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Abstract

We present a novel upper bound on the Ergodic Rate Density (ERD) of ALOHA wireless ad-hoc

networks. Our analysis uses a proper model of the physical layer together with an abstraction of higher

communication layers. The novel bound is very general and supports various system models including

for example, beamforming, spatial multiplexing, different fading models and different power control

schemes. We also derive a closed form expression for the maximal gap between the novel bound and

a known lower bound on the ERD. This expression is simple to evaluate and only depends on the path

loss factor. For example, for a path loss factor of α = 3 the novel upper bound is proved to be at

most 31% higher than the lower bound (and hence also from the actual ERD). The usefulness and the

generality of the novel bound is demonstrated by applications in multiple-antenna schemes. In particular,

we study the optimization of the number of transmitted spatial streams in a MIMO network and derive

the scaling of the ERD as the number of antennas grows. The results are further demonstrated using

extensive simulations.

I. INTRODUCTION

Wireless Ad-hoc Networks (WANETs) offer simplicity and flexibility that make them suitable

for many practical applications. These networks rely on decentralized channel access protocols

(e.g., ALOHA [1] and Carrier Sense Multiple Access (CSMA) [2], [3]). Thus, WANETs can

provide reliable communication without the need for any infrastructure.

In recent years, the analysis of random networks has generated considerable insights into the

performance of WANETs. This type of analysis makes it possible to evaluate WANET perfor-

mance without considering specific user locations. The most popular model for the positions of

users in random WANETs is the homogeneous Poisson Point Process (PPP) [4]. In this model the

number of users in each finite area has a Poisson distribution, and their locations are uniformly

distributed over the area.
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For the analysis of random WANETs, we follow the approach that uses exact modeling of

the physical layer, together with a simplified abstraction of the other networking layers [4]–

[7]. In this approach, performance is typically evaluated using network Area Spectral Efficiency

(ASE), which is defined as the density of communicating pairs multiplied by their communication

rates. The Transmission Capacity (TC) metric [8] is defined as the maximum achievable ASE

given an outage constraint where all users use a fixed transmission rate. On the other hand,

the Ergodic Rate Density (ERD) metric considers the communication rate of each pair as the

mutual information between the transmitted signal and the received signal given the interferers’

activity. The ERD is higher than the TC, but requires a somewhat more complicated transmission

scheme, e.g., utilizing time diversity, frequency diversity, [9], or incremental-redundancy hybrid

automatic repeat request (IR-HARQ), [10]–[12].

In this work we consider the ERD of ALOHA WANETs [9], [13]. The study of the ERD in

WANETs has become somewhat simpler with the recent introduction of a general lower bound

[7] which is applicable to any pre/post processing, fading distribution and power allocation

scheme. The tightness of the bound was studied through simulations, and it was shown that the

bound gives a good description of the behavior of the true ERD. However, [7] did not present

an upper bound, and hence, the tightness of the bound was not evaluated analytically.

So far, the only upper bound on the ERD of ALOHA WANETs was presented by Stamatiou et

al. [9] for the case where the nodes are equipped with multiple antennas and utilize a frequency

hopping protocol. However, the model of Stamatiou et al. assumes constant transmission power

and an absence of information in the receivers on the realization of the interfering channels. Both

of these assumptions limit the applicability of the bound. The lack of channel state information

(CSI) at the receivers characterizes specific networks. However, performance without receiver

CSI is generally lower, [14], and the upper bound in Stamatiou et al. does not apply to more

general networks. Moreover, the assumption of constant transmission power does not allow the

study of power allocation schemes that may lead to higher performance.

In this work we generalize the bound presented in Stamatiou et al., and present a novel upper

bound on the ERD of ALOHA WANETs that is applicable to the more general system model,

presented in [7]. Thus, the novel bound is applicable to general power control schemes and

general distributions of fading channels. Comparing the novel upper bound to the known lower

bound of [7] enables us to present a closed form bound on the ratio between the lower bound
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and the novel upper bound. This expression provides a simple evaluation of the tightness of the

two bounds, and guarantees a maximum gap between the bounds. For example, for a path loss

factor in the range of 2.5 to 4, the ratio between the bounds is shown to be at most in the range

18% to 47% respectively.

The generality of the upper bound is further used to obtain closed form expressions for the

performance of WANETs utilizing Multiple-In-Multiple-Out (MIMO) antenna techniques.

So far, the performance of random MIMO WANETs have been studied mostly by the use of

the TC performance metric (see for example [5] for various antenna diversity techniques). As

stated above, in this work we focus on the ERD metric. In addition to its higher performance,

the ERD metric also results in bounds that are simpler than the equivalent bounds on the TC.

