use one of the arrays as an anchor and to jointly estimate the relative positions
of the other arrays and the active speakers. This chapter is based on [199] (Y. Dorfan, O.
Schwartz, and S. Gannot, “Joint speaker localization and array calibration using expectation-
maximization,” To be submitted to IEEE...).

In Chapter 7 we propose procedures for tracking. In Section 7.1, a systematic scheme for
tracking using future samples in addition to past samples is derived. This section is based
on [200] (Y. Dorfan, B. Schwartz, and S. Gannot, “Speaker tracking using forward-backward
recursive expectation-maximization,” To be submitted to IEEE...).

In Section 7.2 we consider a tracking algorithm utilizing information from a single moving
pair. This section is based on [201] (C. Evers, Y. Dorfan, S. Gannot, and P. A. Naylor,
“Source tracking using moving microphone arrays for robot audition” in IEEE International
Conference on Audio and Acoustic Signal Processing (ICASSP), New Orleans, USA, 2017).

In Chapter 8 we summarize and discuss shortly a few future research directions that might
be interesting to explore.

At the end of this dissertation, there is an appendix which describes detailed implemen-

tation analysis of three localization algorithms presented in Chapter 3.

1.7 List of publications

The list of publications of the author included in this dissertation are enlisted next in chronol-

ogy order.
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Chapter 2

Problem formulation

Problem formulation for our localization, BSS and tracking algorithms varies a bit along
the various chapters. This chapter summarizes the common parts of the formulations. The
first section deals with the formulation of PRP used for source localization and BSS. The
second section is about sub-band time difference of arrivals, which is more common and will
be used also by our tracking algorithm. It is interesting to explore the novel usage of the
complex STFT measurements themselves without eliminating the amplitude information, as
introduced in the third subsection. This kind of measurement can be used for localization,
tracking and BSS. The fourth formulation deals with the usage of STF'T for DOA estimation,

BSS, multi-dimensional localization and sensors calibration.

2.1 The PRP localization

For our first algorithms we adapted the PRP measurements described in [16]. We used it
for multiple static pairs and for a single moving pair. The motivation was mainly simplicity
and the fact that it contains most of the relevant information. The usage of PRP assumes a

specific model of acoustic transfer function (ATF) described in [41].

2.1.1 Multiple static pair-wise relative phase ratios

Multiple sources are located at unknown positions in a reverberant enclosure. The purpose
is to find the number of active sources and their locations. We define unknown weights or
probabilities for all possible locations on a grid. The algorithms will estimate the weights.

Applying a threshold enables us to determine the number of sources and their locations. We

21
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define these weights as global parameters that are estimated at each iteration or sub-iteration.
In addition to those global parameters, we can define local ones. In order to estimate the
parameters with EM, we define local hidden variables that are updated at each node. They
are aggregated to global indicators that can be seen as SS used for parameter estimation. It

allows distributed computations with minimal communication between the nodes.

The problem is formulated in the STFT domain with ¢t = 1,...,7T as the time index
and £ =0,..., K — 1 as the frequency index. There are J acoustic signals captured by M
microphone pairs. The signal received by the ith microphone, ¢ = 1,2, of the mth pair,

m=1,..., M, is given by:

J
(1K) = 3 a0 K)o )+ (1K), (2.)
j=1
where j = 1,...,J is the source index. v;(t, k) denotes the jth source signal, n’, (¢, k) denotes

additive noise as captured by the ¢th microphone of the mth pair, and a;'.m(t, k) denotes the
ATF from the jth source to the ith microphone of the mth node. The ATF in reverberant
environments consists of a direct path (which bears the desired information for localization)

and reflections (which usually degrade the localization performance).

The first stage of all localization procedures discussed below consists of PRP extraction,

given for the mth microphone pair:

bult, k) 2 ZnE DL D) (2.2)

A schematic block diagram of the pre-processing stage is depicted in Fig. 2.1. The STFT
is applied to each microphone signal. The PRPs are then calculated for each time-frequency
bin separately. These PRPs are induced by the TDOA between the microphone-pair signals

as a response to an acoustic source located in p € P:

2 1
P—pull—lP—Pn
(p) & I Il I

- (2.3)

where p!, and p?, are the locations of the microphones in pair m, ||-|| denotes the Euclidean
norm and c is the sound velocity. P is the set of all possible source locations in the enclosure.
In this work, we selected a regular grid of possible locations with a desired resolution. Note

that any PRP could be associated with multiple source locations. The locus of all these
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Figure 2.1: Pre-processing at the mth microphone pair to extract the pair-wise relative phase
ratio.

locations is a one-sheet hyperboloid.

The various speakers are assumed to exhibit disjoint activity in the STFT domain [16, 17,
18]. This assumption is often referred to as the W-disjoint property of the speech signals [202].
Under this assumption and an upper bound of the number of concurrent speakers, each time-
frequency bin can be associated with at most a single active position (and therefore with a
single speaker). The case of no active speakers could be treated in various ways. We express

the PRP in the following statistical model:
Ot k) ~ - N (0L, K); 0% (p), %) (2.4)
P

where 1), is the probability of a position p to be induced by a speaker. N¢(-;-,-) denotes the

complex-Gaussian probability with variance o2:

N (61, K): 5 (p), %) = 5 exp (— Ol WP)P) | (2.5

mo? o

The complex-Gaussian distribution is used here as in [16, 39], although it is not accurate.
The Von Mises distribution is sometimes used for TDOA estimation [77, 203], since its

properties fit phase measurements better.

The mean-value of each Gaussian, gzgfn(p) is set to the nominal PRP induced by p. It is
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given by:

27kT,,(pP)

ok (p) £ exp (—j s ) Vp € P, (2.6)

where T denotes the sampling period and j = 1/(—1).

Being a probability function, the following set of equations can be written:

> hp=10<1, <1;VpeP. (2.7)
peP
As shown in [47] for a vector of independent data set, we can augment the PRP readings

in all time-frequency bins, ¢,, = veci (dm(t, k)). Using the W-disjoint property above the

m

p.d.f. of the observation set for each node m can be stated as:

[(®n = 6,59) = [T D o (6t k): 6, (p). 0*) (2.8)

tk p

In this work, we consider the actual location of the sources; i.e., information that cannot be
extracted reliably from a single microphone-pair. We therefore concatenate all microphone-
pair readings to describe the probabilistic model of the source locations assuming that all

microphone-pair readings are independent:
F(® = ¢ 9p) = Hf = i) = [T D vl (6m(t k) 5 (0).0%) . (29)
m,t,k P
The independence assumption can be justified by the different reflection patterns the signal

undergoes before being captured by the microphone-pair.

A key point in deriving the distributed localization schemes is the inter-relation between
the available data in the microphone-pair versus the network. We can now define the set of

all probabilities of all possible grid locations in a vectorial notation:

P = vecp (Up) - (2.10)

In the same way as described in [47], the MLE of the speakers’ location (global parameter)

can be obtained by maximizing the expression from equation (2.9) w.r.t. to @ as dealt in
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Figure 2.2: Map of ﬁp as a function of the room’s floor coordinates with resolution of 10 x
10 ecm. By applying a threshold to this map it can be deduced that there are two active
sources in the room.

depth in the next chapter:

~

p = argrilaX[log f(® =& 9)]. (2.11)

An example of a typical estimator of 1 as function of positions is depicted in Fig. 2.2 for
a two-dimensional case with a resolution of 10 x 10 cm. The methods derived in this work
are also applicable to the three-dimensional case. In the figure, the probability of having a
source at each location in the room is represented by the z-axis with color (and height) that
are proportional to its value (in natural log units). The final estimation of the number of

sources and their locations can be deduced from this map by applying a proper threshold.
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2.1.2 Single pair-wise relative phase ratio for a dynamic pair

In this subsection models for the source and the single sensor dynamics are defined. Further-
more, the measurement model of the source, which will be used for the sound localization

algorithms, is presented.
2.1.2.1 Stationary source dynamics
T
The source position, p, = [ms(zﬁ), ys(t)] , is defined as the absolute two-dimensional Cartesian
position within the room. In this section, a static source is assumed, i.e.,

poz-..:pt:p‘ (212)

2.1.2.2 Measurement model

The microphone array used consists of one pair with two-dimensional Cartesian positions,
pi(t) = [mz(t), yz(t)} , © = 1,2 and where the platform moves with speed, v(t). The localiza-
tion procedure relies on the PRP extraction [16] given above in equation (2.2).

These PRPs are induced by the TDOA, which can be defined as:

)& lp —p*@)Il P — P )|

7(p.p'(t). p*(t - (2.13)
We model the PRPs using a Gaussian mixture model (GMM):
Ot k) ~ Y N ({1, k); 6" (p, 1), 0%) (2.14)
P

Assuming the sensors position is known at every time, the mean of each Gaussian can be

calculated in advance on a grid of all possible locations:

. A 2rkT(p,p' (1), p2(t))
¢ (p,t) £ exp (—J KT, ) :

(2.15)

2.2 Sub-band TDOA localization

More commonly used measures are TDOAs. In one of our papers we use the sub-band
version for multiple speakers localization in a reverberant room. In another paper we use the

same kind of measurements for tracking speakers.
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We chose a different feature vector that necessitates a new probabilistic description. In
the original model, a complex MoG is defined to describe the PRP, which is a complex feature
vector. Modeling the PRP as a complex-Gaussian is only an approximation, since magnitude
1 is assumed (see [193]). Here the feature vector is the real-valued TDOAs, hence a real-
Gaussian can be used. Moreover, as the values of the TDOAs are confined to a physically
plausible range, the truncated Gaussian can be a good model for the estimated TDOAs
values. We use subband TDOA estimates, similarly to the model described in [204], and
derive a modified version of the IDEM algorithm.

The new statistical model will be described in chapter 4 as a mixture of truncated Gaus-
sians [205], which is a real-valued distribution consisting of random variables with a finite
support. In [205], two alternative strategies were described for measurements confined to a
finite range: truncation and censor. The truncation strategy classifies each value outside the
allowed range as illegal, whereas the censor strategy substitutes these values with the closest
value within the physical range. In our case, the direct path can only produce a TDOA within
a confined range of values. We adopted the truncation strategy, since a TDOA reading that
exceeds the permissible range, most probably does not contain any meaningful localization
information. Unlike truncation, adopting the censor strategy may cause artifacts in certain
positions in the room.

Consider M microphone pairs receiving signals from J speakers. A noiseless environment
is considered. The number of speakers is unknown in advance. Let y,,;(t) be the signals
received by the ith microphone of the mth node. The signals in the time domain are given
by

J
Ym.i(t) = Z(gj,m,i(t) % 85(t) + 1jm,i(t) * s5(t)), (2.16)

j=1
where t = 0,...,7 — 1 denotes the time index, j is the speaker index, and s;(t) denotes the
speech signal produced by speaker j. The node index is m = 1,..., M. At each node, we
use 7 = 1, 2 as the index of each microphone.

The direct part of the RIR, g;,,.(t), comprises an attenuation and a phase shift. The
residual part of the RIR, 7,,,(t), consists of all the reflections, namely the multi-path com-
ponents. As the reverberation of each speaker is independent of the other speakers, the total
power increases with the number of speakers, J.

In some of the proposed localization algorithms [192, 193], only the direct-path is utilized

for the estimation. These algorithms tend to work well for low reverberation levels and small
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number of concurrent speakers, since they did not take the other reflections into account.
In contrast, the method we propose in chapter 4 tries to reduce the late reflections by the
construction of the feature vector.

In the presence of additive noise we can add a noise reduction algorithm similarly to [70].
Although the focus is on reverberation, additive noise influence is discussed in the experi-

mental section as well.

2.3 Localization and source separation based on STFT

samples

In this section the statistical model for the STFT samples is described. Unlike PRPs, the
STFT coefficients contain also the amplitude information about the sources. In this chapter
we focus on general definitions. Details about the applications (localization and BSS) will

be given in the following chapters.

2.3.1 Signal model

Consider an array of N microphones receiving signals from .J speakers. A noiseless environ-
ment is considered. While applying the algorithm, the number of speakers is not known. Let
Zn(t, k) be the signals received by the nth microphone, where n = 1,..., N. The signals in
the STF'T domain are given by:

J
Zn(t,k) = Gn(k)S;(t, k) + R, (2.17)
j=1
where S;(t, k) denotes the speech signal produced by speaker j, G, , (k) denotes the relative
direct transfer function (RDTF) from source j to microphone n w.r.t. the reference micro-
phone (arbitrary chosen as microphone #1) and R;, denotes the reverberation associated
with speaker j.

In vector notation, the N microphone signals can be written as:

Z(t, k) - Zgj(k)sj(tv k) + rj(t7 k),
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where:
2(tk) = [ Zi(tk) .. ZN(t,k:)r
6,0 = [ Gak) ... Gl |
Pt k) = [ Bt k) .. Ryn(tk) ] -

The RDTF can be expressed by the direct arrival alone (assuming far-field and a linear

microphone array):

Gin(k) = exp <— % T:Jr,") , (2.18)
where 7;, is the TDOA of speaker j between microphone n and the reference microphone
given by:

Tjn = M. (2.19)

d,, is the distance between microphone n and the reference microphone, and ¥; is the angle
of arrival of speaker j.
T
Define the vector of the concatenated unknown angles of arrival as: ¥ = [ vy - Uy

Estimating the DOAs is the goal of this section.

2.3.2 The maximum likelihood problem

The gist of the proposed method, adopted from [39, 16}, is to predefine a set of candidate
angles and to determine the probability that source signals arrive from these angles, rather
than directly estimating the DOA. The statistical model used here, significantly differs
from [39, 16], as will be clarified in the sequel.

The various speakers are assumed to exhibit disjoint activity in the STF'T domain. There-
fore, by means of a clustering process, every T-F bin of z(t, k) can be associated with a single

active source. Hence, the observations are given the following probabilistic MoG description:
1%
2(t k) ~ > haN© (2(t, k); 0, Dy (t, k) . (2.20)
V=1

The prior 1)y is the (unknown) probability of a speaker to be located at a candidate angle

Y. In case no a priori knowledge on these candidate DOAs is available, they can be uniformly
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distributed in the range 1° — 180°. Naturally, 21‘9/:1 Yy=1, where V is the total number of
candidate DOAs.

In our case, ¥ = ®y(t, k) is the PSD matrix of z(t, k), given that z(¢, k) is associated
with speaker angle 9:

(I)ﬁ(ta k) = gﬂgg¢5,79<t7 k) + (I)'Pﬂ?(tv k)a (2'21)
where the RDTF g, depends on the candidate source DOA o through (2.18)-(2.19).

Note, that unlike [16], where the positions estimates were embedded in the means of the
Gaussians, here they are instead embedded in the correlation matrices. This major difference
between the statistical models enables the improved treatment of reverberation, proposed in
the current section.

The time-varying PSD of the speaker ¢g(t, k) and time-varying PSD matrix of the
reverberation ®p »4(¢, k) (both of a candidate source at DOA ) is defined as:

dsa(t, k) = E{|S(t,k)['}, (2.22)
P y(t, k) = E{ry(t, k)ri(t,k)}. (2.23)

Although the PSD matrix of the reverberation is time-varying, its spatial characteristics
can be assumed time-invariant, as long as the speaker and microphones positions are fixed.

Therefore, it is reasonable to model the PSD matrix of the reverberation as:
¢T719(tﬂ k) = F(k>¢R,19(t7 k)a (224)

where I'(k) is the time-invariant spatial coherence matrix of the reverberation and ¢r »(, k)

is the time-varying PSD of the reverberant component of a speaker at angle 9.

In the current section, we assume that the reverberation can be modeled using a spatially
homogeneous and spherically isotropic sound field and set the i-th row and j-th column of

I'(k) accordingly [206, 207]:

[';j(k) = sinc (% dli) +€d(i — ), (2.25)

where sinc(x) = sin(z)/x, € is the level of diagonal loading, and d, ; is the inter-distance

between microphones ¢ and j.

Finally, by augmenting all observations in z = vec;x({2(¢,k)}), the p.d.f. of the entire
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observation set can be stated as:

F(z) =] D o NC(2(t,k);0, @9(t, k), (2.26)

tk 9=1
where we assume that the observations for all time segments and frequency bins are inde-

pendent.

Let the unknown parameter set be: 6 = [¢T,¢§,¢£}T, where ¥ = vecy (1), ¢g =
vecy ¢k (Pswo(t, k) and ¢pp = vecy .y (Prw(t,k)). The desired DOAs can be extracted from
the prior probabilities 1p. The parameter set ¢g and ¢y are nuisance parameters of the
problem at hand, since they do not contain any information regarding the DOAs, but need

to be estimated. The MLE problem can readily be stated as:

A

6 = argmaxlog f (2;0) . (2.27)
0

2.4 Applying BSS based on DOA estimation

The STET coefficients described above in the previous section can be also used for BSS. We

will focus on the slight differences during this section.

2.4.1 Signal model

The measured array output is a linear combination of the incoming waveforms. Let Z,(t, k)
denote the signals received by the nth microphone, where n = 1,..., N. The signals in the

STFT domain are given by:
J
Zn(t k) = Goj(k)S;(t, k) + Va(t, k). (2.28)

=1

where V,,(¢, k) denotes the ambient noise at microphone n.

The N microphone signals can be concatenated in a vector form:

z(t, k) = Z g,(k)S;(t, k) + v(t, k),
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where:
2(tk) = [ Zit k) .. Zuth) |
6,0 =[Gk ... G |
ot k) = [tk ... Valtk) |

The relative transfer function (RTF) can be expressed by the direct arrival only, since

non-reverberant enclosure is assumed:

21k T,
Gyj(k) = exp (— % TT]) ; (2.29)

Estimating the speakers S;(¢,k) for j = 1,...,J is the goal of BSS. Define the vector of
the concatenated unknown AOAs of the speakers: 9 = [ vy - Uy ]T. The ML estimator
for ¥ is obtained by applying the EM procedure. Spectral masks and minimum variance
distortion-less response (MVDR)-BF, which can be used for the estimation, are obtained as

a by-product of the EM algorithm as described in the sequel.

2.4.2 Statistical model

We use MoG to characterize the mixture of all potential speakers’ DOA. The various speakers
are assumed to exhibit disjoint activity in the STFT domain (W-disjoint orthogonality as-
sumption [110]). Therefore, by means of clustering, every T-F bin of z(¢, k) can be associated
with a single active source.

Hence, based on the above arguments, the observations may be given the following prob-

abilistic description:

”
2(t k) ~ > haN© (2(L k); 0, ®y(t, k) . (2.30)
¥=1

The matrix ®4(t, k) is the PSD of z(t, k) given that z(t, k) is associated with the speaker
from the ¥-th angle:
®y(t,k) = gy(k)gy (k)dso(t k) + Po(k), (2.31)

where the RTF gy (k) is given by (2.29), ¢g.(t, k) is the speech PSD and @4 (¢, k) is the noise
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PSD, i.e.

Qbs,ﬁ(ta k) =F {|S19(t7 k>|2} ) (232)
Dy(k) = E{v(t, k)v'"(t,k)}. (2.33)

The PSD matrix of the noise is assumed time-invariant and either known in advance or
can be estimated during speech absence periods.
Finally, by augmenting all observations in z = vec,x({2(¢,k)}), the p.d.f. of the entire

observation set can be stated as

1%
f(z:0) =[] D_ voNe (2(t, k);0,®(t, k), (2.34)
tk 0=1
where independency is assumed between T-F bins.
Let the unknown parameter set be 8 = [wT,cpE}T, where, ©¥ = vecy (1y) and ¢g =
vecy ¢k (Ps(t,k)). The ML problem of the DOA estimation can readily be stated as:

-~

0 = argmaxlog f (2;0) . (2.35)
0






Chapter 3

Localization algorithms

The material presented in this chapter is based on [192], [193] and [194]:

[192] Y. Dorfan, G. Hazan, and S. Gannot, “Multiple acoustic sources localization using

distributed expectation-maximization algorithm,” in the 4th Joint Workshop on Hands-

free Speech Communication and Microphone Arrays (HSCMA ), May 2014, pp. 72-76

[193] Y. Dorfan and S. Gannot, “Tree-based recursive expectation-maximization algorithm
for localization of acoustic sources,” IEEE/ACM Transactions on Audio, Speech and

Language Processing, vol. 23, no. 10, pp. 1692-1703, 2015

[194] Y. Dorfan, C. Evers, S. Gannot, and P. A. Naylor, “Speaker localization with moving
microphone arrays,” in Proc. European Signal Processing Conf. (EUSIPCO), Budapest,
Hungary, Aug. 2016

The challenge of localizing a number of concurrent acoustic sources in reverberant enclo-
sures is addressed. The presence of sources and their number are assumed to be unknown.
The location of the sources are estimated by the localization algorithms that we derive. We
formulate the task as a ML parameter estimation problem, and develop DEM algorithms to
enable usage of ad hoc networks with limited communication and computation resources.

Unlike direction estimation, 2D or 3D localization of acoustic sources is naturally a
distributed sensing task, since the sensors must be spatially deployed. In the case of an ad hoc
WASN, distributed computation is also required, since there is no central point and resources
(communication and computation) are limited. We are interested in algorithms that enable

localization of the speakers without a central point. Taking advantage of the distributed

35
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constellation of the sensors, we propose algorithms that utilize multiple processing nodes and

consider communication constraints between them.

The first localization algorithm we propose, denoted here as IDEM, is based on the [EM
framework mentioned above. The IDEM uses a new definition of local hidden variables. They
enable distributed computation and have a convergence advantage. The IDEM presented here

is a modified version of [192].

We use the concept of local hidden variables and expand their usage. We propose a family
of DEM algorithms. In addition to the IDEM implemented over a directed-ring, we develop
the batch distributed expectation-maximization (BDEM) and the RDEM algorithms, which
are implemented over a bi-directional tree. Unlike the IDEM algorithm, these algorithms
enable parallel computations by the nodes and higher robustness for communication failures.
The RDEM better fits real-time applications due to its recursive nature. The two new
algorithms are compared for the static case, in terms of implementation and performance.
Actually those topologies are not the only ones that can be used for the local hidden variables

suggested, but they are very useful examples that can be analyzed easily.

3.1 The distributed expectation-maximization concept

Following [16, 39] and based on the definitions in subsection 2.1.1, we formulate the local-
ization problem as an MLE and solve it using EM iterations. As already stated above,
unlike [16], which used distributed sensing calculated in a central way, we are interested also
in distributed computation. The hidden variables are defined globally in [16], as the associa-
tion of each time-frequency bin (¢, k) with a particular source s located in position p. This
indicator is denoted x(t¢,k,p,s). In our research, we are interested in distributed computa-
tions and therefore propose to replace the global hidden variables with local ones that can
be estimated at each node (equipped with a microphone pair). Moreover, we simplify the
exposition in [16] and omit the source index s from the indicator. Omitting the index s
enables us to estimate the number of active sources and their locations without any a priori
knowledge.

The local hidden variables, y,,(t,k,p) can then be defined as the indicator of the time-
frequency bin (¢, k) associated with a speaker in location p from the mth microphone pair

perspective:
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1, p active for (m,t, k)
Ym(t, k, p) = ‘ : (3.1)
0, otherwise

For each time-frequency band (t, k) they equal to zero everywhere except to p, the position
of the active speaker, since not more than one speaker is likely to be active at each time-

frequency band [110].

Please note that, in contrast to methods where global hidden variables are used [16], local
hidden data support a case where some of the nodes measurements are physically unfeasible

and hence assigned with zero probability. The expectation of this indicator is given by:

E{ym(t.k,p)} = p. (3.2)

A vectorial version of the model proposed in [41] can be defined for the 2D (or 3D)
positioning problem, meaning that instead of a single node, local indicator, y,,(t, k,p), a
global vector of all local indicators can be used. Let y(¢, k, p) = vec,, (ym(t, k,p)) be the set
of all local indicators that relate to a certain time-frequency bin. The local components of

this vector are independent identically distributed (i.i.d.). The expectation is therefore:

E{y(t,k,p)} =vp - 1, (3.3)
where 1 is a vector of all ones of length M.