Furthermore, a typical TC framework includes an assumption of a small outage constraint [8],

whereas the maximum spectral efficiency is typically achieved with large outage probabilities.

The ERD upper bound presented here is valid for any user density and system parameters,

and hence provides a simple and efficient tool for network optimizations. In the case of spatial

multiplexing, the products of these optimizations are the optimum network density and the

optimum number of streams.

Several works have investigated the tradeoff between spatial multiplexing and beamforming

in MIMO WANETs. When the receivers perform interference cancellation of the undesired

transmissions the optimum number of streams was shown to be one [6]. On the other hand,

when the interference was considered as noise, spatial multiplexing was shown to have a potential

gain [15]. In particular, increasing the number of streams was shown to be effective when the

interference is limited (i.e., large path loss factor, large number of antennas or small density of

users). The closed form expressions of the novel upper bound show that the insights in [15]

are also valid for the ERD metric. Moreover, these expressions can be used to optimize the

ERD for any active user density. We also show that the scaling gain of eigen-beamforming as a

function of the number of transmit and receive antennas can be easily deduced from the bound

for optimized density WANET and Rayleigh fading.

The rest of this paper is organized as follows: Section II describes the system model. Section

III introduces the novel upper bound and an analytical evaluation of the tightness of the bound.

Section IV introduces two applications of the novel upper bound for WANETs utilizing multiple

antennas and Section V presents our concluding remarks.
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A note on notation: For a matrix A the notation A† denotes the conjugate transpose and for

a vector v the notation ‖v‖2 = v†v denotes its square Frobenius norm.

II. SYSTEM MODEL

We assume a decentralized wireless ad-hoc network utilizing a slotted ALOHA protocol (e.g.,

[4]). Some of the nodes have data that need to be transmitted to specific destinations. Assuming

the operation of a routing mechanism, each message is relayed to its destinations through multiple

hops. For simplicity we assume that the receiver of the next hop for each message is located at a

fixed distance, d, from the transmitter1. Nodes that have data to transmit can access the channel

at any time slot with probability p. For any given time slot, the active transmitter distribution is

modeled by a two dimensional PPP with a density of λ.

We assume that each node is equipped with N transmit antennas and M receive antennas.

The channel matrix from transmitter j to the receiver i is denoted by Hij ∈ (N × M) with i.i.d.

distributed entries. Each transmitter is assumed to perform spatial multiplexing of K streams

[16] with 1 ≤ K ≤ min (M,N).

The received signal at receiver i is given by:

ri =
∑

j

√
ρjX

−α
2

i,j Hijzj + ni (1)

where ρj is the transmission-power of the j-th transmitter, Xi,j is the distance between the j-

th transmitter and the i-th receiver respectively, zj is the transmitted signal from transmitter j

and ni is the thermal noise. The path-loss factor is denoted by α (and the analysis is limited to

α > 2, which is required to bound the received energy). We assume that the network is operating

at the interference limited regime, and therefore, in the remainder of the analysis we neglect

the contribution of the thermal noise (setting ni = 0). Note that in this case normalizing the

transmission power by a constant will not affect the final result.

We assume that the i-th transmitter has perfect channel knowledge of Hii, the channel matrix

to the desired receiver, but no knowledge of any other channel matrix in the network. The

Singular Value Decomposition (SVD) of the desired channel is given by Hii = UiDiW
†
i where

Ui and Wi are unitary matrices, and Di = diag
(
[γi,1, ..., γi,min{M,N}]

)
is a diagonal matrix with

1The bound can be trivially extended to any desired distribution of the distance to the desired transmitter.
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the singular values of Hii on its diagonal. Without loss of generality, we will assume throughout

that the singular values are ordered so that γi,1 ≥ γi,2 ≥ . . . ≥ γi,min{M,N}. The optimal precoding

vector of the k-th stream at the i-th transmitter is given by the k-th column of Wi, denoted by

wi,k. The precoded signal of the i-th transmitter is therefore given by:

zi =
K∑

k=1

wi,kzi,k (2)

where zi,k denotes the data symbol of the k-th data stream for the i-th pair.

The receiver optimal decoding vector for the k-th stream is given by the k-th row of U†
i ,

denoted by u†
i,k, and hence the i-th receiver post-processed signal for the k-th stream is given

by:

r̃i,k = u†
i,kri. (3)

Using the shift invariance property, [17], we analyze the performance of the network using a

probe receiver. Without loss of generality, we assume that the probe receiver is located at the

origin and for notational simplicity we drop the probe receiver index.