We can further define a longer vector y(p) = vecx (y(t, k, p)) as the set of all indicators.
Assuming independence in time, frequency and node, the probability density function of y

is given by:

FOY =yi9) = [ D voym(t k. p). (3.4)

t,k,m peP

Evidently, y,,(t, k, p) is an indicator. The number of local indicators is M x T'x K. Their
support is p € P, the set of all discrete position values on the grid, and |P| stands for its

cardinality.
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Following chapter 9 of [47], the p.d.f. of the observations is given by:

(@ =Y =y;4) = [[ /(®m = [ Yom = ym; ¥) =

m

TT D vtk ) N (Gt ): 0, (), 0%) (3.5)

m,t,k peP

The p.d.f. of the complete data can be deduced from (3.4)-(3.5) and some simplification

utilizing the indicator properties:

f[(@=¢Y =y;¢)=fY =y;9)f(® =Y =y;9)

= (H > Upumlt, k,p)> (H >t b DIV (it /f);éfn(p),f))

m,t.k peP m,t.k peP
= T 3= viotm(t. k. I (6t ), I, (B 0*) (3.6)
m,t,k peP

3.2 Localization over a directed ring

We develop this DEM procedure based on the IEM framework. The algorithm enables local-
ization of the speakers without a central point. Taking advantage of the distributed constella-
tion of the sensors, we propose a distributed algorithm that enables multiple processing nodes
and considers communication constraints between them. To develop a distributed version, we
adopt the IEM method presented in [51]. The IEM is updating the hidden variables node-by-
node, as new data arrive. This is a different concept from the batch EM solution. The TEM
is better than the conventional EM algorithm in two important aspects, namely significantly
improved convergence speed [51, 53], and weaker dependency on initialization [53, 52]. Note
that one of the major drawbacks of the EM mechanism is that it might be trapped in a
local optimum, depending on the initial conditions. Hence, decreasing dependency on initial

conditions is highly important.

The proposed distributed implementation is over a directed ring topology, shown in
Fig. 3.1(a). In the IDEM algorithm each node contributes to the estimation incrementally, by
locally updating the hidden variables, rather than the global update, as in the conventional
EM. The resulting algorithm is capable of detecting the number of active sources (including

the detection of no activity) and their locations.
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) A directed ring.

Root

/

(b) Bi-directional tree.

Figure 3.1: Two network topologies used for our distributed expectation-maximization algo-
rithms.
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The EM algorithm for the problem at hand can now be derived. The FE-step is given by:

Quld ") 2 E{log (1@ = .Y =yip)|eiw '} = (3.7)
> E {yn(t, kD) om (8,19} [log y + 10 N (6t K); 05, (), )]

which in our case, simplifies to the calculation of:

0 INE (Gt R): 05 (p). o)

(—1)

ot p) 2 B {ym(t b, ) om (1, 1)} = —— —— . (38)
Sp U N (Gt ); 04,(5), 02)
Note that v/ (t,k,p) is a node-specific entity.
We can define aggregation of the hidden variables estimate:
1
) L - ()

(tk,p) = > v (t. kD), (3.9)

which can be used to estimate Q('l,bw(f_l)). It can be observed that pu(“(t, k,p) is the
estimated probability that a source is present at time ¢, frequency k£ and position p. The
EM algorithm iterates between estimating the local node probabilities and then updating the
global priors @Z);(;l) of the source positions for the next iteration.

Two paradigm can be adopted in calculating the MLE. The paradigm relevant to this
section is denoted IDEM. Another paradigm, the batch version, is described in the next
section, and will be denoted BDEM.

The IDEM algorithm is based on the partial (also denoted IEM) procedure [51]. It consists
of partial E-step updates at each node followed by an M-step. In this way each component of
the hidden vector is estimated incrementally with the most updated values of the parameters.
The IDEM algorithm is detailed below.

For BW reduction and for the case where only the parameters estimation is of interest,

we define an averaged version of the hidden variables in the following way:

o) & Zes V(L k. p)

1
il 2y (3.10)

where 7 is the partial iteration index.

When the hidden variables are also of interest, like for the BSS application, this BW
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reduction is possible only for the localization phase of the algorithm. These applications are
discussed in the next chapters.
The averages of the hidden variables are aggregated around the ring according to the

following relations:

. M _(i-m)
N i Um (P
by 2 (p) = Tt O () (3.11)

From this equation we derive the following compact version of the M-step:
p) , On(p)
M M

oM

(3.12)

The IDEM, similarly to [16], starts by extracting local complex phases ¢,,(t, k) from the
received signals at each node and calculating ¢F (p) using (2.6). Then, the local hidden
variables, ol M (t,k,p)... ¥ (t,k,p) are initialized to a uniform distribution. To finalize
the initialization stage, the local hidden variables are aggregated to yield (¥ (p).

The algorithm then starts iterating for ¢ = 1,...,L and m = 1,..., M, where L is
a predefined number of iterations of the entire network. Note, that in the proposed IDEM
algorithm we have M node-specific updates before increasing the value of £. The two iteration
indices can be combined to one index i = (¢ — 1)M + m denoting the partial iteration. At
each node the local hidden estimation (partial E-step) is followed by an M-step. Finally, the
number of active sources J is determined as the number of values of ¢§f =LM) that are higher
than a predefined threshold. The coordinates of these Gaussians determine the location of
the sources. Algorithm 1 summarizes the IDEM algorithm.

The IDEM exhibits two important advantages compared to previously suggested central-
ized algorithms. Firstly, the choice of new hidden variables and the partial update mechanism
have the potential of improving the convergence rate of the algorithm. Secondly, it reduces

communication bandwidth requirements between nodes.

3.3 Tree-based distributed expectation-maximization

In this section the proposed tree-based DEM algorithms are derived. We start by listing the
drawbacks of a directed-ring topology, and show that they can be circumvented by using a
bi-directional tree topology. We then derive two DEM algorithms suitable for that topology.
Firstly, a batch algorithm, denoted BDEM, is proposed. Secondly, a recursive version of the
BDEM algorithm, denoted RDEM, is derived.
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Algorithm 1 Acoustic source localization with the incremental distributed expectation-
maximization algorithm.

Obtain 2! (¢, k) and 22, (¢, k); Vm.

Calculate ¢, (t, k); Ym using (2.2).

set dgﬁl(p) using (2.6).

initialize o5 Y (p),..., o (p).

Calculate p¥ (p) £ & Zi\,{:l i, ™Y (p).

for /=1 to L do

for m=1to M do

i = (¢ —1)M + m (partial iteration index)

Q;I(}'*l) £ 01 (p) is received from previous node.

E-step .

Calculate Ufﬁ)(t, k,p) using (3.8) with index ¢ replaced by index i.
M-step

Update: i?)(p) using (3.12) and send it to the next node in the ring.

end

end

By applying a threshold to @éL'M), the final estimate of the number of sources J, and their

respective locations py; 7 = 1,...,J can be obtained.

3.3.1 Comparison of directed ring and bi-directional tree topolo-

gies

In this subsection we compare two well-known network topologies [208] that are used by our
DEM algorithms. They are schematically depicted in Fig. 3.1.

As mentioned above, the IDEM algorithm is implemented over a directed-ring topology,
which suffers from several structural drawbacks that hinder its application to distributed

algorithms. The two topologies can be compared as follows:

Latency The message propagation latency of a directed-ring linearly increases with the
number of nodes, M. For the bi-directional tree-based topology the respective latency de-
pends on log(M), where the base of the log depends on the structure of the bi-directional

tree (i.e. the number of branches of each node).

Computational resources Computations in the directed-ring cannot be carried out in
parallel, since each node has to wait for the result from the previous node. In bi-directional

tree topologies all computations can be carried out in parallel.
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Number of fatal failure points In a directed-ring topology, a disruption in any node
disconnects the entire data flow. For the bi-directional tree topology, the only fatal failure
point is the root. Moreover, even in the case of a root failure there are standard measures
that can be taken to overcome this failure. This issue is beyond the scope.

Unlike the simple role of the nodes in the IDEM algorithm, implemented over a directed-
ring, the role of the nodes in the proposed algorithms, which are based on a bi-directional
tree, is more complex. On the one hand, the nodes of the tree are identical with respect to
their sensing capabilities. On the other hand, they differ with respect to their role in the
communication network according to their location in the tree topology. For example, the
root of the tree (marked ‘0" in Fig. 3.1) plays a unique role in terms of management of the

network, as will be described below.

3.3.2 Tree-based batch distributed expectation-maximization al-

gorithm

We now derive the bi-directional tree based BDEM algorithm. The term batch refers to the
specific processing with respect to the time axis. Unlike the IDEM (described above), which
updates the estimation after partial processing of the data and the RDEM (described in the
next subsection), which updates the estimation along the time axis (on-line processing), the
BDEM processes all samples together after all of them have been acquired (off-line).
Assume that 1) (p), the recent average estimation of the hidden variables, is available
in the root of the bi-directional tree. This is actually the result of the M-step, yielding the

current parameter estimation:

()
J 2 0(p) = Lt () (3.13)

In the BDEM algorithm, the sub-iteration index i (see Algorithm 1) is no longer used, and
only the global iteration index, ¢ is required. The M-step is actually the aggregation of local
estimations from the leaves towards the root. The current parameter estimate, Qﬂg) is diffused
in the network until it reaches all leaves (nodes).

The E-step is executed in all leaves simultaneously, based on the current parameter es-
timation. They transmit their E-step results to the root and the new M-step estimation is
aggregated. The new parameter estimation is then diffused back to the leaves.

Like the IDEM algorithm, each node is responsible for its local measurements and for
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Algorithm 2 Acoustic source localization with the batch distributed expectation-
maximization algorithm.

Obtain 2! (¢, k) and 22, (¢, k); Vm.

Calculate ¢, (t, k); Ym using (2.2).

set ¢F (p) using (2.6).

initialize v\ (¢, k, p).

Calculate (% (p) = ZT”@T%.

for /=1 to L do

1&1(5_1) £ =Y (p) is received from the root.

E-step

¥m = 1: M calculate simultaneously and locally v\ (¢, k, p) using (3.8).

M-step

Calculate by the tree: il (p) using (3.13) and send it from the root to the leaves.

end

By applying a threshold to 1[11()“, the final estimation of the number of sources J, and their
respective locations p;y; j = 1,...,J can be obtained.

estimating its local hidden variables. However, unlike the IDEM algorithm, the E-step can
be executed simultaneously in all nodes using the same value of the parameters. The E-step
is locally applied at all nodes in a standard manner, as opposed to the partial E-Step in
Algorithm 1. The average of all estimations of the local hidden variables are fused towards
the root. The root is then ready to send the next parameters estimation. The algorithm
iterates until convergence or until the number of pre-defined iterations has been reached.

Algorithm 2 summarizes the proposed BDEM algorithm.

3.3.3 Tree-based recursive distributed expectation-maximization

algorithm

A recursive version of the BDEM, denoted RDEM, is derived below. Even for the static
scenario, a recursive on-line algorithm can help reduce latency and computations. As shown
experimentally, the RDEM also exhibits fast convergence and high accuracy. Recursive
algorithms are often used also for tracking a dynamic scenario as explored later. In this

chapter we concentrate on static scenarios.

Recursive EM versions have been derived in [184, 54]. We adopt the TREM version [54].
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The basic adaptation scheme for the parameter of interest, 1 is given by:

(t—1)

'le = 'l,bR + %I;tl’(bt;ﬂ)gfl)vw log f(q)t = ¢t; ’l/))b}g-n, (3'14)

where subscript ¢ in the notation V; stands for all components of a certain vector, V' of the

current time frame. The Fisher information matrix (FIM) is defined as:

I & B {Vilog [(Y) =y B = ¢i)| o | (3.15)

(t—1)
Ye» ¢t'¢’R

We stress that the operator, F{-} is a conditional expectation using the current parameter

estimate 17)2). We therefore use the constrained version of TREM proposed in [16]:

5 ()

b =y +%I’1¢,{pg7nwlogf( = @)l 00 (3.16)

I;1¢ '12’“_1)& (t=1) alI-!
_ P YR - — . N —
Yt = ] < ¢R Iyt7¢t;12)%71>v¢ IOg f(‘I)t d)ta ¢)|¢§ 1) b) s

where in this case, due to the constraints in (2.7) we have:
a=1"b=1. (3.17)

To calculate the FIM, expectation of the second derivative of the log likelihood is required.
The joint p.d.f. of the instantaneous measurements and the hidden variables (compare

0 (3.6)) is given by:

FY =y ® = 39) = [T vt k. N (0 (t.8), 05 (p), o). (3.18)

m,k peP

Applying the log operation and the indicator properties yields:

log f(Yi =1y, ®r= ;) =
> unltk.p) (tog(ty) +1og (N (0mlt. 1), 5 (p).0%))) . (3.19)

m,k,peP

Evaluating the second derivative in the previous parameter estimate and using defini-
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tion (2.10) yield:

82 Zk’,m ym(takap)

_8_1@2,10‘% Y, =y, ® = q,)t;":b)’@g*l) = ( A(t1)>2 (3.20)
wp,R
Taking expectation and utilizing the local indicator property result in:
0? K-M
ES—s5log f(Yi=y, P = dy¢)| 00 p = 77— (3.21)
0 o ()
p,R
The p.d.f. of the current observation is given by (comparing to (2.8) and (2.9)):
(@0 = b 9) = [T vpN® (9m(t, k); 0 (p).0*) (3.22)
m,k peP
Taking the logarithm of (3.22) and calculating the derivative yield:
9 N (6t k), 3L (p), 0%
———log f(®: = P ¢) = Z (3.23)

awp m,k Zf)ep ¢ﬁNc <¢m(ta k)a qgfn(f))a UQ) .

Evaluating (3.23) at the previous parameter estimate and expressing the result in terms of

local expressions yield:

0 o (@0 = i) g = 30 ) 321
a0 = Pi; p—1 = T a—1) :
p t M m.k ¢§R1)

where U,(,?(k;,p), the local hidden variables, are calculated using the approximation of the

parameters:

RN (8,15, (p), o)

vl (k,p) £ = - . (3.25)
Y er Pon N (6m(t, ); 34(B), o)
We define the frequency mean of the local hidden variables as:
| K
ol (p) & — Ok, p). 3.26
Uy (P) K;vm( ,P) (3.26)

Averaging over all frequencies at each node enables a significant reduction of the communi-
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cation BW.
We define the current global parameter estimation (before recursion) as the multiplication

of (3.21) and (3.24):

LAY M Zv(t ) £ i (p) =
82 -1 5
<E{ 8¢2 log f(Y: =y, ® = ¢, ¢)|¢;tR1>}) 31/1;, log f(¢¢; ’lb)’w(t 1. (3.27)

Using the term from equation (3.27), the recursive distributed estimation procedure from

equation (3.16), for the case of (3.17) results in the following simple form:

b = b (1/) — g ) . (3.28)

This simple recursive calculation is applied by the root.

The global parameters of the algorithm gAbg) are initialized by a uniform p.d.f.. Based on
the recent parameter estimate (using the initialization at ¢ = 0) a local E-step is executed at
every node of the bi-directional tree at the current time frame, yielding o) (p).

This operation may, at the first glance, appear identical to the FE-step of the BDEM
algorithm. However, as an off-line algorithm, the BDEM calculates the E-step for all time
frames together. Its recursive version, the RDEM, processes each time frame separately
immediately after being acquired.

The local hidden variables are averaged along the frequency axis locally and o) (p) is
aggregated through the bi-directional tree towards the root. The results are used by the root
for the calculation of its current estimate (3.27) and the recursion equation (3.28). The root
then transmits (diffuses) the updated parameters to all nodes through the tree before the
next time frame is processed. This process is summarized in Algorithm 3.

The root of the bi-directional tree has two roles in this process. Its first role is to broadcast
the latest global parameter estimation 1]);) to all nodes efficiently. The second role of the
root (in the opposite direction) is to aggregate local results that will enable calculation of
the next recursion step.

The advantages of a bi-directional tree structure compared to a directed-ring based struc-
ture (used by the IDEM algorithm) were discussed above. To summarize this section, some of
the RDEM advantages over the non-recursive algorithms (IDEM and BDEM) are described.

First, the RDEM is an on-line algorithm that does not need to store previous estimates of
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Algorithm 3 Acoustic source localization with the recursive distributed expectation-
maximization algorithm.

set ¢F (p) using (2.6).

initialize 9., .

fort=1to 7 do

Obtain z} (¢, k) and 22 (¢, k); Vm.

Calculate ¢,,,(t, k); Vm using (2.2).

Calculate simultaneously and locally o) (p) using (3.26) Vm =1,..., M.
Use the bi-directional tree to aggregate local results from leaves (fusion).

Calculate by the root processor: {bﬁ? using (3.28).

A (t
Transmit 1,b§{) from the root to all nodes for the next time frame (diffusion).

end
Find J, the number of sources, and their respective locations pj; j = 1,...,J by applying a

threshold to {bg), which is the final result of the algorithm.

the hidden variables. Second, transmitting only the averaged hidden variables (along the
frequency axis) makes it BW efficient even for large values of K (the number of frequencies).
Third, replacing the iteration index with the time index decreases the computational com-
plexity and the communication BW. In the following sections we compare these algorithms

in terms of implementation and performance.

3.4 Localization implementation analysis

This section deals with various implementation features of the DEM algorithms. The factors
that influence these implementation features are summarized in Table 3.1.

Notice that we selected a regular grid of possible locations with a desired resolution, but
other schemes are applicable as well. The grid and its resolution have an influence on the
computational complexity.

Table 3.2 summarizes the computational complexity, latency, communication BW and
memory requirements of the proposed algorithms.

The comparison between IDEM and BDEM is quite complicated. On the one hand,
BDEM requires higher communication BW than IDEM and it has higher computational
complexity (since Lppgy > Lipem). On the other hand, its memory requirements and its
latency (assuming M > Lﬁ)‘%) are smaller.

When comparing the RDEM to the first two DEM variants, a significant improvements
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Notation Meaning

Lgpem or Lipgm | number of iterations for each algorithm (typically larger for BDEM)

M number of nodes

T number of time frames

K number of frequency bins

| P| size of the positions grid

Ty block length in seconds required for reliable localization of the IDEM and

BDEM

TGlobal latency caused by the global calculations of IDEM and BDEM

Tglobal < Taioval | latency caused by the global calculations of RDEM

Tl ocal latency resulting from the local calculations of IDEM and BDEM

T 1 < Tiocal latency resulting from the local calculations of RDEM

Table 3.1: Implementation factors definition.
Criteria IDEM BDEM RDEM
Latency O(Ts+ Livem- M -Taiobar+  O(Ts + Lepem * Taiobal +  O(T&opat+ 11 cal)
LIDEM M - TLocal) LBDEM . TLocal)

BW O(Lipgm - M - |P)) O(Lgpgm - M - |P|) O(M-T-|P)|)
Memory OM-T-K-|P|) 0 O(|P))
Table 3.2: Implementation feature table.  The incremental distributed expectation-
maximization, batch distributed expectation-maximization and recursive distributed

expectation-maximization are compared with respect to computation, delay, communication
band width and memory.

in computation complexity and latency is observed. The RDEM requires more BW. Its

memory requirements are small, in fact much smaller than those of IDEM, but slightly larger

than those of BDEM (which does not impose any storage requirements).

3.5 Experimental study

This section reports an experimental study of the two last DEM localization algorithms.

As a reference algorithm we used a modified version of the SRP-PHAT [87]. It should be

emphasized that localization in acoustic signal processing is usually developed for 1 — D

only. This is the reason we found it difficult to compare our results to more state-of-the-art

algorithms.
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In order to evaluate performance, we use both simulation and real-life recordings of con-
current sources. For simplicity, we limited the localization problem to the two-dimensional
case. It should be noted that the algorithms can be applied to the three-dimensional case as

well.

3.5.1 Practical considerations

There are a few practical considerations to be addressed regarding the proposed algorithms.

3.5.1.1 Sensor positions

As in most of the localization approaches, we also assume perfect knowledge of the sensors’
positions in the room. As mentioned above, we assume a 2D set-up purely for simplicity
reasons. Therefore, the elevation value is ignored. However, the algorithms tested can be

easily applied to 3D cases as well. In the general case a 3D location can be estimated.

3.5.1.2 Node synchronization

We assume perfect synchronization between the nodes. In practice, it is most likely to
have synchronization since cell phones and other equipment are synchronized through the
network. In cases where there are clock differences, synchronization methods such as [209] can
be adapted. Actually, later we discovered that our distributed algorithms are not sensitive

to node synchronization errors.

3.5.1.3 Microphone inter-distance in each node

We used a microphone inter-distance of 50 cm, which is a good compromise between resolution

and ambiguity.

3.5.1.4 Calculation precision

For all calculations we used natural log operations, since they convert multiplications and
divisions into additions and subtractions, while maintaining high precision. In other words,
the probability zZAJI(,Z ) is replaced by log <2ﬂg )>. In a similar way, log (u(i) (t, k, p)) is used rather

than its original counterpart.
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3.5.1.5 Number of iterations for batch distributed expectation-maximization

We used 20 iterations for the BDEM algorithm. If resources are highly limited, the number

of iterations can be reduced to around 10.

3.5.2 Simulation results

To evaluate the localization performance of the algorithms, we simulated the following sce-
nario. Twelve pairs of omni-directional microphones were located around a room. The dimen-
sions of the simulated room were 6 X 6 x 4 m, with a low reverberation level, Ty = 200 msec.
Two sources, randomly located in the room, were simulated using short speech files and
an efficient implementation [210] of the image method [211]. An example of the speaker-
microphone constellation is depicted in Fig. 3.2(a).

To compare the performance of the algorithms we followed the procedure described
in [192]. We executed 100 Monte-Carlo trials and calculated three statistical measures:
1) The MD rate, defined as the percentage of sources that were miss-detected out of the
total number of sources; 2) The FA rate, defined as the percent of falsely-detected sources
normalized by the total number of sources; and 3) The mean square error (MSE), defined as
the accuracy of localization for all successfully detected sources. Note that the accuracy of
the location estimation was limited by the grid resolution which was 10 x 10 cm. Table 7.1
summarizes the measures for all algorithms. The reference algorithm SRP-PHAT [87] had a
higher MD rate and a higher FA rate than the others. The MSE of all algorithms was low

with respect to the grid resolution.

Algorithm ~ MD[%] FA[%] MSE[cm)]

SRP-PHAT 7.5 11.5 4
BDEM 6.5 9.0 4
RDEM 6.5 8.5 4

Table 3.3: Localization statistics for 100 Monte-Carlo trials with two randomly located acous-
tic sources.

3.5.3 Analysis of actual recordings

The algorithms were also tested using real recordings of two simultaneous sources and nine

synchronized microphone pairs. Real-life recordings are important to validate localization
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algorithms, since not everything can be accurately simulated. For example, the spatial volume

of the sources is complicated to simulate.

The recordings were carried out in the speech and acoustic lab of Bar-Ilan University.
This is a 6 X 6 X 2.4m m room that has a reverberation time controlled by 60 interchangeable

panels covering the room facets.

To simulate real human sources, we used a mouth simulator (B&K, type 4227) and a
head and torso simulator (HATS) mannequin (B&K, type 4128C-002) to emulate head and
torso shadowing effects. The measurement equipment also included a RME Hammerfall DSP
Digiface sound-card and a RME Octamic (for Microphone Pre Amp and digitization (A/D)).
AKG type CK-32 omnidirectional microphones were used. All measurements were carried out
with a sampling frequency of 48 KHz and a resolution of 24-bits. The multi-microphone sig-
nals were acquired using Matlab©. An example of the room layout is depicted in Fig. 3.2(b).
Two different reverberation levels were tested by changing the panel configuration; namely
T6o = 150 msec (low) and Tho = 450 msec (medium). For the higher reverberation level, the
localization results were not accurate enough. A picture of the room setup, with two sources

facing each other 61.5 cm apart and a low reverberation level, is depicted in Fig. 3.3.

The results of the localization algorithms are presented. We refer only to the center part

of the room encircled by the microphones.

In the following figures we depict the results of the various algorithms. In all figures, only
the area encircled by the microphones is shown. Figure 3.4 depicts the localization probability
maps (ﬁp) of the proposed algorithms and the output of the SRP-PHAT algorithm for the
low reverberation level and with a source inter-distance of 61.5 cm. The SRP-PHAT had
poor resolution and exhibited a wide peak combining both sources. The BDEM and the
RDEM algorithms detected the two sources. In addition, the localization of the RDEM was
slightly more significant than the localization of the BDEM.

Figure 3.5 depicts a two source localization (inter-distance of 71.5 c¢m) for the medium
reverberation level. The SRP-PHAT only detected one of the sources. Again, the BDEM
and the RDEM algorithms detected both sources.
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3.6 Speaker localization with moving microphone ar-

rays

In practice, applications such as robot audition often require near real-time processing, such
that sound sources must be localized from short frames of audio data. We use moving
microphone arrays with known trajectories. We decided to adapt a Bayesian technique to
sequentially estimate the source positions from on-line data. Bayesian estimation [212, 56]
considers not only the likelihood of the desired random variables, but also incorporates prior
information by modeling belief about the dynamics of the sources. The posterior p.d.f. is
therefore maximized instead of the likelihood. In this case the prior imposes the static location
of the source. The resulting MAP estimator can therefore be considered as a penalized ML
approach. A particle filter is proposed for sequential sound source localization.

For both approaches, we assume that only a single, static source is localized and that the

trajectory and positions of the microphones are known a priori.

3.6.1 The expectation-maximization localization algorithm

Based on [41] an EM localization algorithm has been suggested in [16] with a vector of
PRP measurements. In [197] IDEM has been presented for the same localization problem.
Following [197] and [16], we present an algorithm for the moving microphones case. The

basic formalization was given in subsection 2.1.2.

3.6.1.1 Maximum likelihood for dynamic localization

The joint p.d.f. of the PRPs in (2.2), assuming independence along time and frequency

indexes, is given by:

F(@ = ¢iw) = [T D vl (60t ); 6 (p.1),0%) (3.20)

t,k p

where ¥ = vecy, (¢p) and ¢ = vecy i (¢(t, k)).

The ML estimate of the source locations is given by:

o= argmax[log f(® = ;) s.t. Z@bp =1land 0 < ¢p < 1]. (3.30)

pEP
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3.6.1.2 Hidden variables

The hidden variables, y(¢,k,p) are defined as the association of each measurement with a
source at position p. Let y = vecxp (y(t, k, p)) be the vector concatenation of the hidden

variables. The p.d.f. of y is given by:

FOY =yip) =[[D_ ¢oy(t.k.p). (3.31)

tk P

Given the hidden variables, the p.d.f. of the observations is:

1@ = lyiw) = [T Y vtk p) N (61,1 6(,1), %) (332)

tk p

The p.d.f. of the complete data can be deduced from (3.31)-(3.32):

[(® =6, Y =yi) = [I D v (k. D) N (6(2. ). & (9,1),0%) . (3.33)

t,k Pp

3.6.1.3 The expectation-maximization localization algorithm

The original IDEM algorithm is capable of detecting the number of active sources (including
the detection of no activity) and their locations for static scenarios. The IDEM is applied
here for moving sensors. Thanks to the dynamics of the sensors, we can use it even with a
single node. It means that this version is not necessarily a distributed algorithm, although
it can be easily expanded to more than a single node.

The E-step can be stated as:

Qwlp ) 2 E{log (f(® =, Y =yiu) ¢} (3.34)
=S B {utt.kp)lot k) b} [log i +log N((t, k): 6 (p,1),0%)]

which, in our case, simplifies to:

O INE (00t 1) 8 (p,1) o)
S 0N (00t K); 0 (91, 1)  0?)

v (t,k,p) 2 B {y (t, 5 p) o(t, )} = . (33)

The EM applies the E-step, followed by the M-step, as summarized in Algorithm 4. This

summary is for a single node, although a generalized version can also be used.
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Algorithm 4 Dynamic EM localization.
input 21(t, k), 2%(t, k);.

Calculate ¢(t, k) using (2.2).

set ék(p, t) using (2.15).

init wp to uniform p.d.f..

Calculate v (¢, k, p) usmg (3.35).

Calculate their mean: ¢ w
for /=1to L do
E-step
Calculate v (¢, k, p) using (3.35).
M-step

. 0
Calculate g) _ Lk v (bkP) T'K(t’k’p)

end
output v, v (¢, k, p).

3.6.2 Bayesian filter

As discussed in the previous section, ML estimation infers knowledge about the source posi-
tion from the observations only (see (3.30)). As only knowledge about the measured data is
taken into account, ML estimators are based on purely objective observations. Prior belief

about the source position can also be utilized when considering a Bayesian framework.

Under the Bayesian paradigm the desired source position, p, is considered as a static
state. Estimates of p can hence be obtained by construction of the posterior p.d.f. of the

T T
States? ft(p’¢1:t)7 given the PRPS7 ¢1:t = |:¢'{7 R ¢Zi| ) where ¢t = ¢(t7 1)a s 7¢(t7 K)
This estimation is related to the likelihood, f(¢,|p), via Bayes’s theorem:

f(o|p) ft|t—1(P|¢1:t—1)
f(¢) '

fi(pléy) = (3.36)

The instantaneous likelihood, p (¢, | p) is modeled similar to (3.29) by assuming indepen-

dence of PRPs in time and frequency:

p(¢:|p) HNC( P (p.1). 0*). (3.37)

where ¢? is the measurement noise variance.
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Furthermore, fy;—1(p|¢,,_,) in (3.36) is the predicted p.d.f. given by:

furr(Plbra 1) = / F(0) frr(plra_1)dp. (3.38)
]RQ

where f(p) is the prior p.d.f. capturing the static nature of the source and f;_1(p|¢,.,_;) is
the posterior p.d.f. at time t — 1.

To sequentially obtain the optimal value of p at each time, ¢, MAP estimates can be

evaluated by maximization with respect to the variables of interest, i.e.,

p=e argmax f(ploy). (3.39)

3.6.2.1 Sequential importance sampling

To impose real-valued source states despite the complex observations, sequential importance

sampling [213] is used. The posterior at ¢t — 1 is approximated by:

Ji—1

fe-1(Plb1a1) Zwt 15 o ( (3.40)

where (5p<j) (p) denotes the Dirac measure of random variable, p, centered on particle f)(j).
wf’ )1 are the weights updated along the sampling iterations and J;_; is their number for

previous iteration ¢ — 1. Inserting (3.40) into (3.38) yields:

Ji—1

frp-1(Pld14—1) / Zwt 1 <J> p) dp. (3.41)

RQ

In order to capture the static nature of the source whilst modeling uncertainty in the particles,
j)(j), the prior, f(p) is approximated by drawing P importance samples for each particles,

pY) from the proposal distribution:
- <p|i)(j)) — N (p | ﬁ(j), Q) (3.42)

where the covariance, Q, allows for deviations of the new particles via (3.42), pYP from the

old particles, f)(j ),
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Algorithm 5 Particle filter source tracker

R K
Input PRPs, {qﬁk(p,t)}
for j =1to J do
forp=1to P do
Sample pV- from (3.42)

Evaluate w,g from (3.45)

end
end
Normalize weights, w’?)| from (3.44)
Re-sample pUP) [214]
Extract point estimate, p (3.46)
Output Cartesian source position, p.

Using (3.41) and (3.36), the posterior p.d.f. of the states, p, can hence be expressed as:

Ji—1 P
p’¢1 it Z Z Wy (J ;v) ) (343)
7j=1 p=1
with weights:
~ (4,p)
; W
”LUIEJJ)) = Jtllf’— (344)
> Z wtjp
Jj=1p=

~ (4,p)

where the unnormalized weights, w,”"”, are defined as:

o & wls f(, 7). (3.45)

The point estimate of the source position at each t is extracted as the weighted average of

the particles:

J P J P
ﬁzzzw(w)ﬁm/zzwg]p' (3.46)

j=1 p=1 j=1 p=1

In order to avoid an explosion of the number of particles, systematic re-sampling to Jyax
particles is applied to the particle cloud, { UP =1, J:ip=1,..., P} after each re-

cursion [214]. The Bayesian algorithm is summarized in Algorithm 5.
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3.6.3 Simulation study and performance measures

3.6.3.1 Simulation setup

To evaluate the performance of the algorithms, audio data was generated using the following
T
simulation. The origin of the microphone array, p°(t) = [xo(t),yo(t)] , is generated using

the following constant velocity model:

p'(t) = F(1) p'(t — 1) + np 1) (3.47)

where np(t) ~ N (021, £°(t)) is the process noise with covariance, £°(t).
The matrix F(¢) captures the dynamic model, defined here as a constant velocity model

given by:

F(t) = [1 0 Aro(t) Siny(t)] 7 (3.48)

0 1 Aguv(t) cosvy(t)

where Ar is the time delay between ¢ — 1 and ¢, v(t) is the velocity of the moving platform,

and where the array orientation, (), is given by the random walk:
L) =t = 1)+, (1), 0,(t) ~ N (0,02 (1)) (3.49)

T
The microphone array elements are placed at {12} = [:I:O.25, 0, 0} relative to the array

center, such that the positions of microphone, m € {1, 2}, is given by:
p"(t) = R () r™ + p°(1), (3.50)

where R(7;) is the rotation matrix, defined as:

a |cos(v) —sin(7)
Rw) = [sin(%) cos(v;) ] . (3.51)

Using (3.47) and (3.50), the trajectory of the microphone center in (3.47) within a room of
size 6 x 6 x 2.5 m was simulated with the initial position at (2,2,1.5) m at a speed of 1 m/sec
with orientation variance of crgw (t) = 0.1 rad? and process noise covariance, 3¢ = 107" x 1.

A single static source was placed at (4,4, 1.5) m. The scenario is shown in Fig. 3.6.

Using the RIR generator in [210] the RIRs of 100 time steps at time delays of 0.2 sec along
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the trajectory of the microphone pair were simulated for a reverberation time of 0.3 sec. The
resulting RIRs were convolved with a 20 sec speech signal from a female speaker constructed
from the TIMIT database. For localization, the height of the microphones and sources is
assumed constant and known, such that the 2D model can be used.

The input of both algorithms is constructed by the STFT with a rectangular window for

each microphone. The results are used to produce the PRPs as described in [16].

3.6.3.2 Results

We present here the results of the two proposed algorithms: IDEM and Particle filter. It
should be emphasized that localization with dynamic arrays for acoustic signal processing
has not been dealt much before. This is the reason we found it difficult to compare our
results to more algorithms.

The IDEM in Alg. 4 is evaluated for ¢ = 0.1. The estimated posterior p.d.f. after 4
iterations is plotted in Fig. 3.7.

It can be seen that the position error is zero, when the source is located on the grid.
When it is not on the grid the error is dictated mainly by the grid resolution.

This algorithm is very accurate, but it assumes all samples are used together. As an
on-line approach, we have decided to use the particle filter.

The particle filter in Alg. 5 is evaluated for P = 100 particles for Q = 0.01I and with
0% = 0.04 and Jyax = 100. The filter is initialized by Jy = 500 particles that are uniformly
spread within the room region, with at least 1 m distance from each of the four walls. The
importance weights are initialized to w(()i) =1/Jy,Viel,..., Jo.

The Euclidean distance between the true source position and the point estimates of the
source over time are plotted in Fig. 3.8.

The filter achieves its optimal estimation performance of 5.8 cm at t = 38 when the sensor
pair is steering towards at a source-sensor distance of 1.5 m (see Fig. 3.6). The performance
degrades to up a Euclidean distance between 30 —40 cm between ¢ € [60, 98] when the sensor

is steering away from the source.

3.7 Conclusions

In this chapter we addressed the challenge of distributed source localization in a reverberant

room using two kinds of sensor configurations. We presented algorithms using pairs of static
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microphones and algorithms that use a single moving pair of microphones.

A new set of hidden variables for EM and REM enabled development of new algorithms
that can be implemented without any central point and surprisingly have better convergence
properties: they are less dependent on initial conditions and they converge much faster.

The incremental version of one of those algorithms was also applied for a robot audi-
tion (dynamic) case. A moving pair of microphones was used for localization utilizing the
movement for spatial diversity.

We adapt the SAR concept from the RF field. Reverberant audio data was simulated
for a microphone array with two sensors and the complex-valued PRPs were extracted as
measurements. Two approaches for sound source localization using the PRPs were proposed.

The first approach is a ML implemented by an EM algorithm, which processes all data
as a batch. Localization accuracy is dictated by the grid resolution. The static nature of the
source and the dynamics of the microphones enable accurate results.

In order to facilitate sequential sound source localization from on-line measurements,
a particle filter was also proposed. Particle filters are typically aimed at source tracking
in highly dynamic scenarios. In this section, the approach was chosen in order to ensure
real-valued source position estimates from the complex PRP measurements. Due to the
sequential nature of the algorithm, this performance was shown to be dependent on the path
of the robot.

In this approach we have decided to compare two modified algorithms from different
paradigms, as a first step of addressing the challenge of source localization with a single
pair of microphones. Possible extensions include using REM for on-line processing, solving

uncertainty in robot trajectory and tracking multiple moving sources.
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(b) Room setup for the recording analysis.

Figure 3.2: Room setups for the experimental section. Microphone pairs are marked by pairs
of circles and sources are marked by .
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Figure 3.3: Experimental setup in the speech and acoustic lab of the engineering faculty at
Bar-Ilan University. Two sources 61.5 cm from each other and Tgg = 150 msec.
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Figure 3.4: Map of one experimental trial for Tsy = 150 msec and a source inter-distance of
61.5 cm. The poor resolution of steered response power-phase transform is depicted in (a).
The batch distributed expectation-maximization detected both sources, as depicted in (b).
The result achieved by recursive distributed expectation-maximization, the clear detection
of both sources, is shown in (c).
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Figure 3.5: Map of experimental trial with 75y = 450 msec and a source inter-distance of
71.5 cm. The steered response power-phase transform algorithm only detected one of the
sources, as depicted in (a). The batch distributed expectation-maximization and recursive
distributed expectation-maximization were capable of detecting both sources as shown in

(b)-(c)-
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Chapter 4

Localization for high reverberation

levels

The material presented in this chapter is based on [195] and [196]:

[195] Y. Dorfan, A. Plinge, Hazan G., and S. Gannot, “Distributed expectation-maximization
algorithm for speaker localization in reverberant environments,” IEEE/ACM Transac-

tions on Audio, Speech, and Language Processing, vol. 26, no. 3, pp. 682-695, 2018

[196] O. Schwartz, Y. Dorfan, E.A.P. Habets, and S. Gannot, “Multiple DOA estimation
in reverberant conditions using EM,” in International Workshop for Acoustic Echo

Cancellation and Noise Control (IWAENC), Xi’an, China, 2016

As already discussed above, localization often tightly rely on the direct path. When
dealing with indoor scenarios, high reverberation levels is a key challenge. The nature of the
reflection is non-stationary and it is increased with the number of acoustic sources in the
room. In this chapter we present a few ways for reducing the influence of the reverberation
and enhance the direct path to enable 1D, 2D or 3D localization of multiple concurrent

speakers.

4.1 Distributed localization: high reverberation levels

A major obstacle to high localization accuracy is the presence of reverberation, the influence
of which obviously increases with the number of active speakers in the room. The problem

formulation was defined above in section 2.2.

69
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The challenge of distributed localization in reverberant environment for concurrent speak-
ers is addressed. We adopt the IDEM methodology presented in [192], which was later
adapted for BSS [197]. In the proposed method, we combine the power of machine hear-
ing processing and that of the distributed MoG estimation. A bio-inspired pre-filtering is
presented to eliminate a large percentage of the reflections. Consequently, the effect of re-

verberation on the localization accuracy is significantly reduced.

An additional modification applied to the original IDEM algorithm [192] is the ordering of
the nodes. The ordering refers to the sequence of processing along the nodes of the network.
Instead of a constant order, as used by the regular directed ring, we adopt here the concept
of pseudo-random order, which is known to improve the convergence of the EM [101] and the
robustness of the network to failures. In order to enable the new ordering we should replace
the directed-ring with a topology that contains a much reacher connectivity. For simplicity

we use the fully connected topology.

The contribution of this algorithm is a combination of the bio-inspired pre-filtering, filter-
bank approach, truncated model presented below and the IDEM algorithm. It is shown that
it produces good results for multiple speakers in reverberant rooms. The idea is that we are
able to filter out few clean signals that represent the direct path. Unlike other applications,

localization can be achieved even with a very small number of reliable measurements.

The resulting algorithm is also attractive from the network point of view, since, similarly
to the method proposed in [192], it can be implemented without any central node. In addition,
exact, sample-level, synchronization of the nodes is not required. In contrast to the model

presented in [192], by virtue of its randomized order, it is capable of overcoming link failures.

4.1.1 The proposed method

The proposed distributed method comprises three major steps. In the first step, a bio-
inspired model is applied to the microphone signals for reducing the effect of reverberation.
In the second step, cross-correlation is applied to estimate the TDOASs. The final step, which
is based on the IDEM, is derived from the ML model in order to find the number of speakers
and their locations. These steps and the statistical model of the measurements are described

in this subsection.
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filterbank spike generation

‘O Ym,i(t) /\(\(\<\<\ Zm,ip(t) ] Zm.ip(t)

Figure 4.1: Signal preconditioning stage. The microphones’ signals are each split into multiple
bands by a gammatone filterbank and then transformed into spike trains.

4.1.1.1 Cochlear model

The speech peak detection method applied as a preprocessing procedure for each microphone
independently is described in this subsubsection. The efficient on-line cochlear model intro-
duced in [57] is used to generate a sparse spike representation of the microphone signals.
It consists of a filter bank modeled on the basilar membrane and a model of the cochlear
nucleus generating spikes from the band filtered signals. The preconditioning is illustrated
in Fig. 4.1. It is tailored to facilitate localization in reverberant environment from three
aspects: first, only highly modulated parts of the signal are used; second, phase-locked spikes
are generated; and third, echo suppression is achieved by modeling the neural saturation
(cf. [95]).

A common approach in computational auditory scene analysis (CASA) is to use an infinite
impulse response (IIR) filter bank to model the basilar membrane [90]. In our approach, a
fast Fourier transform (FF'T) filter bank is used. The filters are defined in the spectral domain

using a gammatone [43] approximation [215]:

Go(f) = (1 + M) _4, (4.1)

w - Wy

where 2 is the imaginary unit and b =1, ..., B denotes the frequency band index. The total
number of bands is B = 16. The bands are defined to imitate the critical bands found in
human hearing [90, 91].

The nonlinear spacing of the bands with center frequencies (f, = fi,..., fp) between

0.3 kHz and 3 kHz is chosen as equidistant on the quasi-logarithmic equivalent rectangular

bandwidth (ERB) scale [216, 91]. The Glasberg-Moore bandwidth [216], w,, is widened by



72 CHAPTER 4. LOCALIZATION FOR HIGH REVERBERATION LEVELS

a factor w in order to increase frequency content.

For each microphone signal v, ;(t), B signals z,,,,(t) are obtained at the output of the
filterbank. In each band, the signal is transformed into a sparse spike representation. The
process of computing the spikes is illustrated in Fig. 4.2. One of the key concepts is to
model the neural saturation in order to detect the modulation and imitate monaural echo
suppression. This is achieved by a halfway rectification and a peak over average comparison.
Thus, for each band signal z,,;,(t) is halfway rectified max(0, 2,,,4(t)) before a moving
average Z,;p(t) is computed. The averages are calculated over an intermediate interval of,
e.g. 30 msec to encompass the pitch modulation. This delay is a non-issue for this off-line
static case. If applied to dynamic on-line applications, the latency might be still reasonable,
since indoor movements of speakers is not expected to be too fast.

Modulated intervals U,, = [t,,t,] are found as time segments, where the signal exceeds
the shifted version of the calculated average Zp, ;p(t — tsnitt), Where tgyg is a time shift used
to enhance the first wavefronts as illustrated in Fig. 4.2. Its maximum position in time, p,, is
a candidate position for a spike. If the area above the average is 6 dB higher than the signal,
an impulse spike is generated at p,, in the output signal z,, ; ;.

The pulse height h,, of the spike corresponds to the amplitude computed by square root

compression:

tq
hn = Z \/Zmzb<t> - Em,i,b(t - tshift)~ (4_2)

t=ty
The pulse width is set to 20usec to imitate the temporal resolution of human neural process-
ing.

This nonlinear processing is summarized in Algorithm 6. The resulting signal of that
processing is sparse. Although only few bands are used, it still complies with the model of
sparse representation of the signal, which will be required for the EM algorithm.

The signals Z, ;,(t) of the microphones of all nodes are used for calculating the features,
the multiple pairwise TDOAs (MPTs). The MPTs, denoted by 7,,,(p), are used as feature

vectors in the ML. The model of these features is discussed in the next subsubsection.

4.1.1.2 Multiple pairwise time difference of arrival

In order to calculate the MPT, 7, ,(p) we apply the following steps at each node to Z,; »(t):
1) Calculate the cross-correlation of the two microphones. 2) Find the peak and compare it

to a threshold. 3) If it passes the threshold, calculate 7,,,(p), the exact (interpolated) time
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Figure 4.2: Spike generation procedure. (a) The band signal is compared to its short time

average.

(b) When the area above the average exceeds the signal by 6 dB, a spike of height

hy is generated at the maximum position p,. (¢) By shifting the average in time, the first
wavefronts are enhanced.
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Algorithm 6 Cochlear processing model

initialize Z,,;,(t) =0

calculate moving average Z,, ; »(t)

find modulated intervals U,, = [t,, 4]

where Zm,i,b(t) > zm,i,b(t — tshift) Vi, <t <ty

foreach U, do

Pn = argmax;, sy, Zm,ib(t) = Zm,ib(t — tonite)

if zmmb(pn) > 2§m7i7b(pn — tshift) (6 dB) then
Compute h,, = Zﬁdztu \/zmlb(t) — Zmip(t — tnite)
Insert h,, with width 20 usec at p, in Z,,; s

end

end

difference of the peak.

In contrast to the PRP used in [192], the MPTs are real-valued quantities. The speak-
ers are assumed to exhibit disjoint activity in the time-frequency domain [110, 16, 17, 18].
Therefore, every time-frequency band can be associated with at most a single active position
(or speaker). Here we claim that the sparsity assumption is still valid although our frequency
resolution is poorer.

It is assumed that the speakers can be located in a final set of positions on a grid with
a desired resolution. The time differences can be calculated in advance for every candidate
location p on that grid:

_ i _ 2
2 [IP =Pl —lIp — Pull (43)
C

Tm,b(P)

where p! and p?, are the locations of the microphones, assumed to be known, || - || denotes
the Euclidean norm, and c is the sound velocity. The set p € P contains the grid of points.
In the following subsubsection, we describe the statistical model of the MPTs. Since they

have different physical properties than the PRPs, a new statistical model is presented.

4.1.1.3 Statistical model

We assume that the MPTs are random observations drawn from a mixture of truncated

normal distributions:

Tm,b(t) ~ Z 1/Jpg (Tm,b<t); %m,b(p)a 027 F7 7_max) 5 (44)
p
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where 1y, is the probability of a speaker being at position p.

The p.d.f., g(+;-,-,-,-) is the truncated Gaussian probability [205]:
x; 0'2
. 2
9 (5 18,0%, F, ) = {1 V07 (4.5)
0, otherwise

rp =max(pu — Fo, —Tnax); xg = min(p + Fo, Tymax)

where
1 (z — p)?

is the normal distribution.

The maximal time difference, 7. is used to limit the truncated supports. It is the
maximal time difference that can be produced by sound traveling between the microphones
at each node. We denote 7,,,, the maximal physical delay.

The factor of the truncation F' is empirically determined in the experimental subsec-

tion. The variance o2

is used to control errors in estimating the MPTs due to noise and
reverberation. It also supports off-grid source positions.