The k-th stream of the desired user is received at the probe receiver with a power of:

Sk = ρ0d
−α
∥
∥
∥u†

kH0W0

∥
∥
∥

2

= ρ0d
−ανk. (4)

Without loss of generality we assume that d = 1.

The interference power contributed by transmitter j for the detection of the k-th spatial stream

is given by:

Tj,k =
∥
∥
∥
√

ρjX
−α

2
j u†

kHjWj

∥
∥
∥

2

= ρjX
−α
j ηj,k (5)

where the second line used the definition ηj,k ,
∥
∥
∥ukHjW

†
j

∥
∥
∥

2

. As we assume that all channel

matrices are statistically independent, the fading variables ηj,k are statistically independent, and

also statistically independent of all distance and transmission-power variables. Moreover, all

fading variables that describe the k-th stream, ηj,k, have the same distribution.

The power of the aggregate interference, measured at the probe receiver in the k-th stream

detector, is given by:

Ik =
∑

j

Tj,k =
∑

j

ρjX
−α
j ηj,k. (6)

April 6, 2014 DRAFT



6

The ergodic rate density (ERD) of the k-th spatial-stream of a network with an active user

density of λ is given by [7]:

Rk (λ) = λ ∙ E

[

log2

(

1 +
Sk

Ik

)]

(7)

In order to generalize our analysis we define the generic ERD:

RfV ,fY ,fρ
(λ) = λ ∙ E

[

log2

(

1 +
ρ0Y∑

j ρjX
−α
j Vj

)]

(8)

where we use the notations V and ρ when we only need an arbitrary representative of the

corresponding Random Variable (R.V.) family. Thus, fV and fY are the Probability Distribution

Functions (PDFs) of the R.V.s Vj and Y respectively, and fρ is the PDF of the R.V.s ρ0 and ρj .

Using the generic ERD definition of (8) we can now write the expression for the ERD of the

probe pair, utilizing K spatial streams as:

R (λ) =
K∑

k=1

Rk (λ) =
K∑

k=1

Rfη ,fνk
,fρ

(λ) . (9)

Note that in the following we sometimes drop the subscript notations fV , fY , fρ when the relevant

distributions are easily understood from the context.

A useful lower bound on the ERD, which is helpful for the analysis herein, was originally

presented in [7]. This lower bound on the ERD is given by:

RfV ,fY ,fρ
(λ) ≥ RLB,fV ,fY ,fρ (λ) (10)

where

RLB,fV ,fY ,fρ (λ) = λe
2
α
−1 ∙ E

[

log2

(

1 +
ρ ∙ Y

Cα ∙ λ
α
2

)]

(11)

and

Cα,fV ,fρ ,
2

α(α − 2)
α
2

(
παE

[
V

2
α

]
E
[
ρ

2
α

])α
2
. (12)

III. PERFORMANCE ANALYSIS

In the following section we present two theorems. The first theorem formulates a novel and

general upper bound on the ERD. The second theorem provides information on the tightness of

the bound, by bounding the ratio between the lower bound of [7] and the novel upper bound.

April 6, 2014 DRAFT



7

Theorem 1: An upper bound on the ERD of a network with an active user density of λ is:

RfV ,fY ,fρ
(λ) ≤ RUB,fV ,fY ,fρ (λ) (13)

where

RUB,fV ,fY ,fρ (λ) = λ ∙ E

[

log2

(

1 +
ρ ∙ Y

Λα ∙ λ
α
2

)]

(14)

Λα,fV ,fρ ,

(
πE
[
V

2
α

]
E
[
ρ

2
α

]
Γ
(
1 − 2

α

))α
2

Γ
(
1 + α

2

) . (15)

and Γ(∙) represents the Gamma function.

Proof of Theorem 1: See Appendix A.

Similar to the lower bound in [7], the upper bound of Theorem 1 is very general, and can

be used to support various schemes such as transmit and/or receive beamforming, threshold

scheduling and inverse channel. These schemes can be supported by using the corresponding

distributions of the fading variable (U , V ) and power control variable (ρ) as was shown in [7].

Note that both the upper and lower bounds, (14) and (11), have a similar formulation. We

next define:

Ωα , C
− 2

α
α,fV ,fρ

Λ
2
α
α,fV ,fρ

(16)

and scale the density of the upper bound by Ω−1
α compared to the density of the lower bound.