The truncation is applied according to the lower and higher support limits, x; and xpy,
respectively. The truncated Gaussian distribution is used here rather than the Gaussian used
in [39], since it allows irrelevant measurements to get zero probability, hence better fitting
the physical model. The truncation for grid positions near the end-fire is asymmetric due to
the maximal physical delay. Please notice two different restrictions. One of them is derived
from the distance between the microphones. The second one is applied locally around the
grid point. The second one means that the distribution is finite and the reason is that we
filter out noisy measures.

We state now the ML estimation procedure of the localization parameters from a given
set of local measurements. As in [192], the parameters to be estimated are the weights, 1,
which are the probabilities of finding acoustic sources in each position, p.

The other parameters are assumed to be known. The variance o2

was manually tuned to
6 [samples?]. The variance could be assumed unknown, as often done, and its estimation can
be easily incorporated in the EM iteration [47]. It is kept fixed, since we have not observed any

significant advantage of adding it to the parameter estimation in this particular algorithm.
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Further variance analysis is presented in the experimental subsection.

The vector of the unknown parameters is defined as

0 £ vec,(Up). (4.7)

Note that 1, has a probability interpretation, namely Zp Yp = 1. The goal of the algorithm
is to estimate these parameters. Then we will apply a threshold in order to estimate the
number of active speakers (also referred to as speaker detection) and their locations. These
parameters are global, meaning common to all nodes.

Augmenting all MPT readings in T = vec,, 14 (Tmp(t)) and following [193], the p.d.f. of

the observation set can be written as

FT=7:0)= ] D veg (Fms(t); 7t (P), 0°, F, Trnax) - (4.8)

m,t,b p

The MLE problem can be stated as
6 = argmax|log f(T = 7;0)]. (4.9)
6

A straightforward solution of the ML is centralized and of high complexity. This type of
problems is often solved by the EM in order to reduce its complexity.

As already mentioned above, we are interested in a distributed solution of this estimation
problem. The global parameters will be estimated jointly by the nodes of the network.
Several algorithms can be suggested for this problem. In this contribution, we are interested

mainly in the application of the IDEM algorithm [192] to the MPTs.

4.1.1.4 An incremental distributed expectation-maximization with pseudo-

random topology

This subsubsection is divided into two parts. The first deals with the choice of the hidden
variables of the DEM algorithms that can be used for the problem at hand. Here, we focus on
one of these algorithms, the IDEM [192], which is presented in the second part. The IDEM
processes the measurements and the hidden variables incrementally through the network.

It is shown that for updating the minimal sufficient statistics (MSS), only the recent

parameter estimation is needed. This estimation is very compact and hence requires less
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communication BW.
Local hidden variables

The global parameters can be estimated by applying EM techniques using global hidden
variables [16] or local hidden variables [192].

Synchronization for acoustic network has been dealt in [217, 218]. Rough synchronization
of nodes is maintained in our case by the communication link. We also assume that the signals
acquired by the microphones of the same node are fully synchronized, since the accuracy of
the MPTs depends on it. A much looser assumption is made regarding the signals of different

nodes [204].

For DEM algorithms, it was suggested that local hidden variables be defined [192]. The

hidden variables are defined to be the indicators

1, p active for (m,t,b)
Ym(t, b, p) = . (4.10)
0, otherwise

For each time-frequency band (¢, b) they equal to zero everywhere except to p, the position
of the active speaker, since not more than one speaker is likely to be active at each time-

frequency band [110].

The total number of indicators in the problem is T'x B x M. Each of these is defined over
|P| possible values, with |P| the cardinality of the set of all possible grid positions. Please
note that, in contrast to methods where global hidden variables are used [16], local hidden
data support a case where some of the nodes measurements are physically unfeasible and

hence assigned with zero probability.

Let y = vectpmp (Ym(t,b,p)) be the set of all local indicators. The expectation of the

indicator is given by
E{ym(t,0,p)} = Up. (4.11)

Under the W-disjoint assumption [110], namely that each observation can be associated

with only a single speaker (and hence a single position) and under the static model assump-
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tion, the probability density function of y is given by

FOY =y:0) =[] D tpym(t.b.p). (4.12)

m,t,b P

Given the local hidden variables, the p.d.f. of the observations is

AT =7y;0) =[] D vm (t.0:0) g (T (t); Fnp(p), 02, F, Tanax) - (4.13)
m,t,b p
The p.d.f. of the complete data can be deduced from (4.12)-(4.13) and from some simpli-
fications due to the properties of the indicator y,, (¢, b, p):

f(T=7Y = y;9) =Y =y:0)f(T =7ly;0) =
T D ¢ovm (£.6.9) - g (Ton(1); (D), 0%, F, Tinax) - (4.14)
mitb p

A family of distributed algorithms can be derived using these local hidden variables. The
algorithm simulated in [192, 197] was implemented over a simple fixed directed ring. In [193],
we suggested a BDEM over a bi-directional tree. In the subsequent part of this subsection,
we derive a version of the IDEM for the case of MPTs measurements, which is implemented
over a pseudo randomly-ordered topology.

Random order IDEM

The gist of this algorithm is to run the EM with local computations in a pseudo-random
order of executing the local F-step and updating the localization parameters. Each such local
E-step is referred to as a sub-iteration.

In addition, the M-step is applied after each such sub-iteration locally according to the
incremental equation, which updates only the local contribution to the parameters estimation.
The incremental principle was first introduced in [51].

The idea is that after the initialization round, the algorithm has two types of iterations.
The global iterations are defined as those introduced for every batch EM algorithm. However,

for the IDEM we also define a sub-iteration index, which is
i=Mx(l—1)4n(m,?). (4.15)

The order index function, n(m, ¢) assigns a unique integer (between 1 and M) to every node

m, which determines the order in which the M nodes are updated in the global iteration /.
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This sub-iteration is local.

As in the study reported in [192], each node in its turn obtains the recent parameters’
estimation from the previous node and calculates its local (partial) E-step in order to update
its local hidden variables. Then, it can apply a new M-step and transmit the result to the

next node.

In contrast to the method proposed in [192], which uses directed-ring topology, the cur-
rent scheme determines a random update order in each iteration. Reliable updates in each

iteration can be guaranteed if an identical pseudo-random generator is applied in all nodes.

This random order has two major advantages. The first arises from the optimization
aspect. The TEM is known to produce faster convergence and more accurate estimation in
the case of a pseudo random order of measurements processing. The second advantage arises
from the network considerations. For example, when the update order is pseudo random,
easy ways to circumvent a link failure exist. The idea is that if a single (but permanent)
link failure occurs, a directed-ring topology renders useless. Changing the order after each
iteration enables recovery from such a link failure. It should be noted that such a strategy
of changing the order depends on the network topology, which in our case assumed to be
fully-connected.

As previously mentioned, each node is responsible for its local measurements and local
hidden variables, but in contrast to the BDEM method that executes the FE-step simulta-
neously at all nodes for the same parameter estimation, our proposed method executes the

E-step and the M-step incrementally.

The E-step is carried out in a distributed manner for each node on its turn (sub-index i):

i A (i—1)
o (£,6,0) 2 B {yn (1,5,) [7ms(0:0" '} (4.16)

Ti—1 ~
1() )g (Tm,b(t); Tm,b(p)7 027 F7 Tmax)

ny '&g_l)g (Tm,b<t); 7~-Tn,b(f)>7 027 F7 Tmax)

The algorithm is based on the IEM [51]. The authors proved that, not only the classical
(batch) EM converges, but also other modifications of the EM. For example partial E-step
can be followed by the regular M-step. In many cases the partial version is even better
in terms of convergence speed and accuracy. The IEM algorithm can be applied in the

distributed case to local hidden data.

The network topology can be used for incremental updates of the hidden variables and
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the parameter estimation by transmitting only the recent parameters’ values.

Define the local summation of the hidden variables as
o) (p) > vl (t,b,p). (4.17)
t,b

The M-step of the BDEM was shown to be the average of all the hidden variables [193]. The
M-step of the IDEM in this case, as for many other IEM algorithms, simplifies to an update
of the local contribution of node m to the global parameters:

(’L) (p) _ D(M*(K—Q)—i—n(m,é—l)) (p)

26) _ iG-1)  Um m
Yp =Wy T-B-M

(4.18)

The new estimation, D,S?(p) is added while the previous local contribution,

D,E,LM*(E_QHH(m’Z_l))(p) is subtracted. Each node of the network uses its local memory to store
this local contribution in order to use it in the next iteration. The denominator contains a
normalization factor.
The initialization of the global parameters is obtained by a preliminary global iteration:
(0
7(0) >om Uv(n)(P)

B =T (4.19)

where the initial hidden data estimates, ¥ (p) are calculated at each node and aggregated
through the network.

After the last iteration a threshold is applied to the latest estimation of the parameters
@/Jl(,LM). Each position above the threshold is declared as a speaker location. This way we
estimate the number of speakers and their locations.

This concludes the description of the proposed algorithm. Algorithm 7 summarizes the

proposed IDEM approach.

4.1.2 Experimental study

This subsection is dedicated to an experimental study of the localization algorithms. We use
the proposed algorithm in various versions and two other algorithms for comparison. The
first, denoted IDEM2014 is described in [192]. The second, is the well-known SRP-PHAT
algorithm [87]. This is an approach that searches the position that maximizes the output

of a steered delay and sum BF. As already mentioned above, localization in acoustic signal



4.1. DISTRIBUTED LOCALIZATION: HIGH REVERBERATION LEVELS 81

Algorithm 7 IDEM Speaker localization.

Obtain the valid local measurements 7, ;(%).

initialize 0\ (p) and ¥© (p).

for /=1 to L do

Randomly choose the order n(m,f).

for n(m,¢) =1 to M do

Calculate the current sub-iteration index: ¢ = M (£ — 1) + n(m, {).
Calculate the current node index: m = n=!(m,{).
E-step '

Calculate locally vi (¢, b, p) (4.16).

Aggregate locally oY (4.17).

M-step .

Calculate the global parameters, zﬂg) (4.18).
Transmit the global parameters to the next node.

end

end
Find J , the number of speakers, and their respective locations p;; j =1,..., J by applying
a threshold to wl(,LM), which is the result of the last M-step.

processing is usually developed for 1 — D only. This is the reason we found it difficult to
compare our results to more state-of-the-art algorithms.

The subsection is organized as follows. The first subsubsection presents the setup of both
the simulated room and the acoustic laboratory. The parameter settings of the algorithms
and complexity analysis are described in the second subsubsection. The third subsubsection
presents the results of the simulation analysis. The forth subsubsection examines different
components of the proposed algorithm. The last subsubsection discusses the real recording

results.

4.1.2.1 Simulation and acoustic room setup

This subsubsection contains two parts: simulated room and real room descriptions.

Simulated room

We simulated 100 random positions of 1, 2, or 3 concurrent speakers in a reverberant room
(6 X 6 x 2.4m) with Tgo in the range of 150 msec to 600 msec, using the image method [211].
The time duration of each localization experiment was 12sec. Note that the grid resolution,
which was 10 x 10 cm, is sufficiently good taking into account the volume of a real speaker,

which is not a point source.
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Figure 4.3: Room setup with twelve microphone pairs (circles) with numbers and three
speakers (x,x,+). Grid of 60 x 60 positions.

The microphone pairs are placed at an inter-distance of 50 cm, which was determined to
offer a good compromise between resolution and ambiguity [192]. A few simulations were
also performed for 10 cm as explained below. The speakers and microphones are assumed to
be located in a 2D plane at a height of 135 cm in order to examine the performance when

the speakers has a typical mouth height (accuracy of height is not critical).

An example for such a room setup is shown in Fig. 4.3. The microphone pairs are
numbered and marked with circles. The three speakers are marked with a %, a x and a +.

Real room

The room measures 6 x 6 x 2.4m and has a controllable reverberation time (7§) in the
range of 100msec to 1100 msec. Also here the microphone pairs are placed at an inter-

distance of 50 cm. An example of the room setup for one of the room recordings is shown
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Figure 4.4: Room setup with eight microphone pairs (circles) with numbers and two speakers
(*,+). Grid of 60 x 60 positions.

in Fig. 4.4. The microphone pairs are numbered and marked with circles. The two speakers
are marked with a % and a +. For the real recordings, two reverberation setups were tested.
We recorded two concurrent speakers using eight microphone pairs. The speakers uttered
English sentences while standing in the room. The sampling frequency was set to 48 KHz.
The first speakers were recorded with a low reverberation level (Thy = 200 msec) and a
relatively large distance between them. A snapshot from this recording is depicted in Fig. 4.5.
In order to test a considerably more challenging scenario, the other speakers were recorded
in the same room with a much higher reverberation time, Ty = 930 msec, and with a smaller
distance between them. A snapshot from that recording is depicted in Fig. 4.6. The changes

in the reflection nature of the floor can be seen in the pictures. Other facets of the room
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Figure 4.5: First scenario: low reverberation level(Tgy = 200 msec); two speakers with a large
distance between them.

(ceiling and walls) were changed from absorbing to reflective as well.

4.1.2.2 Parameter setting and complexity of the proposed algorithm

A few practical issues must be addressed regarding the proposed algorithm. They are listed
below and refer to all experimental results.

Tuning onset algorithm

The cochlear model provided robust features in previous applications [57]. Some of its
parameters were determined experimentally; for example, w = 6.0, which is used to scale
the bandwidth of the filters. As mentioned above, the number of bands used was B = 16.
We experimentally chose it, observing significant degradation for lower values in the case
of multiple concurrent speakers. This may be attributed to the invalidity of the sparseness
(w-disjoint orthogonality) for the lower resolution.

Beam width of a microphone pair

A typical problem, which arises using microphone pairs, is the reduced resolution in the
planar domain in the end-fire directions. The case dealt here is 2D with both pairs and

speakers on the same plane. It means that broadside measurements have a better resolution.



4.1. DISTRIBUTED LOCALIZATION: HIGH REVERBERATION LEVELS 85

Figure 4.6: Second scenario: high reverberation level (T5y = 930 msec); two speakers standing
close to each other.

As a large number of distributed nodes were used, many nodes would provide accurate MPT's
measurements corresponding to near broadside positions.

One of the advantages of using local hidden variables rather than global hidden variables
is that the consensus might be achieved even if only part of the nodes reliably measure a
specific speaker.

Calculation precision

When summing small numbers and numbers close to 1, precision problems should be
addressed. For this reason, a natural log is applied to some of the equations to alleviate
dynamic range problems that may arise even for double precision calculations [219, 220]. It

is first applied to the Gaussian equation (4.5):

(x — p)?

4.20
202 (4.20)

log (N (25 1, 0%)) = —% log(27 - 0%) —

The same operation has been applied to the EM equations (4.16)-(4.19). For example,

the log version of equation (4.16) is:



86 CHAPTER 4. LOCALIZATION FOR HIGH REVERBERATION LEVELS

logv) (t,b,p) = log(¥§ ™) +log (¢ (Tmp(t); Fmup(D), 02 F, Tinax)) (4.21)
- log (Z Iﬁg_l)g (Tm,b(t); 7~_'rn,b(f)>7 027 Fa Tmax)) )
5

where log of sum of numbers is calculated by applying the following equation:

I I
1og() (")) = Viaa +log »_ e 70mar, (4.22)
i=1 i=1
For probabilities calculations ef are between 0 and 1. It means that v; are negative real
numbers, with v,,,, their maximum.

In addition, multiplication and division operations are substituted by summation and
subtraction operations and small numbers can be stored together with much larger ones
(within the same vector).

Truncated Gaussian

Another computational issue is the Gaussians truncation, which is applied according to
a =Fo and the physical valid range, where F' = 3 was empirically tuned. It is notable again
that this truncation is applied around each grid point. In addition to what mentioned above,
the truncation has a computational advantage, since extremely low probability values are
neglected.

Complexity analysis

Complexity analysis is briefly summarized. When we deal with DEM algorithms, we have

to examine several aspects. Some of them can be taken from the complexity analysis in [193]:

e We are interested in the number of calculations. Some of them are done once, before
the iterations starts. For example the MPTs calculation. Others are applied every iter-
ation. Since all calculations are applied in the nodes and they are all identical, we will
analyze the complexity per node. The most significant operations are multiplications
and additions, when assuming usage of lookup table implementation of operations like

log.

e Communication BW is addressed from a single node perspective, since the process is

serial. At each sub-iteration the map of probabilities should be transmitted from one
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Table 4.1: The proposed algorithm is analyzed with respect to computation, communication
band width and memory.

Criteria Rough estimation
Computation O(L-T-B-|P|)
BW O(L -|PJ)
Memory O(T - B+ |P|)

node to the next. As the algorithm converges, this map becomes sparser, since the

majority of locations are not active.

e Memory usage per node relates to the local measurements and the latest contribution

to the global parameters that should be subtracted in the next iteration.

Table 4.1 summarizes the computational complexity, communication BW and memory

requirements of the proposed algorithm.

4.1.2.3 Simulation results

We carried out 100 Monte Carlo trials and calculated three statistical measures: 1) the MD
rate, defined as the percentage of speakers that were miss-detected out of the total number
of actual speakers; 2) the FA rate, defined as the percentage of falsely-detected speakers
normalized by the total number of real speakers; and 3) the RMSE, defined as the accuracy
of localization for all successfully detected speakers.

Detection, false- and miss-detections are defined with respect to the threshold applied.
The statistical analysis matches each ground truth speaker position to the closest candidate
(if any). The RMSE measure is calculated from all the matched positions. If a ground truth
speaker does not have a matching detection, it is counted as a miss-detection. We count
extra detections as false alarms.

We present here results of various reverberation levels for different speakers locations after
Monte Carlo (MC) averaging. In addition, we identified for each number of speakers the level
of reverberation for which the proposed algorithm performance is still good and marked them
in bold. Table 4.2 summarizes the measures for all simulated cases.

Inspecting the results in Table 4.2, it can be deduced that as the reverberation level in-
creases from Ty = 200 msec to Tgg = 600 msec, the number of speakers allowing reliable

localization by the proposed algorithm decreases from three to one, respectively. This can
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be attributed to the increased density of reflections due to the co-existence of multiple con-
current speakers in the same environment. In any case, the proposed algorithm significantly
outperforms the reference algorithms [192, 87] in terms of detection, as well as RMSE. The
obtained RMSE values are better than the designated grid resolution. Note that when either
MD or FA rates are very high (above 50 percents), the exact statistics is less relevant, since
it indicates that controlling the detection threshold did not yield any acceptable FA-MD

combination.

4.1.2.4 Experimental insights

We carried out a few additional Monte Carlo simulations to gain insights about the proposed
algorithm. This subsubsection contains five different simulation tables.

With or without truncation

The first comparison examines the contribution of the truncation. Working with the
regular Gaussian distribution causes artifacts and hence we can produce reasonable results
only for low reverberation levels. The comparison is presented for Tyy = 150 msec. We kept
the same setup, including inter distance of 50 cm. The results are presented in Table 4.3.

Inspecting the results, it can be deduced that truncation is an essential part of the algo-
rithm. Even for low reverberation level the non-truncated version produces lots of artifacts
causing high FA rate. The proposed algorithm detects the same locations with a much lower
FA rate.

The influence of setting the variance

The second analysis explores the influence of setting the variance on the performance of
the proposed algorithm.

We use inter distance of 50 cm and the case of two speakers mentioned above with
Tso = 400 msec. The results are presented in Table 4.4.

Inspecting the results, it can be deduced that setting the variance to 6 samples? provides
a good compromise between FAs and MDs.

Sensor noise influence

The third analysis explores the sensor noise influence on the performance. The same
setup mentioned above is used, but this time sensor noise is added. The results are presented
in Table 4.5.

Inspecting the results, it can be deduced that for this reverberation level SNR of 20 dB

degrades the performance significantly.
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Number of nodes influence

The fourth analysis explores the number of nodes influence on the performance. The same
setup mentioned above is used, but this time only part of the nodes is used. The results are
presented in Table 4.6.

As expected, adding nodes improves the localization results. Significant degradation is
encountered when the number of nodes is 8 or less. This is a major drawback of the current
algorithm and might be a subject for a future research.

Subband GCC-PHAT for TDOAs estimation

The last comparison is of the proposed algorithm and a classical TDOAs estimation,
GCC-PHAT adapted to the multi-dimensional localization challenge. The preprocessing of
the proposed algorithm applied at each node of the network is replaced with the subband
GCC-PHAT estimator. The MPTs are now calculated by the GCC-PHAT. The rest of the
algorithm is kept similar.

We tuned the setup according to the limitations of this estimator. For example the inter-
distance of 50 cm is too large for this estimator, yielding aliasing effects. Therefore, we tuned
it to 10 cm. In addition, the GCC-PHAT cannot deal with reverberation so well, hence a
much lower level is simulated (Tgo = 150 msec). After those modifications we compared the
two versions using the same setup. The results are presented in Table 4.7.

Inspecting the results, it can be deduced that even in those conditions the GCC-PHAT
has inaccurate localization results and high FA rates. The proposed algorithm has very good
results even though the inter-distance is only 10 cm. We can observe very small degradation
in localization accuracy in the case of three speakers, but the detection rate and FA rate are

kept low.

4.1.2.5 Acoustic room results

To further evaluate the performance of the algorithm, we analyzed real recordings as well.
The sensor SNR in those cases is around 40 dB. The first examined scenario had a large
distance between the speakers and a low reverberation level. The second case is considerably
more challenging, since the speakers are closer to each other and the reverberation level is
much higher.

In order to examine the results we plot a map, which is the set of wl(,LM) values for the

grid of positions in the room. The lines are contours of equivalent levels.
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The results of the localization algorithms for the first case with a low reverberation level
(200 msec) and large distance between the speakers (225 cm) are shown in Fig. 4.7.

It can be observed that the proposed algorithm (shown in Fig. 4.7(a)) produces a very
accurate map of the speakers’ positions with very low levels of artifacts. It can be easily esti-
mated that there are two speakers. Their locations are identified with high accuracy (taking
into account the volume of a speaker’s body). The first reference algorithm, IDEM2014
(shown in Fig. 4.7(b)) produces a map with a few spurious peaks and large uncertainty
ellipsoid even for this simpler scenario. This means that, in addition to the two real speak-
ers, we might get quite a few FAs. The second reference algorithm, SRP-PHAT (shown in
Fig. 4.7(c)) is also not good even for this simple scenario.

The result of the localization algorithms for the second case with a high reverberation
level (930 msec) and a small distance between the speakers (100 cm) is depicted in Fig. 4.8.

Even for this challenging case, the proposed algorithm (shown in Fig. 4.8(a)) is able to
produce meaningful results. The detection of the speakers can still be obtained and location
estimation is very accurate. The results for IDEM2014 (shown in Fig. 4.8(b)) are poor, as in
addition to the two real speakers, we get many FAs. The SRP-PHAT (shown in Fig. 4.8(c))

demonstrates unacceptable performance in this challenging case.

4.1.3 Conclusions

In this section we have introduced a new localization algorithm using a bio-inspired cochlear
model to achieve robustness against reverberation and handle concurrent speakers. The new
algorithm uses a mixture of truncated Gaussian probabilistic model instead of the regular
MoG usually used in the EM and the DEM algorithms.

The proposed algorithm is a distributed solution, which uses the IEM principle. Each
node locally applies most of the calculations (such as the spikes detection) and has its own
hidden variables, sharing only static localization parameters.

As the reverberation effect increases with the number of concurrent speakers, it becomes
more challenging to detect the number of speakers and estimate their locations.

Simulations with up to three speakers were carried out in several acoustic scenarios. Real
recordings analysis was carried out with two speakers in low and high reverberation levels.
The proposed algorithm outperforms IDEM2014 [192] and SRP-PHAT [87] for both the

simulated signals and the real-life recordings.
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4.2 DOA estimation in presence of late reverberation

A novel DOA estimator for concurrent speakers in reverberant environment is presented.
Reverberation, if not properly addressed, is known to degrade the performance of DOA esti-
mators. Following [102], a closed-form solution for the MLE of the time-varying reverberation
PSD and the anechoic speech PSD is derived. The reverberation model, proposed in [103], is
explicitly incorporated into the MoG-based clustering for DOA estimation proposed in [39].

While in [16] vectors of relative phase between microphone pairs are used for clustering,
here we resort to the raw STFE'T samples. The means of these Gaussians are set to zero,
and their covariance matrices include an explicit modeling of both the reverberation and the
required DOA information. Consequently, the nuisance parameters, namely the speech and
the reverberation PSDs, should also be estimated by the M-step.

The reverberant components are modeled by a time-invariant coherence matrix multiplied
by time-varying PSD. The PSDs of the anechoic speech and reverberant components are
estimated as part of the EM procedure. It is shown that the DOA estimates, obtained by the
proposed algorithm, are less affected by reverberation than competing algorithms that ignore
the reverberation. Experimental study demonstrates the benefit of the presented algorithm

in reverberant environment using measured RIRs.

4.2.1 Proposed direction of arrival estimator

In this subsection, an EM procedure for estimating the sources’ DOAs in the maximum
likelihood sense, is derived. The EM algorithm requires the definition of three datasets and
their probability model: 1) the observations; 2) the target parameters; and 3) the hidden
data. The first two datasets were already defined in Section. 2.3.

Here we define the hidden data to be the association of each T-F bin with a single source
transmitting from a particular angle. Define the hidden data, x(t, k,¥), to be the indicator
that the T-F bin (¢, k) belongs to a speaker from angle 1. The total number of indicators in
the problem is 7" x K x V. Note that at each T-F bin only a single indicator equals 1. In
the sequel, the EM steps are derived.

The same way applied in [16, Eq. (17)], the p.d.f. of the complete dataset, z and x, is:

F(z,%:0) = [[ D o(t, k, )N (2(t, k); 0, ®y(t, k) , (4.23)

t,k ¥=1
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where x = vecy 9 ({2(t, k,0)}).
The EM algorithm for the problem at hand can now be derived. The E-step is given by:

Q16 £ E {log (f(z,x;0))]|z: 9(5—1)}
— Z E {:c(t, k,9)|z(t, k); 9(@4)} x [loghg + log N (z(t, k); 0, ®y(t, k)], (4.24)

t.k,0

where ¢ is the iteration index.
As already shown in the previous chapter, in order to implement the E-step, the hidden

variables are evaluated by:

p0(tk0) £ B {w(t, k,9)|=(t, k); 0“*”}
0§ TN (2 (¢ k) 0,00 (k. )
S 0N (200,207 8))

(4.25)

Y

where i’ff)( k) = gy9y ¢(£) (t,k)+T(k) %?ﬁ(t, k). gy and I'(k) were defined in Section 2.3.
Maximizing (4.24) with respect to the parameters @ constitutes the M-step. Similarly
to [16, Eq. (20a)], ¥y is obtained by the constrained maximization of (4.24):

0 2tk p0(t ke, 0)

Yy = T (4.26)

Note that in (4.26) the TDOA probabilities are estimated using all time and frequency bins.

From (4.24), the M-step expressions for ¢ro(t, k) and ¢gy(t, k) are obtained by maxi-
mizing only log N <z(t, k);0, <I' (¢, k)) Following [102, Eqs. (16) and (17)], the M-step for
dro(t, k) and ¢gy(t, k) are given by:

Oyt k) = 572" (LRE (k) [T — gy (k) (B)] =(1,F). (4.27a)
(LK) = whi (k) [2(6, k)22 ) = 6{0) (¢ k) D(K) | wo k), (4:27D)

L' 0g,m
giwl (g,
The DOA estimation is summarized in Algorithm 8.

Note that, if ¢ — 0 (defined in Section 2.3 as diagonal loading), wy (k) identifies with the

where wy (k) =

mazimum directivity BEF that attenuates diffuse noise field (i.e. reverberation in our case),

while steering a beam towards the direction of the candidate DOA 9.
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Algorithm 8 DOA estimation with late reverberation.

initialize 1)) = .

for /=1 to L do
E-step
Calculate p“~Y(t, k,9).
M-step
Calculate the parameters, 101(;).

end

Note that as ¢%?ﬁ(t, k) and ¢g)19(t, k) are independent of =V (¢, k,9). It means that the
outcome of the E-step, gbg’)ﬁ(t,k) and gbg’)ﬁ(t, k) can be calculated in advance. Denoting L
as the number of iterations, the DOAs and the number of sources can be determined by

analyzing wl(gL), as described in Subsec. 4.2.2.

4.2.2 Performance evaluation

The performance of the proposed algorithm is evaluated by estimating the DOA of two
concurrent, speakers. The simulation setup is elaborated in Subsubsec. 4.2.2.1. In Subsub-
sec. 4.2.2.2, the accuracy of the proposed DOA estimator in comparison with two competing

estimators is evaluated.

4.2.2.1 Simulation setup

Anechoic speech signals were convolved by RIRs, downloaded from an open-source database
recorded in our lab. The reverberation time was adjusted by flipping the room panels, and
was measured to be approximately Ts9 = {0.16,0.36,0.61} sec. Details about the database
can be found in [221].

The loudspeakers were positioned at various angles on a half a circle with radius 2 m
facing a four microphone linear array, with inter-distances [ 3, 8, 3 | cm. The sampling
frequency was 16 kHz, the frame length of the STFT was 64 ms with no overlap. The
number of frequency bins was 1024. Two utterances, ~ 4.5 sec long, of male and female
speakers, were used.

While applying the algorithm, only the frequencies below 4 kHz were used. In addition,
we used only time-frequency bins for which En(t, k) > 107° Max {En(¢, k) }, where En(t, k) =
+21(t, k)z(t, k) denotes the average energy of the (¢, k)-th bin. The number of iterations

L was set to 20. The Gaussians were uniformly distributed in the range 0° — 179° with
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1° resolution, namely ¥ = ¥ with ¥, = 0,1,...,V = 179. The weights of the MoG were

uniformly initialized to Qﬁg)) = ﬁ and e was set to 0.5.

The performance of the proposed algorithm was compared with two other competing
algorithms: 1) the steered response power (SRP)-PHAT [82], 2) our previous localization
algorithm [16] denoted henceforward ‘Schwartz2014’ (with necessary modifications applied
to obtain DOAs rather than positions). The outputs of the SRP-PHAT were normalized to
sum to 1, to allow for clear comparison with the probability curves of the proposed algorithm

and ‘Schwartz2014’.

4.2.2.2 The direction of arrival estimation performance

In the first set of experiments we compared the performance of the three algorithm for
Thso = 0.61 sec, by averaging all possible two-speakers combinations in the range 15° — 165°.
Since, the resolution of the database is 15°, we have 11 angles (altogether 11 x 10 = 110
different two-speakers combinations). For each scenario, female and male anechoic signals

were filtered with the corresponding RIR for Ty = 0.61 sec.

Similarly to search-based algorithms, e.g. [82, 222], the exact number of sources cannot be
determined from the localization results. Here, the two DOAs with the highest probabilities
are selected as estimates. The MAE was calculated as the average of all errors between the
estimated DOA and the true angle. In Table 4.8, the MAEs for the various algorithms are

presented. It can be seen that the proposed algorithm outperforms the competing algorithms.

We further examine a specific scenario with one combination of speakers’ locations for
various levels of reverberation. The results are depicted in Fig. 4.9. The speakers were
positioned at 45° and 105°, respectively. The probabilities of each DOA are shown for the
three levels of reverberation. The SRP-PHAT fails to separate between the speakers even
in non-reverberant scenario. ‘Schwartz2014’ locates well the speakers in low reverberation
conditions but tends to deviate from the true DOAs in high reverberation. The proposed
algorithm demonstrates low deviations from the true DOAs even in the highest reverberation

level.
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4.2.3 Conclusions

A DOA estimator for concurrent speakers in reverberant environment was presented. The
proposed algorithm uses the EM procedure for clustering T-F bins under a MoG probabilistic
model. The presented algorithm differs from a previously proposed algorithm [16], by the
explicitly modeling the reverberation.

The anechoic speech and reverberation PSDs were also estimated as nuisance parameters.
An experimental study demonstrated the advantage of the proposed DOA estimator in actual

reverberant environments, compared with the methods proposed in [16] and [82].
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Table 4.2: Localization statistics for 100 Monte Carlo trials (Inter distance 50 cm). The first
column indicates the reverberation level. The second one contains the number of simulated
speakers that were randomly located.

Teo Sim. speakers Algorithm MD[%] FA[%] RMSE|cm]

600 1 Proposed 0.0 6.0 4

600 1 IDEM2014 10.0 63.0 99
600 1 SRP-PHAT 95.0 1.0 206
400 1 Proposed 0.0 4.0 4

400 1 IDEM2014 6.0 73.0 99
400 1 SRP-PHAT 95.0 1.0 157
200 1 Proposed 0.0 3.0 4

200 1 IDEM2014 41.0 14.0 175
200 1 SRP-PHAT 91.0 1.0 153
600 2 Proposed 31.5 16.5 12
600 2 IDEM2014 88.5 3.0 116
600 2 SRP-PHAT 99.0 1.0 101
400 2 Proposed 8.0 9.0 4

400 2 IDEM2014 35.5 54.0 73
400 2 SRP-PHAT 97.0 0.5 138
200 2 Proposed 0.0 8.5 4

200 2 IDEM2014 16.0 67.0 82
200 2 SRP-PHAT 75.0 8.0 149
400 3 Proposed 21.3 34.3 10
400 3 IDEM2014 56.7 22.7 82
400 3 SRP-PHAT 96.3 1.3 103
200 3 Proposed 2.3 4.0 4

200 3 IDEM2014 41.0 35.3 97
200 3 SRP-PHAT  97.0 0.3 126

Table 4.3: Comparison with and without truncation (Inter distance 50 cm): 100 Monte Carlo
trials of two randomly located simulated speakers.

Tso Sim. speakers Algorithm MD[%] FA[%] RMSE[cm]

150 2 Proposed 0.0 5.0 4
150 2 No-Trunc 0.0 100.0 4




4.2. DOA ESTIMATION IN PRESENCE OF LATE REVERBERATION 97

Table 4.4: Variance influence(Inter distance 50 cm): 100 Monte Carlo trials with two ran-
domly located simulated speakers

Teo Sim. speakers o?[samp?] MD[%] FA[%] RMSE[cm]

400 2 16 27.0 3.0 4
400 2 6 8.0 9.0 4
400 2 1 1.0 50.0 4
400 2 0.01 0.0 100.0 )

Table 4.5: Sensor noise influence(Inter distance 50 cm, Ty = 400 msec): 100 Monte Carlo
trials with two randomly located simulated speakers

SNR[dB] Sim. speakers MD[%] FA[%] RMSE[cm]

0 2 100.0 0.0 —
20 2 41.0 1.5 5
30 2 13.0 9.0 4
40 2 11.0 11.0 4
Noiseless 2 8.0 9.0 4

Table 4.6: Number of nodes influence(Inter distance 50 cm, Ty = 400 msec): 100 Monte
Carlo trials with two randomly located simulated speakers

Nodes Sim. speakers MD[%] FA[%] RMSE[cm]

6 2 6.5 72.5 6
8 2 124 28.1 6
10 2 12.0 16.0 4
11 2 9.5 12.5 4
12 2 8.0 9.0 4

Table 4.7: Subband GCC-PHAT for TDOA estimation (Inter distance 10 ¢cm): 100 Monte
Carlo trials with two or three randomly located simulated speakers

Teo Sim. speakers Algorithm — MD[%] FA[%] RMSE[cm]

150 2 Proposed 0.0 5.0 4
150 GCC-PHAT 0.5 88.5 80

2
150 3 Proposed 2.3 0.0 6
150 3 GCC-PHAT 8.3 69.7 78




98 CHAPTER 4. LOCALIZATION FOR HIGH REVERBERATION LEVELS

@
o
o
=
R
&
o

z

[ ]
=2
v
=

IS
2]
£
&

0.04
= 40 = 40
2 0.035 B
235 @ . gy
= S
L 30 0.03 € 0
2 &
X 25 0.025 % 25
> =

[
=]

@ 0.02 20
#*

IS
-
=)

3
w

w

o

S

10 20 30 40 50 60 10
x axis (decimeter)

(a) Proposed algorithm

o

y axis (decimeter)
n [ [
(4] o

n
=]

10 20 30 40 50 60
x axis (decimeter)

(c) SRP-PHAT

30 40 50 60

x axis (decimeter)

(b) Original IDEM

%10
7

Figure 4.7: Low reverberation level (Tg = 200 msec), two speakers, recording length 12 sec.

Real positions are marked by asterisks.

Speaker \ Alg. SRP-PHAT Schwartz2014 Proposed

16.58°
19.03°

11.31°
15.66°

Female
Male

6.8°
7.46°

Table 4.8: MAEs for the three alternative algorithms, averaged on 110 possible pairs of

signals in the range 15° — 165° for Tgo = 0.61 sec.
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Chapter 5

Blind source separation

The material presented in this chapter is based on [197] and [198]:

[197] Y. Dorfan, D. Cherkassky, and S. Gannot, “Speaker localization and separation us-
ing incremental distributed expectation-maximization,” in Furopean Signal Processing

Conference (EUSIPCO), 2015, pp. 1256-1260

[198] Y. Dorfan, O. Schwartz, B. Schwartz, E. A. P. Habets, and S. Gannot, “Multiple
DOA estimation and blind source separation using estimation-maximization,” in IEFFE

Science of Electrical Engineering (ICSEE), Filat, Israel, 2016

After estimating the information about the number (detections) and the positions (local-
ization), we try to achieve BSS. We extend the localization algorithm to address the second
task, namely blindly separating the speech sources.

The basic idea is common to both approaches. The algorithms are comprised of two steps.
The first step estimates localization parameters regarding each active source. By-products
of the localization step (such as activity masks) are utilized by the second step, the BSS.

The first approach is a distributed algorithm. The localization is solved by all nodes
together, while the separation can then be applied locally.

The second approach enables usage of any array geometry. The localization information

in this case refers only to far field DOAs.

5.1 Distributed blind source separation

The proposed algorithm, denoted distributed algorithm for localization and separation

(DALAS), is capable of speaker separation in a reverberant enclosure without a priori in-

101
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formation on the number of sources and their locations. In the first stage of the proposed
algorithm, the localization EM is applied for blindly detecting the active sources and to
estimate their locations. Examples for that first stage are the IDEM from Chapter 3 or
DOA estimation algorithm from Chapter 4. In the second stage, the localization estimates
are utilized for selecting the most useful node of microphones for the subsequent separation
stage. Separation is finally obtained by utilizing the hidden variables of the EM algorithm

to construct masks for each source in the relevant node.

We utilize the location information to choose the best node for extracting each source.
This is done simply by choosing the nearest pair. This usage is nice, but a much bigger effect
is achieved when using a by-product of the localization step. For each source we construct
its spectral mask. This mask and the global localization information are utilized for node

level filtering.

The hidden variables used for localization can be utilized as masks for source separa-

tion [197], since it associates time-frequency bins and room positions.

Source separation might be obtained by utilizing spectral masking. Hard masking is the
simplest method, which might however result in the musical noise phenomenon. A technique
that reduces this noise is called soft masking. We will apply the following combination of soft
and hard masking using a threshold on the estimated local indicators. The result will be used
as a mask for the STF'T representation of the input signal. The proposed mask calculation

is given (after L iterations of M nodes) by:

) 'U7(T%M) (t7 k? pn) > TH

1
Cr(t, k) = <0, oM (¢ k) < T (5.1)

oM (t,k,p™), otherwise

where Ty and T}, are the high and the low thresholds, respectively. Their selection is a
trade-off between decreasing interference power and maintaining desired spectral contents.
The masking is applied at the best node of each source. The node signals 2z (¢, k) are
masked by multiplying their STFT by the mask in (5.1), a value in the range [0, 1]. Although
applied locally, the location estimates are using the global information (through the control
mechanism), hence potentially improving the credibility of the mask.
The masked signals, $"(t, k), for speaker n at microphones r = 1,2 of node m are

transformed back to the time domain using inverse short-time Fourier transform (ISTFT)
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zL (t, k) $alM(t, k) S (@)
»| T-F Masking = »| ISTFT >
S CE)
Alignment p—
2%, (t, k) S (£, k) $5T(E)
»| T-F Masking »| ISTFT >
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o

IDEM |uEM (¢ ke, p) | Control

Figure 5.1: Filtering at the mth microphone pair.

and then aligned (sub-sample delay applied) and averaged:
0 : > s (E— i) (5.2)
5 == SOt —th .
m 2 m m Y

where f;’l" = Hf’n;cpr’”” is the delay between the location of source n and the microphones
of node m, and ¢ is the time index. This alignment can be either implemented in the
time-domain or in the frequency-domain. The result of (5.2) is a signal with an enhanced
direct path. The BSS algorithm is summarized in a block-diagram depicted in Fig. 5.1.
The localization parameters are utilized to detect the number of active speakers and their
locations. The hidden variables are used to build spectral masks.

The filtering part of the DALAS is examined by a signal to interference ratio (SIR)

measurement for the input and the output signals, calculated in the following way:

En
SIR" = 101og [ ———— | dB, 5.3
0g (Zﬁ;ﬁn En> (5-3)

where E" is the nth source power.

Two examples of two concurrent sources, a man and a woman, are presented. In the
first scenario the distance between the sources is rather large. In this case, based on the

localization results, the algorithm selected the 1st node as the best node for extracting the
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Distant Close

Man Woman Man Woman

SIR; 9 14 -1 4
SIR, 19 17 19 20

Table 5.1: Separation measures for two sources in two cases

woman and the 11th node as the best node for extracting the man. This selection results in
high input SIR and hence potentially improves the output separation quality. The measures
are summarized in Table 5.1.

The second example is more challenging. The sources are very close to each other and
located in the bottom left corner of the room. The localization results are depicted in Fig. 5.2.

In this case, the algorithm selected the 4th node as the best node for separating the man
and the 1st node as the best node for separating the woman. In this case the input SIR is
low, since the sources are very close to each other. However, the algorithm is still capable of
separating the sources and improving the SIRs significantly as evident from Table 5.1.

This algorithm should be modified in order to be more robust for high reverberation levels.
The support of multiple sources should be expanded from two to three or more concurrent
sources. The masking of low frequencies is sometimes poor. It might be improved if we use

more than 2 microphones per node. This might be a subject of future research study.

5.2 Centralized blind source separation

A blind source separation technique in noisy environment is proposed based on spectral
masking and MVDR-BF. Formulating the ML of the DOAs and solving it using the EM,
enables the extraction of the masks and the associated MVDR as byproducts. The adopted
estimator uses an explicit model of the ambient noise, which results in more accurate DOAs
estimation and good source separation.

In this work, we adopt the DOA estimation procedure presented in [196] (subsection 4.2.1)
for deriving an estimator for multiple DOA in noisy environments (and low reverberation)
based on the EM algorithm. The speech PSD level is also estimated by the M-step, while
the noise PSD matrix is assumed to be known. To achieve source separation, we propose
to utilize two by-products of the EM, namely the MVDR-BF and the associated T-F mask.

An experimental study, using real RIRs and artificial diffuse noise, shows improved DOA
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estimates compared to [16, 82]. The MVDR-BFs and the spectral masks associated with the
DOA estimates are then used to separate the speakers.
The experimental study demonstrates both DOA estimation results and the separation

capabilities of the proposed method using real room impulse responses and diffuse noise.

5.2.1 The expectation-maximization for direction of arrivals esti-

mation

In this subsection, the ML estimate of the sources’ DOAs are obtained using the EM algo-
rithm. The EM algorithm uses three datasets and their probability model: the observations,
the target parameters (these datasets were already defined in section. 2.4) and the hidden
data. We use z(t, k,v) defined in the previous chapter as the hidden data. This is the
association of each T-F bin with a single source emitting from angle 4.

In the same way derived in [16, Eq. (17)], the p.d.f. of the complete dataset, z and x, is:

f(z,x:0) HZWU (t, ke, N (2(t, k); 0, By(t, k)), (5.4)

t,k 9=1

where x = vec; 9 ({x(t, k,0)}).
The EM algorithm for the problem at hand is now derived. The E-step is given by:

Q(0|0(4—1)) o {log (f(z,%x;0))]|2: O(E—l)}
-YE {:c(t, k,9)|2(t, k); 0(@—1)} log ¥y + log N (2(t, k): 0, ®(t, k)] . (5.5)

t)e,0
For implementing the E-step, as already shown in the previous chapters, the hidden variables
are evaluated by:
WVt k) A B {x(t, ke, 0)|=(t, k) 0“*”}
uy N (2t k) 0,94Vt k)
N (=(t.k);0,@5 (k. k))

: (5.6)

where <I>1(9)( k) = gﬂgﬁqzﬁ (k) + @y (t, k). Note that u*~I (¢, k,9) is actually a soft T-F
mask following the act1v1ty of the speaker from the J-th angle in the (¢, k)-th T-F bin.
Maximizing (5.5) with respect to the parameters 6 constitutes the M-step. Similarly
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to [16, Eq. (20a)], 1y is obtained by a constrained’ maximization of (5.5):

£) _ Zt,k ,u(é—l) (ta k? 79)

5 — (57)

From (5.5), the M-step expressions for ¢gy(t,k) are obtained by maximizing
log N© (z(t, k);O,@ff)(t, k;)) Following [102, Eq.(17)], the M-step for ¢sy(t, k) can be ex-
pressed as:

(6) — oyl H
Ps(t, k) = wy (k) [2(t, k) 2" (t, k) — o (k)] wy(k), (5-8)

—1

where wy (k) = Py ™9, Note that wy(k) is the MVDR-BF steered towards ) that
g3 )Py (g, ()

reduces the ambient noise.

Note also that gzﬁ(s%(t, k) is independent on the output of the E-step "V (¢, k,1) and can

therefore be calculated in advance.

5.2.2 Source separation using minimum variance distortion-less re-

sponse beamformer and soft mask

The DOA estimates can be taken as the DOA values associated with the Gaussians with
the largest probability. Let ¥ be an index of one of the DOA estimates. Using the mask
pE=D (¢, k, 1) obtained by the E-step and the MVDR-BF wy(k), the individual speech signal

from angle ¥ can be estimated by:
Sp(t. k) = pE=D(t &k, 9) wh (k) 2(¢, k), (5.9)

where p5=Y (¢, k, 1) is responsible for enhancing the 9-th speaker and attenuating the other

speakers and wy(k) is responsible for reducing the ambient noise.

5.2.3 Performance evaluation

The performance of the proposed algorithm is evaluated with a scenario of two concurrent
speakers. The simulation setup is elaborated in Subsubsec. 5.2.3.1. In Subsubsec. 5.2.3.2,

the DOA estimation and BSS in noisy environment is performed.

IThe sum of ¥y equals 1.
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5.2.3.1 Simulation setup

Anechoic speech signals were convolved by RIRs, downloaded from a freely-available database
recorded in our lab [221]. Reverberation time was set by adjusting the room panels and was
measured as Tgg =2 0.16 sec. Note that since the reverberation is low, a free-field propagation
can be assumed. The loudspeakers were positioned in front of a four microphone linear array.
The inter-distances between the microphones were [ 3, 8, 3] cm. The sampling frequency
was 16 kHz, the frame length of the STFT was 64 msec with overlap of 75%. The number of
frequency bins was 1024. Two utterances (~ 4.5 sec long) of male and female speakers were

used.

The speakers were positioned at 60° and 105° degrees. An artificial diffuse noise’ was
added to the speech signals with various SNR levels. Accordingly, the noise PSD matrix was
modeled as @y (k) = ¢y (k)T'(k), where:

2k dz’,j

Ty(k) = sinc( 2 ﬁ) +eb(i — j) (5.10)

and ¢y (k) was estimated using speech absent segments.

The diagonal loading € was set to 0.1. The frequency band 300 — 3400 Hz was used. We
use for localization and BSS only T-F bins for which the a posteriori SNR was higher than
a predefined threshold:

2t k)z(t, k)

aSNR(t, k’) =10 lOglO W > A,

(5.11)

where Tr[-] is the trace operation. The number of iterations L was set to 40.