Hence, the relation between the upper bound and the lower bound can be expressed by:

RLB,fV ,fY ,fρ (λ) = e
2
α
−1 ∙ Ωα ∙ RUB,fV ,fY ,fρ

(
λ ∙ Ω−1

α

)
. (17)

Note that unlike Cα,fV ,fρ and Λα,fV ,fρ , the relation parameter, Ωα, is independent of the variables

V and ρ and depends solely on the path loss factor. Using (12), (15) and the Gamma function

property Z ∙ Γ(Z) = Γ(1 + Z) results in:

Ωα =

(

1 −
2

α

)

Γ

(

1 −
2

α

)(
2

α
Γ
(
1 +

α

2

))− 2
α

= Γ

(

2 −
2

α

)(
Γ
(α

2

))− 2
α

. (18)

In the following we will characterize the gap between the lower bound, (11), and the upper

bound, (14). This gap characterization, given in Theorem 2, holds only up to the first local

maximum of the upper bound. Thus, we need to properly define this local maximum.
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We first note that the upper bound, (14), is a differentiable function of λ that satisfies RUB (λ) =

0 both for λ = 0 and for λ → ∞. It is also strictly positive for any λ > 0. Thus it has at least

one local maximum. Define the active user density that achieves the first local maximum of the

upper bound to be:

λUB
? , min

{

λ :
∂RUB (λ)

∂λ
= 0,

∂2RUB (λ)

∂λ2
< 0

}

. (19)

Recalling that RUB(0) = 0 and RUB(λ) > 0 for any λ > 0, there cannot be any local minimum

of RUB (λ) in the range 0 < λ < λUB
? . The lower bound function exhibits the same behavior,

and we also define:

λLB
? , min

{

λ :
∂RLB (λ)

∂λ
= 0,

∂2RLB (λ)

∂λ2
< 0

}

. (20)

Using (17) leads to the simple relation:

λLB
? = Ωα ∙ λUB

? . (21)

In most practical networks the upper and lower bounds have a single extremum, and hence,

λUB
? and λLB

? represent the global optimum of these functions. For example, in the case of fixed

transmission power and no fading (i.e., Y = 1) the location of the global maxima of the upper

and lower bounds are given by [18]:

λUB
? =

(
Λα

(
eΞα − 1

))− 2
α

λLB
? =

(
Cα

(
eΞα − 1

))− 2
α (22)

respectively, where

Ξα ,
α

2
+W

(
−

α

2
e−

α
2

)
(23)

and W (∙) is the product-log function also known as the Lambert W function. It is easy to verify

that the curves of the bounds for other common distributions (such as Rayleigh and Rician fading)

also have a single extremum point2. However, for generality, in the following we characterize

the bound tightness in terms of its first local maximum.

From a network point of view, the first local maximum represents the highest density for

practical use [19]. Above this density, the network may experience instability, because any small

2Bounds on the ratio of two functions with a similar formation were presented in [14] for the specific case of Rayleigh fading

without the assumption of a single extremum.
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increase in the number of transmissions will cause the network throughput to decrease and

require additional retransmissions. Thus, we characterize the network for λ ≤ λLB
? .

Theorem 2: For an active user density of λ ≤ λLB
? , the ratio between the upper bound and

the ERD is bounded by:

RfV ,fY ,fρ
(λ)

RUB,fV ,fY ,fρ (λ)
≥

RLB,fV ,fY ,fρ (λ)

RUB,fV ,fY ,fρ (λ)
≥ e

2
α
−1 ∙ Ωα (24)

where Ωα is defined in (18).

Proof of Theorem 2: See Appendix B.

To demonstrate the tightness of the upper and lower bounds we present a comparison of the

derived analytical expressions and the actual ERD which is evaluated through simulations. The

ERD in the simulations was evaluated using a Monte-Carlo network simulator averaging 105

network realizations. The channels between each transmit and receive antenna are distributed as

Rayleigh fading.

Fig. 1 depicts the upper bound, (14), the ERD, (8), and the lower bound, (11), as a function

of the active user density, for single antennas, fixed transmission power and a path loss factor

of α = 3. As shown in the figure, both the novel upper bound and the lower bound give a good

characterization of the ERD (and for large user densities, the curve of the upper bound merges

with the curve of the ERD). As was noted above, the curves of the ERD and the bounds as a

function of user density have a single extremum point.

Fig. 2 depicts the maximum rate density for the upper bound, the ERD and the lower bound

as a function of α for single antennas and a fixed transmission power policy. The maximum

ERDs of the upper and lower bounds are given by RUB

(
λUB

?

)
and RLB

(
λLB

?