To emphasize the effectiveness of the proposed DOA estimator, two other competing
DOA estimators were applied: 1) the SRP-PHAT, 2) our previous localization algorithm [16]
denoted henceforward Schwartz2014®. The outputs of the SRP-PHAT were normalized to

sum of 1.

2Details on the diffuse noise generator can be found in [207] and the software can be downloaded from
https://www.audiolabs-erlangen.de/fau/professor/habets/software/noise-generators

3Modifications applied to Schwartz2014: 1) The original algorithm estimates the coordinates rather than
the angle. 2) Instead of using a distributed structure of microphone pairs, we use a single array. Thus, we
refer to the array as a set of pairs, where each possible pair is used.
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SNR;, SIR; SNR,; SNR,» SIR,; SIR,,

4.0 0.0 12.5 6.5 12.1 6.8
20.0 0.0 25.0 22.1 11.5 11.1

Table 5.2: The input and output objective measures (in dB). SNR; and SIR; are the SNR
and SIR at the input, respectively. SNR,; and SIR, ; relate to the j-th estimated signal,
where j =1, 2.

5.2.3.2 The performance of direction of arrival estimation and blind source sep-

aration in noisy environment

The DOA results for the three algorithms are compared in Fig. 5.3 for various levels of SNR.

The SRP-PHAT can barely separate between the speakers even in 15 dB SNR.
Schwartz2014 accurately locates the speakers in high SNR conditions, but tends to exhibits
many erroneous peaks in low SNR. The proposed DOA estimator presents noticeable peaks
at the true DOAs even for low SNR levels.

We further apply the signal separation procedure using (5.9). The SNR and the SIR
values at the output of the algorithm were calculated using the following procedure derived
in [223]. The filtering coefficients in (5.9) were calculated for every T-F bin, and for every
speaker using the noisy mixture signals z(¢, k), and afterwards applied separately to each
of the steered source signals g;(k)S;(t, k), and to the noise signal v(t,k). This procedure
enables quantitative analysis of the proposed method with respect to each of the mixture
components. The input/output SNR and SIR values are shown in Table. 5.2.

The computation method for SIRs was already described in the previous section. All
measurements are in dB. The SNR; and SIR; are defined at the input. SNR, ; and SIR, ; are
the SNR and SIR for the j-th estimated signal, respectively, where 7 = 1, 2.

It can be observed that the SNR and the SIR are improved for both speakers even in high

noise conditions.

5.2.4 Conclusions

Localization algorithms within the EM framework were used for BSS: a three dimension
localization algorithm and a DOA estimator. A spectral mask obtained in the E-step and
the MVDR-BF in the M-step were utilized for jointly separating the sources and reducing

the noise.
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An experimental study demonstrated the advantage of the proposed DOA estimation
in the presence of artificial diffuse noise over competing methods. The effectiveness of the
proposed BSS technique is demonstrated for real recordings with two different levels of diffuse

noise.
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Figure 5.2: Network constellation and Localization results.
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Chapter 6

Joint Speaker Localization and Array
Calibration using

Expectation-Maximization

The material presented in this chapter is based on a planned publication [199]:

[199] Y. Dorfan, O. Schwartz, and S. Gannot, “Joint speaker localization and array calibra-

tion using expectation-maximization,” To be submitted to IEEE...

During the previous chapters the positions of the sensors were given, however, ad hoc
acoustic networks naturally lack the microphone positions that are often required for e.g.
localization, tracking and beamforming. The challenge of joint multiple speaker localization
and array calibration is addressed using a novel variant of the EM algorithm. The microphone
inter-distances in each array, as well as the orientation of each array, are assumed known in
advance. However, the center points of the arrays and the locations of the sources are
unknown in advance and are jointly estimated by the algorithm.

The challenge is to solve the localization problem of multiple (more than two) concurrent
speakers jointly with the calibration problem of multiple arrays, without any other infor-
mation or any additional calibration signals. Following [16], we use the EM and the MoG
models to cluster the observed data to centroids located on a grid on the room surface. An
explicit model of the speech and noise is defined within the MoG model, as used in [198].

To perform also the calibration task, we add the locations of the array centers to the
estimation task. As a result, the locations of the array centers are estimated in the M-step.

Maximization of the auxiliary function of the EM with respect to (w.r.t.) the array centers

113
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does not produce a closed form expression. We assume that the noise signals of different
arrays are uncorrelated, which enables us to avoid a multidimensional search of the array
centers (that is, a separate search for each array is obtained).

The initialization stage was found to be a complex task because of the large parameter
set. We found a novel way for self-initialization that uses the collected data in an incremental
fashion. One of the arrays is designated as the anchor array, and all of the other elements
(arrays and sources) are localized w.r.t. the anchor. The algorithm is first activated only
with the anchor array while the other arrays are disabled, and then the other arrays in the
network are added one after the other with the iterations of the EM algorithm.

The chapter is organized as follows. Section 6.1 presents the problem formulation. The
EM algorithm is derived in Section 6.2. The performance evaluation is given in the third

section, followed by a conclusion section.

6.1 Problem Formulation

We derive a batch EM solution to a static joint estimation. The problem formulation is
divided into two subsections. The first describes the ad hoc network signals in the presence
of multiple concurrent speakers and sensor noise, and the second subsection deals with their

statistical model.

6.1.1 Signal model

Consider @) arrays, each equipped with N microphones receiving signals from J speakers.
The number of speakers is not necessarily known in advance. The measured signals are
linear combinations of the incoming waveforms. Let Z,, (¢, k) be the STET coefficients of
the signals received by the (g¢,n)-th microphone, where ¢ = 1,...,@Q is the array index
and n = 1,..., N is the microphone index within each array. Overall, there are ) x N

microphones. The signals in the STFT domain are given by:
Zyn(t, k) ZG% o (k) + Vet k), (6.1)

where t = 0,...,7T — 1 and £k = 0,..., K — 1 denote the time and frequency indexes, re-

spectively. G, (k) is the direct transfer function (DTF) associating source j to microphone
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(g,n). S;(t, k) is the speech signal uttered by speaker j and V, (¢, k) is the ambient noise.

The N microphone signals in the ¢-th array can be concatenated in a vector form:

quj (k) gt k), (6.2)
where:
2t8) = [ Za(t k) .. Zun(tR) | (6.3)
90 0) = [ ConsB) - Gons(b) | (6.4)
ot h) = [ Viult.h) .. vq,N(t,k)}T. (6.5)

The overall observation set, DTFs, and noise components can be concatenated by:

z(t, k) = z1(t,k) ... zH(tk) }T, (6.6)
g, =[ g0 ... ab,k) ] . (67)
o(t,k) = [ ol (t.h) ... wh(tk) ]T, (6.8)

such that:

Z g,(k)S;(t, k) + v(t, k). (6.9)

Note that the DTF model includes the attenuation of the direct speech wave and the
respective phase. The DTF is therefore:

1 2k dgyp,
Gong(k) = 55— exp (—Lfc‘f Tj) , (6.10)

qmn,j

where c is the sound velocity and T denotes the sampling period. The distance from speaker

j to microphone (g, n), d, . ; is simply given by:

dgn.j = |IP; = Pyl (6.11)

where p; is the location of the jth speaker and p,,, is the location of the (¢, n)-th microphone
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given by:
Pgn = Pg + Pu(0), (6.12)

where p, is the position of the center of the gth array and p,,(¢) is the relative position of the
n-th microphone with respect to the array center. The inter-structure of the arrays and their
orientation (namely, p,(q)) are assumed to be known in advance. Note that the orientation

of the arrays can be supplied using various means, for example, compass-based technology.

The goal of this study is to jointly estimate the speakers’ locations p; and the arrays’

center positions p,.

6.1.2 Statistical model

We use a MoG probability function to characterize the speech signal of all potential speakers.
Each speaker can be assumed to be a complex-Gaussian source emitting acoustic waveform
from location p,,, where m is the index of the Gaussian component. Because the number of
speakers and their locations are unknown in advance, we use a predefined grid as candidate

source positions.

The various speakers are assumed to exhibit disjoint activity in the STFT domain (W-
disjoint assumption by [110]). This means that, by means of clustering, every T-F bin of

z(t, k) can be associated with a single active source.

Based on the disjoint activity of the sources, the observations can be given the probabilistic

description:
M
Z(t k) ~ >t - NO(2(t, k)0, @y (L F)) (6.13)
m=1

where 1), is the (unknown) probability of a speaker present at p,, and M is the number of

Gaussians.

The matrix ®,,(¢, k) is the PSD of z(¢, k), given that z(t, k) is associated with the speaker
located at p,,:
D (1. k) = G, (K) G (K) s m(t, k) + B (), (6.14)
where the DTF g,,(k) is defined in (6.7).

The direct-path temporal PSD ¢g,,(t, k) and the noise PSD matrix ®¢(t, k) are given
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by:

Psm(t, k) = E{|Sn(t, k)[*}, (6.15)
Dy(k) = E{v(t k)v'"(t,k)}. (6.16)

The noise components from different arrays are often assumed to be uncorrelated [126],

and thus:
(k) = Blockdiag | Bp,(k) ... Bu,(k) |, (6.17)

where @y, (k) = E {v,(t, k)vl(t,k)}.

The PSD matrices of the noise are assumed to be time-invariant and known in advance,
or they can be estimated during speech absence segments.

Finally, by augmenting all observations for t = 0,..., 7 — 1 and £k = 0,...,K — 1 in

z = vecy,({z(t, k)}), the p.d.f. of the entire observation set can be stated as:

M
Fz) =1 tom - NC(2(t, k); 0, @t k), (6.18)
tk m=1
where the readings for all T-F bins are assumed to be independent.

Let the unknown parameter set be 8 = [pT,¢T,¢§]T, where p = vee, (p,), ¥ =
Ve, (V) and ¢g = vecy, ik (Gsm(t, k)). It should be emphasized that, unlike the arrays’
locations, the parameters for localization 1T are soft decisions in nature. After solving the
joint estimation problem, the number and locations of speakers is estimated from those soft

values.

The MLE problem can readily be stated as:

~

0 = argmaxlog f (2;0). (6.19)
0

In the next section, an algorithm is derived for finding 6. The first two components are
the required parameters (array centers and source positions). The last component is a set of
nuisance parameters.

Because the MLE in this case is of high complexity, it is necessary to use an iterative
search algorithm. A widely used algorithm for this kind of problem is the EM algorithm.
In the next section, we first derive the basic (batch) version of the algorithm. For perfor-

mance improvement, and to mitigate the dependency on the algorithm initialization, we also
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introduce a novel modification of the basic EM.

6.2 The LACES algorithm

In this section, the MLE of @ is solved using the EM algorithm. It uses three datasets
and their probability models: the observations, the target parameters (these datasets were
already defined in Sec. 2.4), and the hidden data sets. In our case, we define the hidden
data to be 1) the speech signals S,,(¢, k), which are potentially emitted from each location
m in the room and 2) the association of each T-F bin with a single source emitting from a
particular location, as in [16].

The association of each T-F bin is expressed by x(t, k, m), an indicator that the bin (¢, k)
is associated with a speaker located at p,,. The total number of indicators in the problem is
T x K. Note that, under the W-disjoint assumption [110], each T-F bin is dominated by a
single speaker.

This section is split into four subsections. In the first, the basic EM equations are derived.
The second is dedicated to the E-step and the third to the M-step. The last subsection

summarizes the algorithm and its initialization process.

6.2.1 Basic expectation maximization steps derivation

Denote the hidden data as:

X = vecy .m ({x(t, k,m)}) (6.20)
s = veCikm ({Sm(t,k)}). (6.21)

Following Bayes’ rule, the p.d.f. of the complete dataset, z, x and s, is obtained by:
f(z,x,8:0) = f(z]x,5;0)f(x|s;0)f(s:0). (6.22)

The conditional distribution of the observed data given the hidden data can be expressed

as:

f(z|x,s;:0) = HZ (t, k,m) f(z(t, k)|z(t, k,m) =1, s:0). (6.23)

t,k m=1
Using the assumption that noise signals from different arrays are uncorrelated (6.17), the

p.d.f. of the noise signals from all arrays is expressed as a multiplication of the p.d.f.s of the
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noise signals from each array:

FCz(t, k)|t k,m) = 1,8;,0) = N¢(2(t, k) — g, (k) S(t, k); 0, By (k)
= [V (24(t. k) = gy (k) Sn(t, k); 0, oy, (K)) . (6.24)

q

Because the indicator z is independent of speech signals, s, its conditional p.d.f. is given

by:

f(x]s; ) HZQZ (t,k,m)y (6.25)

t,k m=1

The speech p.d.f. is frequently assumed to follow a complex Gaussian distribution:

= [ N (St k)0, dsm(t, K)) . (6.26)

t,k,m

The p.d.f. of the complete dataset is then given by collecting the terms in (6.22)-(6.26):

f(x,2,s;0) (HZ&U (t, k, m)ihy, x HNC z24(t, k) — gy (k)Sm(t, k); 0, @vq(k))>

(H N (S(t, k)5 0, $sm(t, k))) . (6.27)

t,k,m

6.2.2 E-step

The first step of the iterative algorithm is approximation of statistics of the hidden data. The
auxiliary function is then given by (6.28) where for any variable a the denotation @ means
E {a|z; 0“_1)}. Note that, because of the indicator properties of z(t, k, m), the summation

over m is carried out outside the logarithm operation.
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/\
Q010" V) 2log f(z,x, 5;0)=

/\

Z z(t, k,m <logz/1m + Z log N (24 (t, k) — g (k) S (t, k); 0, By, (K)) >

t,k,m

/\
+ ) Tog N (S (t, k); 0, dsm(t, k) (6.28)

t,k,m

For implementing the E-step, the sufficient statistics of the hidden variables are evaluated

by the following expressions:

1. The expected associations:

#O(t km) 2 B {a(t k,m)|2(t k), 0070} =
uh N (2t k)0, @01 E) )

7 (6.29)
S Vs N (Z(t, k);0,®%, (¢, ’“)>
where:
() = gl ) (9 () 0 (k) + @o(k). (630)

Note that the direct path g%il)(k) is calculated before each E-step according to the
estimated array locations for all grid points of the sources. The expression for g,ﬁ 2 (k)
is given by (6.7) and (6.10), while exchanging the source index j with the candidate

location index m and using the estimated array positions pgl —1).

2. The next term for the E-step is the first-order statistics of the speech, given the measure-
ments and the parameters. Using the law of total expectation, the first-order statistics
of the speech is then given by (6.31). Note that the expectation of the mth speaker
(when the (¢, k) bin is associated with the mth speaker) is the multichannel Wiener
filter (MWE) (see [224, Eq.(28)] ); otherwise, the expectation is zero (because it is
a-priori defined in (6.26)).

3. The last term for the E-step is the expected speech second-order statistic. Using the
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S0t k) 2 B {So(t, k) 2(t, k)6 } =
BB {Sm(t, k)|x(t, k,m), z(t, k); 9“—1)} 12(t, k) 9(15—1)}
= EQa(t. b m)E { S (t, )| (t k,m) = 1, 2(6, 1) 070 b+
(1=t b m) B { St Wt b, m) = 0, 28, k) 0479} |2 (2, k) 9@_1)}

= 300 ) 650008 (gl (0)" (SR 28, (631)

law of total expectation, the expected speech second-order statistic is given by (6.32).
Note that, when the (¢, k) bin is associated with the mth speaker, the expected speech
second-order statistic is the squared MWEF plus the MWE covariance error term (see
(224, Eq.(32)]); otherwise, the expected speech second-order statistic is simply the a-

priori variance gbg;})(t, k) (the a-priori first-order statistic of the speech is zero).

VOt k) 2 E {lSm(t, k)Pl=(t, k); 9“‘”} = 2O(t k,m)

[0 ol e k) = (66,200) @) (24 k) g0

+ (1= 20(t k,m)) {¢g€;}>(t, k)} . (6.32)

6.2.3 M-step

The second step of the iterative algorithm is maximization of (6.28) with respect to the

unknown deterministic parameters € (namely, the M-step):

1. Similar to [16, Eq. (20a)], ¥, is obtained by a constrained' maximization of (6.28):

w(ﬂ) _ Zt,k f(g) (tv k? m)
mn T -K '

(6.33)

The number of speakers and their locations are estimated from the soft values 1/, only
)

b

after the last iteration of the EM algorithm. The centers of the nodes are given by p((]L

IThe sum of ¥,, equals 1.
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and the speakers’ locations can be estimated by applying a threshold to wﬁf ), where L

is the number of iterations.

2. The variance of the speech is obtained by:

Om(t, k) = VO (2, ). (6.34)
3. The array locations are obtained by the maximization:

0 ~
pg )...pé) = argmaxp p_ Z 2Ot k,m)-

/\
> log N® (24(t, k) = gy (k) Sim(t, k); 0, By, (k). (6.35)

Because there is no closed-form solution for the array centers, a straightforward solution
will require a tedious evaluation of the expression (6.35) in |P|? points. Such a search is
extremely complex; however, because of the summation in (6.35) (which was obtained
by the assumption that the noise signals from different arrays are uncorrelated (6.17)),

the search for each pgé) can be carried out separately for each array:

pl) = argmaxpy > #0(t,k,m) [zRe {zf (£, k)@ (k)g, () SO(1, k)} -

t,k,m

Gy () 5 (B)g, (BT k>] (6.36)

Because the search is carried out for each array separately, it requires | P|- @) calculations
of the likelihood term in (6.35) for |P| grid points in the room, resulting in a significant

save in calculations. Note that p, controls g, ,(k), as evident from (6.10)- (6.12).

6.2.4 The LACES algorithm: summary

It is well known that the classical batch EM algorithm is sensitive to initialization and
might converge to a local maximum instead of the global maximum likelihood [47]. Several
solutions have been suggested [225] to circumvent the mis-convergence phenomenon; these
include incremental [226], sparse [225], recursive [227], and other variants of the batch EM

algorithm. Experimentally, it was shown that the proposed algorithm might suffer from this
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mis-convergence if a conventional initialization is applied.

In addition, because all locations of the microphones and the speakers in our model are
unknown, a spatial origin of the system should be predefined. We decided to use one of the
arrays as the origin (referred to as the anchor node), and all of the microphones/speakers
are measured w.r.t. that node. This means that the EM has to search () — 1 array locations.
We found experimentally that an incremental estimation of the nodes’ locations, rather than

all of them together, enables convergence to the appropriate ML parameters.

In the beginning, only the anchor node is used by the algorithm for an initial estimation
of 1y, and ¢g (¢, k). The nodes are added one at a time until all () nodes used by the ad hoc
network are included. We denote the current number of nodes used by Q. After each node
addition, a higher dimension EM problem is solved with L iterations. The measurements
captured by each node are used to estimate the position of the nodes and the probabilities

of speakers occupying all locations.

For better convergence, we execute the M-step before the E-step. This means that, after
adding a new node, the M-step is applied based on the previous E-step, which was based on
Q) — 1 nodes. The last operation of the M-step is to find the location of all current nodes,
including the newly added node (6.36). Only then we run the E-step. This algorithm is

summarized in 9.

6.3 Performance Evaluation

The algorithm was evaluated using both simulations and real recordings. The performance
of the proposed algorithm was evaluated in terms of both node calibration and concurrent
speakers’ localization. It should be emphasized that this challenge has not been dealt within
the same kind of setup, which makes it difficult to compare the results to state-of-the-art

algorithms.

The simulation and recording setups are described in the first subsection. The second
subsection summarizes the measures used to evaluate the performance. The simulation results
are given in the third subsection, and the last subsection addresses the analysis of real

recordings.
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Algorithm 9 LACES algorithm for noisy environment
Initialize

Y = ¢

Dom(t, k) = |2(t,F)]?

b=pD

for / =1to L do

E-step (Q =1)
Estimate /x:(f)(t, k,m) using (6.29), quf)(t, k) using (6.31) and Vn(f)(t, k) using (6.32).

M-step (Q = 1)
Calculate w,(ﬁ) using (6.33) and ¢(S{)m(t, k) using (6.34) Vm.

end
for Q =2 to Q do

T
Add node center to p: p < [pT pg} .
for /=1to L do

M-step
Calculate ¢ using (6.33), qﬁg)m(t, k) using (6.34) and pY) using (6.36) Vg = 2...Q.
E-step R R
Calculate 70 (¢, k, m) using (6.29), Sy(f)(t, k) using (6.31) and Vyg)(t, k) using (6.32).
end
end

Find p, Vs using a threshold for w,(nL ),

6.3.1 Experimental setup

The setups used for the simulations and recordings were approximately similar: three to five
microphone arrays were located randomly in the experiment room. Together, all of the nodes
composed an ad hoc network of acoustic sensors. Most of the time, the nodes were rectangular
with four microphones simulating smart-phones with known dimensions and orientations. An
example of such an array is shown in Fig. 6.1.

Some of the simulations were run with six microphones per node to enhance the localiza-
tion capability.

The sampling frequency was 8 kHz and the frame length of the STF'T was 64 msec with
an overlap of 75 %. The number of frequency bins was 512. Utterances approximately 1 sec
long of males and females were used. The speakers were located randomly around the table.
The number of speakers was six for the simulations, and six for the real recordings.

The frequency band that was proven sufficient for our array sizes was 500 — 2000 Hz. In

the simulations, the speech signals were convolved by a simple RIRs of an anechoic chamber.
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Figure 6.1: Rectangular array with four omni-directional AGG CK microphones at the cor-
ners

In the recordings, we recorded the signals in our acoustic room with a very low reverberation
level (Tgo = 120 msec). In both cases, a synthetic additive white Gaussian noise (AWGN)
was added with various SNR levels.

A picture of the recordings setup can be found in Fig. 6.2. The rectangular arrays
mentioned above were used together with Fostex model 6301B3X loudspeakers in the acoustic
room. A high-quality recording system was used to measure the Tgy and to generate the input
signals for the new algorithm.

Although the full size of the room was 6 x 6 x 2.4 m, here we focus on a smaller search

area of 5 x 5 m with a constant height of 135 cm.

6.3.2 Performance measures

Calibration SR was calculated for Monte Carlo simulations according to the number of times

the estimation of the node center was sufficiently accurate (up to 20 cm):

SR(%) = 100 % S, /A, (6.37)
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Figure 6.2: Room setup example: loudspeakers, microphone arrays, and recording equipment

where S, is the number of successful calibrations and A, is the total number of nodes to be
calibrated. This is the only measure used for the calibration part, because this is the nature
of this part of the algorithm. If the calibration is good, the accuracy is very good; if it fails,

the results are useless and it also ruins the localization part.

For the localization part, we adapted three statistical measures used in [192, 193]. They

are all calculated only for the cases of successful calibration.

The MD are counted according to the percentage of mis-detected speakers:
M D(%) = 100 * M,/ Rg, (6.38)

where M, is the number of mis-detected sources and R, is the total number of real sources.

The FA is the percentage of wrongly detected speakers:

FA(%) = 100 % F,/R,, (6.39)
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Sensor SNR  Calib. MD FA Loc.
(dB) SR (%) (%) (%) RMSE(m)

0 45.5 o4 - -

10 70.5 16 1 0.16
20 71.5 6 1 0.16
40 74 6 1 0.16
60 74.5 6 1 0.16

Table 6.1: Statistical measures for various SNR levels. The node calibration SR is measured
in percentage(%). The source localization performance measures are MD percentage, FAs
percentage, and RMSE in meters.

where F} is the number of falsely detected sources.

Localization RMSE is a measure of the estimation accuracy of all detected speakers:

1 Rs—Ms
— - 2
RMSE RT3 > ex(s), (6.40)

s=1

where s is the source index and e(s) is its localization error, in meters.

6.3.3 Simulations of random geometrical setups

The geometric setup for the simulations is shown in Fig. 6.3. Three nodes with a square shape
(10 x 10 cm) were randomly located with a random orientation in the middle of the room
(each microphone is denoted by ‘0’). Six speakers (denoted by the ‘+’ sign) were located away
from the room center, to mimic a scenario with nodes in the center (on a table) and speakers
around that table. The main purpose of the simulation was to explore the performance for
random geometrical setups.

The performance of the algorithm was tested for various levels of SNR and various sensor
and source locations. The number of different setups generated was 100.

We noticed that a single EM iteration per new node (L = 1) yields satisfactory results.
The statistical measures for the simulation study are summarized in Table 6.1. In presence of
white sensor noise, as also demonstrated for the real recordings, the algorithm performance
transits fast from good results for SNRs of 20 dB to very bad ones around SNRs of 0 dB.
Note that the localization search grid is 0.2 m x0.2 m, which means that the localization

error is within the grid resolution.
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Figure 6.3: Simulation room random setup example. Fach microphone is denoted by the
sign o. Six speakers are denoted by the sign +.

To experimentally examine the localization and calibration EM sequence (LACES) con-
vergence when arrays are added to the estimation, we plotted the intermediate results for
the localization parameters, @ in Fig. 6.4 for L = 1. The real locations of the six speakers
are marked by ‘+’.

The improvement of the localization maps can be observed when additional arrays are
used. For a single array, only some of the speakers are detected and a lot of noise is present.
As arrays are added, the estimation improves for all speakers. The final map can be used to

infer the number of speakers and their locations.

6.3.4 Recording results in noisy environment

The geometric setup for the real recordings is shown in Fig. 6.5. Three arrays with a rect-
angular shape (8.2 x 14.7 cm) were located in the middle of the room (each microphone is

denoted by the symbol ‘0’). Six speakers (denoted by the symbol ‘+’) were located around
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SNR(dB) Calib. SR MDs FAs Loc. RMSE(m)

>=14 2/2 0/6 0 0.1
10 2/2 1/6 0 0.1
<=3 0/2  N/A NJ/A N/A

Table 6.2: Measures for room recordings in various SNR conditions. The node calibration
SR is given as a ratio. The source localization performance measures are MD ratio, FA ratio
and RMSE in meters.

the center of the room in a meeting room setup.

The real recordings were tested for low reverberation level (75 = 120 msec) and various
levels of sensor AWGN. The analysis of the real recordings is focused on the influence of the
SNR level on the calibration and localization results. Table 6.2 summarizes the results for
various SNR conditions.

It can be seen that, for any SNR higher than 14 dB, the performance is very good: the
calibration was good for the nodes, the number of MDs was zero, there were no FAs, and
the localization RMSE was 0.1 m. For an SNR of 10 dB, there is some degradation in the
localization results, but the calibration is still good. The algorithm fails for all SNR levels
equal to or below 3 dB.

6.4 Conclusions

A major challenge for ad hoc networks is to jointly localize sources and calibrate the positions
of the arrays (or nodes) of the network. A novel joint calibration and localization algorithm,
suitable for noisy environment was derived using the EM algorithm. One of the nodes is used
as an anchor node, and the calibration (that is, the nodes’ positions) is applied relative to
the position of this anchor node.

To circumvent the initialization challenge of the batch EM, an incremental process was
suggested that adds the nodes one after the other, instead of trying to solve the full dimension
problem from the beginning of the EM algorithm. The new process, called the LACES

algorithm, has been studied using simulations and real recordings.
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Figure 6.4: Localization soft maps intermediate results (a), (b), (¢), (d) and (e). The real
locations of the simulated speakers is marked by ‘+’. The estimation is given by colored
contours. The grid resolution is 20 cm. We excluded strips of 100 ¢cm near the walls from
the search area.
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Figure 6.5: Recording room setup
are denoted by the sign +.
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Chapter 7

Tracking using static and dynamic

arrays

The material presented in this chapter is based on [200] and [201]:

[200] Y. Dorfan, B. Schwartz, and S. Gannot, “Speaker tracking using forward-backward

recursive expectation-maximization,” To be submitted to IEEF...

[201] C. Evers, Y. Dorfan, S. Gannot, and P. A. Naylor, “Source tracking using moving
microphone arrays for robot audition,” IFEEE International Conference on Audio and
Acoustic Signal Processing (ICASSP), New-Orleans, LA, USA, 2017

During the previous chapters we were focused on static speakers. The static assumption
enables to apply signal processing tools that assume a constant RIR. In reality even minor
movements might change the RIR quite significantly and hence other techniques should be
applied. This chapter describes two types of tracking algorithms.

The first one is based on the RDEM presented in Chapter 3. In order to enhance the
tracking capabilities a non-causal RDEM is applied. The results of the causal and the anti-
causal are utilized together for the new tracking algorithm.

The second type addresses a different dynamic scenario. This time not only the sources
are moving, but also the arrays of microphones. The algorithm applied is based on particle

filtering.

133
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7.1 Forward backward

In this section we address the task of localizing multiple concurrent moving speakers in
reverberant conditions with static microphone arrays. Since both past and future observa-
tions contribute to the current location estimate, we propose a forward-backward approach
that improves localization accuracy by allowing an additional short latency. We apply a
non-Bayesian approach, which does not make assumptions regarding the target trajecto-
ries, except for assuming a relatively slow change in the parameters. The proposed method
is based on the recursive distributed expectation maximization RDEM approach presented
previously. It should be emphasized that this approach is different from the majority of
tracking (Bayesian) algorithms. Those algorithms assume something about the dynamics of
each source and track it separately. Our approach creates a map of the all area and the and
the trajectories are drawn later. We assume nothing about each individual source dynamics.

The proposed algorithm is called forward backward recursive distributed expectation
maximization FB-RDEM, and its performance is demonstrated using an extensive experi-
mental study. The tested scenarios involve both simulated and recorded signals, with typical
reverberation levels and multiple moving sources. It is shown that the proposed algorithm
outperforms the regular (causal) RDEM, and that it is tolerant to short speech pauses. The

new algorithm has improved accuracy, while adding a configurable latency.

7.1.1 Forward and backward recursive scheme

In this section, we first survey the criterion and then the derivation of the TREM algorithm
[54]. The last part presents the main topic of this section, the forward-backward REM

scheme.

7.1.1.1 Criterion discussion

Consider the problem of parameter estimation in the general case, where we observe the
i.i.d. random time dependent variables 7(¢). The p.d.f. of the observations is denoted by
h(T(t)) = h(7), which may be unknown.

A parametric model is attributed to the problem, inducing the parametric p.d.f. denoted
by f(7;80), where 8 is the vector of unknown parameters. We say that a parametric model

is specified, if the real p.d.f. equals the parametric p.d.f. for a specific value of the parameter,
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i.e., there exists 8" such that
h(T) = f(7;0"). (7.1)

Here, however, it is not required that the model will be specified, and we seek the value of @
by which the parametric p.d.f. best fits the real p.d.f.. A common criterion for this fitness is
the minimization of the KLLD defined by

k(@) = E{logh(T) — log f(7;0)} , (7.2)

where E{-} denotes the expectation taken w.r.t. the true p.d.f.; h(7).

In this case, the minimization criterion is written as

0" = arg;nin k(0) = argznax{]E{log f(r;0)}} . (7.3)

It is noteworthy that " and the ML (batch) estimation of  are asymptotically equivalent; i.e.
they converge for growing number of observations. The KLD criterion is common in online
procedures, since it optimizes the p.d.f. of a single observation by updating the parameter with
every new observed sample, rather than optimizing the p.d.f. of a specified set of observations
using multiple iterations. This approach also fits the dynamic case, where the parameters

are time-varying.

7.1.1.2 Recursive EM

In many problems, hidden data may be used, for either computational reasons, e.g., when
the likelihood is intractable, or physical reasons, e.g., when the hidden data represents a
realistic and desired physical value. In Subsection 7.1.3, the hidden data is an indicator that
associates a time-frequency band bin of an acoustic signal to a specific speaker; a physical
value of interest. We henceforth denote the hidden data as y(¢) and further assume that there
exists a joint p.d.f. of 7 and y, namely, the complete p.d.f., denoted by f(7,y;8). Asdiscussed
in the first chapter of this thesis, the EM is a common approach for maximizing the likelihood
in hidden-data problems, to which a recursive version was presented by Titterington [54].

The TREM algorithm [54] maximizes the KLD using the recursion

~Ti ~Ti

~Ti ~Ti
0,,,=0, + % ) 181(9t )-8(140, ), (7.4)
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where /B\;Fl is the previous estimate, s(7; /étT i) denotes the scoring function defined by the

gradient,

~Ti

s(t4;0, ) = Vglog f(1;0) T (7.5)

’T:Ttﬂ:@t

and I-(60;) denotes the complete-data FIM, i.e.,

~Ti

IC(et ) - _EC{vz IOg f(Ta y; 0)}|9:§;ﬂ ) (76)

where Ec denotes the expectation taken w.r.t. the complete-data p.d.f f(7,y;8). Note that
by the Fisher identity (see Sec.15 of [228]), s(7;0) can be calculated via the complete p.d.f.

f(7T,y;0),
s(1:0) =Ec{Velog f(7,y;0)|T;6} , (7.7)

thus recursion (7.4) does not require an explicit form of f(7;0), which is the very reason
for choosing the hidden data approach. It was shown in [180] that under certain regularity
conditions, the TREM converges w.p.1. to a stationary point of the KLD.

Re-examining (7.4), it can be seen that the update term in time ¢ is multiplied by ¢!,
and hence the parameter update is less significant with time, which is a crucial requirement
for the strong (w.p.1.) convergence. In practice, it is common to substitute £~ by a constant
smoothing coefficient, allowing tracking abilities for dynamic cases. Define a variant of the

TREM algorithm that uses a constant smoothing factor,

B = w8, + (1= ) 15/ 8,) - (78, (7.8)
where 0 < v < 1 is predefined to fit the dynamics of the problem. This procedure also
converges to a stationary point of the KLLD, but convergence in this case is weak (see Chapter
8 in [229]).

Using the update scheme in (7.8) is common in tracking and localization problems, when
the parameter 0 is time-varying and strong convergence is not desired. A mathematical
analysis of algorithms with structure similar to (7.8) is given in [230], using the definition of

hyper-model; i.e., a model for the true parameter and for the algorithm dynamics.!

Do not confuse the hyper model analysis with the Bayesian approach - this model is for the analysis only,
and not used by or known to the algorithm.
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The influence of vz on the algorithm’s performance can be intuitively explained as follows.
Tuning the value of vz enables a trade-off between the bias and variance of the algorithm. For
higher values of g, the update rate of the algorithm is slower, meaning that the estimation
is biased by the past values of the parameter, but the estimation variance is lower, due to the
longer averaging window. For lower v values, the convergence speed is higher, which means
a lower bias, but this comes at the expense of higher variance due to the shorter averaging
window. The reader is referred to Chapter 4 in [230], which elaborates on the analysis of
time-varying parameter estimation.

We now propose a method that improves the performance of (7.8) in the expense of higher
latency. This is done by introducing future observations to the estimation procedure, and

may reduce both the bias and the variance of the estimator.

7.1.1.3 The FB-RDEM Algorithm

The recursion (7.8) makes use of the past observations in order to estimate the parameter. In
most cases, the near future is informative as well, and can improve the accuracy in the price
of higher latency. We propose the Forward-Backward Recursive Expectation-Maximization

(FB-REM) algorithm, defined by

~FB ~F ~B
0t+1 = Qarp - 0t+1 + (1 —arp) - 0t+1 ) (7.9)

~F
where 6, was defined in (7.8), and 0 < arp < 1 is a weighting factor of the past and the

~B
future terms. The backward estimator 6, is calculated by the backward recursion

~B ~B ~B ~B
0, =780, +(1—8)- I.1(6)) - s(T4:6;) ,
k=t+D,..,t+1, (7.10)

where 0 < v < 1 is a smoothing factor, and the number of future samples D will be
discussed in the following. Note that /H\f 41 1s calculated using the past observations 74, ..., 74,
while 52_1 is calculated by the future observations 7, p, ..., T¢12, Tt11, thus each observation is
considered only once in (7.9). In the following, we will restrict the range of future summation
in (7.9), leaving only a constant latency.

In a Bayesian framework, there would have been an optimal choice of the smoothing

factors vr, 7B, and app, obtained by a Bayesian statistical model. This way the Kalman
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smoother [231] gain and the coefficient used in Viterbi algorithm [232] are determined. How-
ever, since we intentionally adopted a non-Bayesian approach, the values of vg, v5, and
app are determined due to the required dynamics of the algorithm, and the nature of the
stochastic processes. We previously discussed how v trades-off the update speed versus the
accuracy of the algorithm. Similarly, high yp reduces the variance of the algorithm in the
expense of higher bias. Finally, arp determines the weight of either the past and the future

observations on the current estimation.

In practice, arp is mainly determined by the number of the future observations that are
actually used to update the estimation, which in turn is determined by the latency constraints

of the application. Rewriting (7.10) as

t+D
O = (1=y8) - Y " 1" (0)) - s(ruiBy) | (7.11)
k=t+1
it can be seen that for every value of v5 and every computing precision requirement, there
exists an integer D,,,, such that ygm” ~ 0. If D= D,,,. is chosen, the backward recursion
is equivalent to an infinite backward recursion, similarly to the forward recursion for large
enough t values. However, in practical applications, using D,,., future observations might
introduce unacceptable latency, and a lower value of D should be chosen instead. This choice
deteriorate the accuracy of the backward recursion (7.10), which should be compensated by

increasing the value of appg.

In the next subsection, the algorithm (7.9) will be realized for the problem of multiple

dynamic speakers localization.

7.1.2 Speakers tracking problem formulation

One of the major applications of the recursive schemes is tracking. We focus here on dynamic
localization of concurrent speakers, which is very challenging due to non-stationary and non-

continuous nature of the speech signals.

The problem is formulated in time-frequency band and in the spatial domain. Let b =
1,..., B be the frequency band index, S be the number of acoustic signals captured by M

microphones, organized in M /2 independent pairs.

The signal received by the ith microphone, i = 1,2 of the mth pair, m = 1,..., M/2, is
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given by
S
2 (t.0) =)k, (£, b)v(t,b) + ni, (t,D), (7.12)
s=1
where s = 1,..., S is the source index, v,(t,b) denotes the sth source signal, n! (¢,b) denotes

an additive noise, and a’, (,0) denotes the time-variant RIR.

For each band the pair-wise TDOASs 7, ,(t) are calculated using cross-correlation. Under
the assumption of speech sparsity [110], each time-frequency band vector is dominated by
the direct path of a single source (W-disjoint). This implies that the summation in (7.12) is

dominated by a single source.

Let p = [z,vy, 2] be a position in the room described by the 3D Cartesian coordinates
and let P be a set of all possible positions contributed by all speakers without assuming any
a priori knowledge about their number or dynamics. Multiple locations may receive high
values according to the number of active speakers.

The grid of possible positions is used, as in [193]. The noiseless TDOAs for each grid
point can be calculated in advance:

1 2
oty 2 [P bl 053

:Vp e P, (7.13)

where p! and p?, are the locations of the microphones assumed to be perfectly known, || ||

denotes the Euclidean norm, and c is the sound velocity.

The statistical model applied to the TDOAs is MoG:

Tm,b(t) ~ Z ¢p(t)N (Tm,b(t); 7~_m7b(p)7 02) ) (714)

where o2 is the variance, which is assumed to be a known constant parameter.
The weights ¢, (t) are the probability of a speaker to be in position p at time ¢ will be
estimated by the algorithm. The constraints of the optimization problem for any time stamp

t are:

D dp(t) =1 (7.15)

PEP

0 <p(t) <1.

The set of unknown parameters, 8 to be found by the EM in this MoG case contains
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only the Gaussian weights, 1, (t), since the mean are calculated in advance over the grid of

positions and the variance is known.

The p.d.f. of all augmented measurements at each node is

F(To(t) = T (0);9(8) = [ D o®ON (7ms(t); Fms(p), 0°) - (7.16)

b peP

As for every other EM and REM algorithms, a set of hidden variables is defined. The
hidden used here is a set of indicators [193] that relates each time-frequency band bin to an
active position from that grid of points. The physical meaning of those variables comes from
the dis-joint property of speech. However, since those variables are not measured they are

referred to as "hidden’.

Following [193], we derive an RDEM algorithm with the hidden data, y,,(t, b, p), defined
as the indicator associated with node m that time-frequency band bin (t,b) belongs to a
speaker in a certain position, p € P. Intuitively, the dynamic localization challenge becomes

much simpler to solve given this additional information.

The conditional observations p.d.f. is

FT@) = @Y (1) = y();9@) = [ [ F(Tnlt) = T (&) Yo (t) = Y (8); 96(2))

= TI>" v (1.6, D) N (T (1); T (D), 02) (7.17)
m,b peEP
where

The complete data p.d.f. is

FT@) =70, YY) =yt)9®) =[] ¢pym(t.b;pIN (Tms(t); Tmp(p), 0%) . (7.19)

m,b peP

In the next subsection a new algorithm is derived based on the forward-backward concept

introduced in the previous section. For practical reasons we develop a distributed algorithm.
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7.1.3 FB-RDEM for concurrent speakers tracking

Although the forward-backward concept can be applied to various centralized or distributed
algorithms, we focus on a specific example: diffusion through a bi-directional tree. The
advantages of this topology for this kind of problems has been described in details [193].
Following the bi-directional tree-based RDEM algorithm, we derive a forward-backward
version. Two RDEM are applied in opposite directions (forward and backward). The forward
runs from the previous reported time stamp till the current. The time step length is denoted
as 0t. The backward RDEM starts from the future samples in the anti-causal direction
utilizing the processing delay. Both recursions run till the current time stamp t., and their

linear combination (7.9) is calculated:

VYrp,r(t) = app - Yrr(t) + (1 — app) - ¥sr(1), (7.20)

where ¢y g(t) and 1 r(t) are the results of the forward and backward RDEM, respectively.
Those processes are derived in this section. Notice that using a trivial case apg = 1, which
means we have no relevant information from the future samples, results with a regular forward
RDEM.

We start with the forward part of the algorithm, since the backward is similar in our
case besides the processing direction. As mentioned above in subsection 7.1.1, recursive EM
versions have been derived in [184, 54]. We adopted in (7.8) the TREM version [54].

According to (7.8)-(7.10) and[16, 193], we can derive the following recursive relation based
on TREM for our tracking application:

Pren(t) = Bralt — 1) + 70 (D) = Dea(t— 1)), (7:21)

where the current estimation of the parameters is written in a vectorial format:

~

P (t) = veey (Y p(t)). (7.22)

In [193] the first and second order derivatives of the log-likelihood were calculated for
the case of forward recursion. Following those steps, the RDEM can be easily derived. The

instantaneous global parameter estimation (before recursion) is the mean of all the hidden
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variables, calculated by

deplt) £ 3775 - 700 (7.23)

where the estimation of the local hidden average with respect to frequency bands is defined

as:

B
1
o (t,p) = 5 > vl (t,0.p). (7.24)
b=1

The estimation of the hidden data is given by

&F,p(t - 1)N (Tm,b(t); 7~_m,b(p)’ 02)

ol (t,b,p) £ 4 P, ¢ .
> pep Vrp(t — DN (T p(t); Tmp (D), 02))

(7.25)

This form is very common in the EM for MoG. It is the Gaussian for the specific grid position

multiplied by the latest weight estimate and normalized by all other positions of the grid.

In the same way, the backward RDEM can be written replacing the notation F with B
and the time index (t — 1) with (¢ + 1) in equations (7.21)- (7.25) above. In the backward
version the time samples are processed in the anti-causal direction. As a result we get the

following backward recursion equation:

~

r,n(t) = Doplt+ 1)+ 8 ($alt) — Poelt+1)) (7:26)

where the current estimation of the parameters for the backward process is also written in a

vectorial format:

~

Py(t) = Vecp(Q;B,p@))' (7.27)

The instantaneous global parameter estimation is again the mean of all the hidden vari-

ables, calculated by

) | M2
Upp(t) £ M2 > ot p), (7.28)
m=1

where the estimation of the local hidden average with respect to frequency bands is defined
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Algorithm 10 Acoustic source localization with FB-RDEM.

set T, 5(P)

initialize 1y 5(0) = 1/|P]|

Let t. = 0t denote the current time for location report

while t, < tg,,; tc = tc+ 6t do

for t =t.— 0t to t. do
Calculate simultaneously and locally ol (t,p) using (7.24) Ym =1,..., M /2
Aggregate results and calculate 'gAbF r(t)

end

initialize ¥y z(t, + Py + 1) = 1/|P)

fort=t.+ P; tot.do
Calculate simultaneously and locally o) (t,p) using (7.29) Vm =1,...,M/2
Aggregate results and calculate g g(t)

end

Calculate 'g?)FB’R(tC) according to (7.20)

Find ps(te) by applying a threshold to {Z)FR r(te)
Set Py p(te) = Ypp plte)

end

as:

1
o (tp) & 5 ) v (b, p). (7.29)
b=1

The estimation of the hidden data is given by

dB,;z(t - 1>N (Tm,b(t); 7~—m,b(p)a 02) )
>pep VBp(E = N (i (£); T p(P), 02))

v®(t,b,p) £ (7.30)

Due to this anti-causal process, we have to choose a processing delay, denoted as P;. The
algorithm estimates locations along time using relevant past and future samples according
to the processing delay P, and the speakers dynamics.

As for many EM algorithms, initialization is a crucial part. We adopt here quite a
simple method. The forward RDEM is initialized according to the previous estimations. The
backward RDEM is uniformly initialized in space. We execute the algorithm until the stop
time, denoted by tgop. After estimation of @ZFB’ r(te) at each time step, we apply a threshold
in order to find the number of speakers and their current locations. As stated above, this is a
dynamic localization algorithm and not a classical tracker. The entire FB-RDEM procedure

is summarized in Algorithm 10.
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7.1.4 Experimental Study

This subsection compares the proposed FB-RDEM algorithm to the RDEM [193] algorithm.
It should be emphasized that tracking in acoustic signal processing is usually developed for
1 — D only. In addition, we deal with a case for which unlike classical tracking algorithms,
no assumptions is made regarding the dynamics of the speakers. For those reasons we found
it difficult to compare our results to other state-of-the-art algorithms.

The study contains four parts. We start with a parameters discussion that should be
tuned for both algorithms. The second part describes the room setup for simulation and
recordings. The third part is about the random Monte-Carlo simulations. It enables a rich
comparison between the two algorithms. The last part compares them for real recordings
that we generated in our acoustic room in order to ensure both algorithms can track real

speakers in a real dynamic environment.

7.1.4.1 Parameters choice

There are a few important parameters mentioned above that should be chosen to enable
sufficient performance of the localization algorithm.

The first one is the TREM smoothing factors v and yg. The «r parameter has been
already tuned experimentally for the regular RDEM [16]. We tuned both values empirically
for our model.

The next parameter to be discussed is the past weighting coefficient, arg. For offline
applications we might expect the past and the future samples to be equally weighted, meaning
arp = 0.5, since the correlation is symmetric and decades with time in both directions. Since
we deal with online applications, our algorithm is not symmetric. In addition, the number
of future samples depends on the latency chosen. For those reasons we had to tune this
parameter manually.

Important parameters that have close relations with the smoothing factors are the latency
time samples, D and the processing delay P;. Assuming slow dynamics and the acoustic
volume of a real speaker, it is reasonable to work with around 1 sec for both in many
applications that require speaker localization within the room. It is obvious that for on-
line applications, like we deal with, this trade-off might be dealt differently. For example,
fast dynamics tuning is easy, since the window length of relevant data is short. The most

important samples are the closest in time in both directions of the time axis. It means that
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the idea of non-causal localization can be useful even for much lower latency values.

The number of frequency bands, B = 16 was also examined experimentally within the
range that is reported in other sub band approaches. For example, algorithms that compute
sub band TDOAs in order to improve the robustness and to facilitate concurrent speaker
localization [80, 88, 89, 195].

2 was tuned manually to 2[Samp?]. Sampling frequency is 16 KHz.

The MoG variance, o
We assume that its value is uniform over time, frequency band and all other relevant vari-
ables. Future research can be done about this parameter, which sometimes appear to have a
significant influence on the performance of the localization algorithm.

Another important parameter is the resolution of the positions grid. Here we adapted a
resolution of 0.10x0.10 m?, which has been shown [16] to be fine enough for localization of real
speakers that have a significant acoustic volume and therefore are not emitting signals like
point sources used in the simulations. We observed that for both simulated and real signals
this resolution is fine enough. Increasing the resolution further increases the complexity
significantly.

Frame length of the FF'T| 64 msec was adapted from previous localization algorithms [16,

192, 197, 193, 196, 194, 198].

7.1.4.2 Room Setup

To evaluate the localization performance of the algorithms, we simulated the following sce-
nario. Twelve pairs of microphones were positioned in the room (encompassing the acoustic
scene). A map of the microphones locations is shown in Fig. 7.1. The positions of the micro-
phones are marked by "0’ on a two dimensional plane. Each pair belongs to a different node.
The nodes are numbered from 1 to 12 in an arbitrary order. The scenario examined is a 2D
with all speakers and microphones in the same height for simplicity, but the algorithm can
be easily expanded to 3D.

The number of microphones pairs, M/2 was already examined in [16]. Here 12 pairs
are used for the simulations as in [16]. The number of microphone pairs (or nodes) is very
important in the presence of high noise and/or high reverberation levels.

The dimensions of the simulated room were 6 x 6 x 2.4 m. One or two sources randomly
moved along a trajectory in the room. Theses dynamics cases were simulated using short
speech files and an efficient implementation [210] of the image method [211].

The laboratory recording setup is based on the description of [16, 193]. An example of a
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Figure 7.1: Microphone pairs map for the simulated room. The 'o’ stands for a microphone
positions in the two dimensional plane. The nodes are numbered 1 : 12 containing two
microphones each.
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Figure 7.2: Dynamic recording for a single speaker with 760 = 250 msec.

single speaker recording with low reverberation level (760 = 250 msec) is shown in Fig. 7.2.
In this case only seven pairs were used, as can be seen in Fig. 7.3. The positions of the
microphones around the room are marked by a circle ('o’) on a two dimensional plane.
The recordings setup is fixed and the only dynamic is the trajectory of the speakers during
the experiment. In all cases we tried to stick to the simple 2D case, placing the microphones

in the height of a typical human mouth (135 cm).

7.1.4.3 Simulation Results

The first step of evaluation used simulations. It enables comprehensive statistical tests of a
variety of trajectories in the room.

To compare the performance of the algorithms, we followed the procedure described
in [193, 192], but this time for a dynamic scenario. We executed 100 Monte Carlo trials
and calculated the RMSE.

Note that the accuracy of the location estimation was limited by the grid resolution of
0.10 x 0.10 m?. These errors were averaged across the ensemble and along the trajectory.

The results are summarized in Table 7.1 for various trajectories.
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Figure 7.3: Microphone pairs setup during the recordings. The ‘0’ stands for a microphone
positions in the two dimensional plane.
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Algorithm 2 speakers [m] 1 speaker [m]

RDEM 0.30 0.32
FB-RDEM 0.23 0.30

Table 7.1: RMSE for localization scenarios (100 Monte-Carlo trials) for one or two speakers.
The error is calculated in meters.

The RMSE of the first scenario, which consisted of two speakers and where Ty =
120 msec, is depicted in the first column. The second scenario, which consisted of a sin-

gle speaker and where Ty = 400 msec, is depicted in its second column.

The reference algorithm RDEM has a higher RMSE than the FB-RDEM. The improve-

ment is more evident for two speakers, as can be observed also in actual recordings.

7.1.4.4 Analysis of Actual Recordings

The algorithms were also tested using real recordings of sources and eight microphone pairs.

The first recording was in a room with 760 = 250 msec and a single speaker standing
for 9 sec and then walking on a straight line, 2.10 m long for 33 sec. The trajectory ground
truth (Thin line) and the estimated one (Thicker line) are shown in Fig. 7.4. The colors are
changing with time from cold to warm (blue to red) for both lines. It can be observed that

the estimated trajectory is relatively near the reference.

The localization errors for both algorithms are shown in Fig. 7.5. It can be observed that
the FB-RDEM slightly outperforms the RDEM in this case. The RMSE averaged over the
trajectory for FB-RDEM is 0.20 m and for RDEM 0.23 m.

The second recording involved two concurrent speakers standing for 2 sec and then walk-
ing on parallel straight lines, 1.75 m long for 21 sec. The averaged localization errors for
both algorithms are shown in Fig. 7.6. It can be observed that the FB-RDEM significantly
outperforms the RDEM. The RMSE for FB-RDEM is 0.48 m and for RDEM 0.83 m. The
additional speaker degrades the localization results of both algorithms for two main reasons.
First, a speaker may become more dominant than the other. Second, each speaker produces

reverberation, which may reduce the localization accuracy of the other source as well.
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Figure 7.4: Tracking trajectory for one speaker: Ground truth and estimation result.
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Figure 7.6: Tracking error for two speakers.



152 CHAPTER 7. DISTRIBUTED TRACKING

7.1.5 Conclusions

The FB-RDEM algorithm was developed for localization of multiple concurrent speakers in
reverberant environments under the non-Bayesian assumptions for online applications. A
backward RDEM is suggested with the same structure as the forward version. The new
algorithm is a combination of the forward RDEM and the backward RDEM.

The network topology used here is a bi-directional tree, which enables efficient implemen-
tation of the distributed algorithm.

A short latency has been utilized to enable the new concept and improve the localization
results of the RDEM. We demonstrated the advantage of the proposed algorithm by both

simulations and real recordings.

7.2 'Tracking using moving microphone arrays

We propose a novel approach that combines the EM algorithm within the Bayesian frame-
work, for mutually improved performance. We show that the particle filter can be used to
estimate and propagate an adaptive grid of source positions. The particle positions are used
within the EM algorithm to estimate and maximize the likelihood of reverberant data, which
is subsequently used in the particle filter to assign weights to the particles. Room simulations
for realistic conditions demonstrate high accuracy in source tracking using a single moving

pair of microphones.

7.2.1 System model

7.2.1.1 Source motion model

A

T
The state, s(t) = [m(t) y(t), z(t),y(t)| , of a source at time step ¢, and located at position
(x(t),y(t)) with velocity (&(t),y(t)), can be modeled over time using a Langevin model [233],

ie.,
s(t) =F(t)s(t — 1) + u(t), wu(t) ~ N (0451, Q(1)) . (7.31)
The dynamics, F(t), and process noise covariance, Q(t), are defined as:

12 aAtIQ

0252 aly

and Qt) = (7.32)

F(t) = [

bQA 12 02><2
O2><2 b I2
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where A, is the time step, a = e #2¢ and b £ /1 — a2. The parameters 3 and ¥ are the
rate constant and the steady-state velocity, respectively.

Therefore, the transition density of the source states, p (s(t)| s(t — 1)), is given by prob-

ability transformation of (7.31) as:
p(s(t)] st — 1)) = N (s(t) | F®)s(t — 1), Q1) (7.33)

7.2.1.2 Robot motion model

The microphone array used here consists of one pair with Cartesian positions, p,, (t) £

T

[a:m(t), ym(t)} for m = 1,2 and with an inter-sensor distance of 0.5 m. The microphone pair
moves at constant speed along a straight line within the room. In this section, the positions of
the microphones are assumed known. For unknown robot trajectory, the source localization

approach proposed here can be integrated in the acoustic SLAM from [189, 190, 191].

7.2.1.3 Signal model

The STFET of the clean speech signal emitted by a single source at time ¢ and frequency &
is given by y(t, k). The source signal is convolved with the acoustic impulse response (AIR)
of the reverberant room, such that the STFT, z,(t, k), at each of the two microphones is

expressed as:
Zm(t, k) = hp(t, k) y(t, k), (7.34)

where h,,(t, k) is the ATFEF between the source and microphone m € 1,2 at time ¢ and
frequency k.
The ATFE can be separated into the RDTF, A& (t,k), and the transfer function due to

early reflections and late reverberation, h%), such that (7.34) is equivalent to,
Zm(t k) = R (8, k) y(t k) + n(t, k), (7.35)

where the non-direct component, n,,(t, k), captures the effects of early reflections and late

reverberation, i.e.,

(8, k) £ ) y(t k). (7.36)
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Furthermore, hgff)(t,k) in (7.35) denotes the RDTF between sensor m and the source,

modeled as a function of the source angle, ¥,,(t), relative to the array of microphones via the
far-field plane-wave approximation [234]:

2mykd U (2
hgff)(t,k:)zexp{ i [?;OS m()};
sC

(7.37)
where c is the speed of sound, K is the number of frequency bins, T} is the sampling period,

and d,, is the distance between microphone m and the reference microphone.

T
The microphone signals, z(t, k) = [zl (t, k), zo(t, k:)] , can be synonymously expressed in
vector form as:

z(t, k) = KDt k) y(t, k) +n(t k), (7.38)

D (g ) 2 [ @ 11" with noi 5 !
where h'"(t, k) = [hl (t,k),hy” (t, k)| with noise term n(t, k) = [nl(t, k),na(t, k)

Assuming n(t, k) is white Gaussian, the likelihood of the reverberant signals in (7.38) is
given by:

p(z(t, k)| s(t)) = N (2(t, k) | Oprxr, ®(L,K)),

(7.39)
where N¢ denotes the complex Gaussian density, and 0y, is the M x 1 zero vector.
The covariance in (7.39) is given by the PSD, ®(t, k):
®(t, k) = KDt k)[R, k)T b, (t, k) + ®,.(t, k), (7.40)

where the direct-path PSD is denoted as ¢,(t, k)
E [n(t, k) n(t,k)"] is the reverberation PSD matrix.

E[|y(t,k)|?], and ®.(t,k) =

This reverberation PSD can be modeled in terms of the spatial incoherence matrix, I'(¢, k),
and reverberation level, ¢r(t, k), as

®,(t,k) = T(t, k) or(t, k). (7.41)

Assuming reverberation can be modeled as a spatially homogeneous, spherically isotropic

sound field [207], element (i, 7) for each {i,j} € {1,2} of the matrix I'(¢, k) can be modeled
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as:

. 27Tk3di,‘ . . .
Lt k)= smc( KTSCJ> +ed(i—7), {i,j} =1,2 (7.42)

where € is the diagonal loading factor, and d; ; is the Euclidean distance between microphone

¢ and j.

7.2.2 Methodology

7.2.2.1 Sequential importance sampling

The MAP estimate of the source position is obtained from the posterior p.d.f., p (s(t) | Z;),
via:
~MAP
57 (t) = argmax p (8(t) | Ziy, ¢y(t, k), or(t, k), (7.43)
S(t)

T T
where Z;; = [ZlT, e ZtT] with Z; = [z(t, nr ozt K)T

The posterior density is given via Bayes’s theorem as:

_ p(Z] 0)p(s()] st~ 1))
(2] 60 p(s(1)] st — 1)) ds(t)’

p(s(t)| Ze, dy(t, k), dr(t, k) (7.44)
T
where 6, = [ST(t), oy(t, k), or(t, k)] , the likelihood is denoted as p(Z:| 6:) and
p(s(t)| s(t —1)) is the prior.
However, due to the denominator in (7.44), the posterior p.d.f. is analytically intractable.

Nevertheless, the posterior p.d.f. can be approximated by sampling from a proposal density,

T <3(t) | 89t —1), Zt>, that includes the support of p (s(t) | Z1.).

Hence:
J
p (S(t) ‘ Ly, ¢y(t7 k)> ¢R(t7 k)) ~ Zl ?I)(])(t) (SS(J')(t)(S(t))? (745)
j:
where @) (t) & wl(t)/ Z w9 (t) are the normalized importance weights, and the parti-

cles, 8Y)(t), are drawn from:

59() ~ 1 (s(t) |59 — 1), zt) . (7.46)
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The unnormalized importance weights, w)(t), are given by [235]:

Z:| 0£J’)> » (é(j)(t) ‘ é(j)(t _ 1))

ol
wD () = wd (¢ — 1) - <§(]~>(t>‘ {0 —1).2,)

, (7.47)

G) & [0 T
where 0, = [é(”(t),/\/l} :

Using prior importance sampling from (7.33), i.e.,
w(s()]39(t=1),2.) = p (s(6)] 89t~ 1)), (7.48)
the unnormalized importance weights, w')(t) are given by [235]:

w (1) = wD(t — 1) p (zt | egﬂ) . (7.49)

Assuming i.i.d. frequency bins, the likelihood of the reverberant measurements corre-

sponding to particle, §9)(t), can be obtained from (7.39) as:

K

p(2167) =TIp(2k)16). (7.50)

k=1

However, the direct-path and reverberant PSDs, ¢,(t,k) and ¢g(t, k) are required in
order to evaluate the PSD in (7.40). As ¢,(t,k) and ¢g(t, k) are unknown in practice, the
likelihood in (7.50) and hence the particle weights in (7.49) cannot be evaluated directly from
the particles, {é(j)(t)}jzl.

Nevertheless, considering the cloud of particles as an adaptive grid of source position
hypotheses, the ML framework can be used to estimate p (Z; | 8;) for the importance weights
in (7.49).

7.2.2.2 The expectation-maximization algorithm

As the likelihood, p (Z; | 0;), is generally high-dimensional and multi-modal, it is often dif-
ficult to maximize in practice. Rather than maximizing the likelihood directly, the EM

algorithm in [196] maximizes the joint density of the observed data and a set of latent,
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unobserved and discrete variables, X;:

p(Zt,th Ot)

p(Zt|0t): p(Xt|0t) 7

(7.51)

T
with X, £ [x(t, 1,9),...,2(t, K,9)| . The hidden, z(¢,k, ) is an i.i.d. indicator that (¢, k)
is solely associated with a source in the direction of ¥ = ~(t) — tan™! (x,.(t)/y,(t)), where

(x.(t),y-(t)) is the source position relative to the sensor with orientation ~(t).

Moreover, the joint posterior, p (Z;, X;| 6;), can be expressed using (7.39) as [196]:

p(Z, X | 6,) = [[> wlt, b, 0;) N© (z(t, k) | 001, ®9(2, k)) . (7.52)

k j=1

In [196] the indicator is evaluated over a predetermined, discrete grid of source directions
n [0,27]. This section proposes to use instead the directions of the particles, denoted by

{0;}/_,, as an adaptive grid of P = .J source directions.

The log-likelihood corresponding to (7.51) is given by:
Inp(Z;| 6;) =Inp(Z, X, | 6;) —Inp (X, | 6,), (7.53)

where p (Z;, X, | 0;) is the joint p.d.f. of the complete data and p (X; | ;) is marginal density

of the indicator.

The p.d.f. of the complete data can be written as [47]:

Inp(Z, X, | 6;) = Q(et,ew—”) (7.54)
- Zp( (t.k,9;)| Z., 6" )mp (x(t, k,0,) | zt,egf‘”).

The Q function is defined:

Q(6,, 6! Zp( tk,0;) | Ze, 05 ) Inp(Ze,x(t,k, 0;) | 0,). (7.55)

The EM algorithm therefore iteratively estimates the maximum likelihood in a two-stage
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process. Using (7.52), the E-step [196] evaluates:

V(L k,G) 2B [w(t b, 05) | 2(t k), 697
DN (2t k) | Ognr, ®;(L K
= ij (= )‘ 2 (t.%) p(t, k, 7(p))
;1 %(fil)/\/c (2(t, k) | Ogx1, @i (t, k) (7.56)
W)V (600 R); (7)), o)

5 Gl A (000 k) B4 (p)). )

5 B {aft, b r(p)lott, ;8¢

where: ®;(t,k) = R (t, k) [R(t, )| 65, (t, k) + T(t, k) dr;(t, k). 1Y) is the probability to

have a source in the j direction.

In the M-step, p(Z;, z(t,k,9;)| 0;) is maximized. According to (7.55), this maximiza-
tion is equivalent to separately maximizing In; and the log-likelihood. By constrained

maximization:

K

Z Dt k, 7). (7.57)

k:

Furthermore, maximization of the log-likelihood reduces to [102],
Orj(t, k) = 2" (t, k) [Io — by hi (t, k) | D7 (t, k) z(t, k) (7.58a)
Gs;(t, k) = bl [z(t, k) 2" (t, k) — ¢r;(t, k) T(t, k)] by, (7.58b)
where b; is the minimum variance distortion-less response-BF in the direction 9;, i.e

b; = Hrl(t’_]?hj(t’k> . (7.59)
R (t, k)TN (t, k) hy(t, k)

Therefore, instead of using a deterministic grid of source positions, the sampled posi-
tions within the particle filter are used to maximize the source directions in (7.56)-(7.58).

Simultaneously, the probabilities, w](-L), are used to weight the particles in lieu of (7.49):

w?(t) = wD(t — 1) NC (2(t, k) | 001, ®;(t,F)) . (7.60)
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7.2.3 Results

The trajectory of a moving pair of microphones is simulated over 10 sec along a straight
line in a 6 x 6 x 2.5 m® room with the initial and final position of the origin of the pair at
(1.5,1,1.5) m and (5,2,1.5) m respectively. The two microphones are offset by 0.15 m in
x-direction to the left and right of the origin respectively. The trajectory of a moving source
is simulated using (7.31) with 8 = 2, v = 1 m/sec. Using the RIR generator in [210] the RIR
for each source-sensor geometry (that changes with time) is simulated for Tgy = 500 msec at
sampling frequency f; = 8 kHz. The RIR is updated on a frame basis assuming the movement
within each frame is small enough. The resulting RIRs are convolved with a 10 sec anechoic
speech signal from a female speaker constructed from the TIMIT database. The STFT of
the signal is evaluated using a rectangular window for each microphone for a frame length of
50 msec. The proposed approach is evaluated for A; = 0.375 sec using 1000 particles. The
initial particles are drawn from a uniform distribution with a minimum distance of 1.5 m to
each of the walls and at least 1 m from the microphone origin.

Figure 7.7 shows the distribution of particles at four time steps.

For each time step, the point estimate of the source position is extracted from the particles
as the peak of the weighted kernel density estimate (KDE). The KDE is shown in Figure 7.7
as the contour plot, highlighting concentrations of particles with high weight. It can be seen
that the peak of the KDE converges to the true source angle. Triangulation of the source
position is highly dependent on the source-sensor geometry, resulting in estimation errors of
under 0.4 m at ¢t = 3.05,4.925 sec, and an average position error across all time steps of
0.805 m. The main reason for the estimation error is the unmeasured source-sensor distance.
The scenario corresponds to source-sensor distances between [0.688,4.464] m. However, the
source position is triangulated from a pair of microphones with only 0.3 m inter-microphone
distance and relatively small displacement of approximately 0.15 m between time steps.
Nevertheless, high accuracy is achieved in the estimated source angle, with an average of

0.319 deg accuracy.

7.2.4 Conclusion

We proposed a novel approach to sound source tracking in reverberant environments using a
single moving pair of microphones. A particle filter is used to propagate hypotheses of source

positions across time. At each time step, the EM algorithm uses the particles to estimate
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Figure 7.7: Distribution of particles across time.

and maximize the likelihood of reverberant measurements. The resulting probabilities are
used in the particle filters as importance weights. Results for 500 msec reverberation time
using two microphones separated by 0.3 m demonstrated estimation accuracy of 0.805 m in

position and 0.319 deg in the source direction of arrival.



Chapter 8

Summary and future research

directions

This chapter summarizes shortly the main achievements till now and then lists all the future

research directions that might be taken from now on.

8.1 Summary

Technology advances in hardware and communication have made the vision of WASN feasible
and within grasp. Sensor networks spread over vast environments hold potential for superior
performance to classical condensed microphone arrays. WASNSs raise several new challenges.
This dissertation addressed some of the challenges and proposed possible solutions. The

contributions of this dissertation are listed below:

1. Distributed localization: new set of hidden variables for EM and REM enabled de-
velopment of new algorithms that can be implemented without any central point and
surprisingly have better convergence properties: they are less dependent on initial con-
ditions and they converge much faster. The recursive version of one of those algorithms
can be applied for a robot audition (dynamic) case. A moving pair of microphones was

used for localization utilizing the movement for spatial diversity.

2. Reverberation mitigation: Localization based on direct path in a room is a great chal-
lenge, especially for multiple concurrent speakers. New techniques were developed to

reduce the influence of the early and late reflections from the walls.
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3. Separation: As sometimes happen with the EM algorithm, we discovered that the

hidden variables we chose for localization have their own physical meaning. They
define the spectral activities of each speaker. We have found out that after localization
source separation can be achieved if the hidden variables are applied as spectral masks
to any of the microphones in the room. The global localization process enabled local

estimation of spectral masks and hence local source separation.

Joint calibration and localization: A major challenge for ad hoc networks that localize
sources is to calibrate the positions of the arrays (or nodes) of the network. A novel joint
calibration and localization algorithm suitable for noisy environment has been derived
using the EM algorithm. One of the nodes is used as an anchor node. The calibration,
i.e. the nodes positions as well as the speakers localization are applied relatively to
the position of this anchor node. A new method has been presented. To overcome the
initialization challenge of the batch EM, an incremental process has been suggested
that incrementally adds the nodes, instead of trying to solve the entire problem from
the beginning of the EM algorithm. The new process, called the LACES algorithm,

was studied using both a simulated environment and real recordings.

. Dynamic scenarios: Tracking moving speakers has been developed based on our local-

ization algorithms. For static arrays we suggested a new REM algorithm, which uses
future samples to fill gaps of the trajectories that are caused by short silent time slots.
A special case we dealt with is tracking speakers with moving arrays. For this chal-
lenge an algorithm that combines Bayesian and non-Bayesian methodologies has been

developed.

8.2 Future research directions

Future research directions that can be done are described briefly in this section. They are

closely related to the algorithms presented above.

8.2.1 Variance estimation

An important parameter in every MoG is the associated variance. In our case, variance might

vary due to many parameters like the directivity of the sources, movements of the sensors or

certain channel effects.
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Until now, we used a fixed value for the variance. The variance might depend on the node

index, on frequency, or on another feature of the measurements.

In case of noisy or remote nodes with respect to a certain source, it might be better to

discard some of the nodes. This can be done by utilizing the variance estimation.

Besides its usage for localization or tracking improvement, the variance might be useful
for several applications. An interesting feature of the acoustic sources is directivity. Small
variance in a node indicates that the source is either close or pointing towards this node. It is
interesting to explore whether we can utilize distributed sensing for directivity estimation of
the sources. Examples of acoustic sources with a significant directivity are ships in the sea,
some types of airplanes, etc. In those cases the directivity of the sources might be important
for a few reasons. The first reason is the knowledge of the directivity itself. Given the
directivity we can estimate not only the location of the object, but also its orientation. The
second reason is its influence on features like location estimation and BSS. Another usage of

directivity might be classification of sources.

8.2.2 Acoustic signatures

Besides location of the sources we are interested in some other features. By acoustic signature
we mean the spectral contents of a certain source. One application of the acoustic signatures
mentioned above is BSS. The hidden variables that allow acoustic signature estimation were
used for masking of the BSS algorithm. Another application might be source identification
or classification. The acoustic signature of sources has a distinguishable nature. A classical
military example is underwater acoustic signatures of ships that can be used for classification.
From the local hidden variables we can derive local signatures. Comparing those signatures
between different nodes could be also very informative in case of Doppler effect or any other

spatial measure.

8.2.3 Prior vs. posterior MoG

An important theoretical discussion that could be developed relates to our choice of prior
parameters for the MoG. We could have chosen the posterior instead. Such a comparison

could be discussed both from theoretical point of view and from the practical point of view.
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8.2.4 Combining supervised learning to the localization and BSS

algorithms

There are a few supervised algorithm that became very popular lately. For example deep
neural network (DNN). Applying those techniques to our models is an interesting research

direction that has not been dealt yet.

8.2.5 Improved BSS based on localization information

The BSS was given in chapter 5 as a proof of concept. In order to take it a few steps
forward a few activities are relevant. Firstly, the model should be more comprehensive and
support reverberation as mentioned in chapter 4 above. Secondly, additional scores that
are often used for BSS including signal to distortion ratio (SDR) and source to artifacts
ratio (STAR). Finally, the influence of inaccurate localization results on the separation

quality can be explored.
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