)
respectively and

the maximum ERD is given by maxλ R (λ). As can be seen, the upper bound is especially

tight for small values of the path loss factor. The ratio between the upper bound and the ERD

decreases with α and is approximately equal to 0.97 and 0.73 for path loss factors of 2.5 and 4

respectively. These ratios are better observed in Fig. 3 which depicts the ratios for the curves in

Fig. 2 in addition to the expression of the minimum ratio between the bounds (24). The upper

curve depicts the ratio between the ERD and the upper bound and the curve below it depicts

the ratio between the lower bound and the ERD. The two lower curves depict the ratio between

the upper and lower bounds and the analytic bound on this ratio (24). As can be observed, all

curves decrease with α and the actual ratio between the bounds is very close to its minimum
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(24). For the interesting area in which the path loss factor is within the range of 2.5 ≤ α ≤ 4

equation (24) indicates that the gap between the bounds is at most 18% to 47% (and exactly

31% for α = 3). Although for larger α the two bounds become further apart, the closed form

expression (24) is still informative since it gives a simple guarantee on the usefulness of the two

bounds.

IV. APPLICATIONS OF THE BOUND

In this section we present two applications of the upper bound utilizing multiple-antenna

techniques. We assume a rich scattering environment which results in a Rayleigh fading channel

between each transmit and receive antenna in the network. The channels are assumed to be

normalized and the channel matrix H distributes as a central complex Wishart matrix [16], [20]

with CN (0, 1) entries3.

A. Single Stream Beamforming

We next analyze the case of transmit beamforming with N transmit antennas and a single

receive antenna, i.e., M = 1. We also assume the use of a simple channel inversion power

control strategy (i.e., ρ(Y ) = Y −1).

The preprocessing of beamforming over N antennas results in a Chi-square desired channel

distribution, with 2N degrees of freedom, 2Y ∼ χ2
2N , which leads to:

E
[
ρ

2
α (Y )

]
= E

[
Y − 2

α

]
=

Γ
(
N − 2

α

)

Γ(N)
. (25)

This preprocessing does not change the interference channel statistics, V . In this case V = ηk

has a Chi-square distribution and hence, the expectation over V in (15) is:

E
[
V

2
α

]
= Γ

(

1 +
2

α

)

. (26)

Substituting (26) and (25) into Theorem 1 leads to:

RB
UB (λ) = λ ∙ log2

(

1 +
1

ΛB
α ∙ λ

α
2

)

(27)

3Recall that we assume to be working in the interference limited regime. Hence, the average transmission power has no impact

on network performance.
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where B stands for beamforming and

ΛB
α ,

(
πΓ
(
N − 2

α

)
Γ
(
1 − 2

α

)
Γ
(
1 + 2

α

))α
2

Γ
(
1 + α

2

)
(Γ(N))

α
2

. (28)

This upper bound has the same form as the lower bound on the ERD for the case of transmit

beamforming in [7], except for parameter ΛB
α . Thus, the closed form expression for optimal

user density can be easily adapted from the results in [7], and is given by:

λB
? = arg max

λ
RB

UB(λ) =
(
ΛB

α

(
eΞα−1

))− 2
α (29)

where Ξα is defined in (23). The optimum upper bound can be written as:

RB
UB

(
λB

?

)
=

λB
? ∙ Ξα

ln (2)
. (30)

The ergodic rate density for the case of transmitter beamforming and channel inversion power

control with various number of antennas is illustrated in Fig. 4. The figure depicts the upper

bound, (27), the ERD, and the lower bound, [7, eq. 30] as a function of the active user density

for M = 1, N = 1, 3, 9 antennas, and a path loss factor of α = 3. The analytical maximum rate

density of the upper bound (30) is 0.06, 0.27 and 0.65 whereas the measured maximum ERD

is 0.053, 0.24 and 0.57 for N = 1, 3, 9 respectively. In all three cases the ERD is at most 13%

below the upper bound which indicates the tightness of the upper bound and its usefulness for

optimal ERD evaluation.

B. Spatial Multiplexing

In this subsection we analyze the performance of WANETs that utilize spatial multiplexing.

We assume that each pair is equipped with an equal number of transmit and receive antennas;

i.e., N = M and that each pair delivers its information using a constant number of spatial

streams, denoted by K, where 1 ≤ K ≤ M . We further assume that each pair delivers its data

over the first (largest) K singular values.

For a transmission of K spatial streams the interference power contributed by each interferer

is distributed as a Chi-square with 2K degrees of freedom and a mean of K; i.e., 2V ∼ χ2
2K ,

which results in:

E
[
(ηk)

2
α

]
= E

[
V

2
α

]
=

Γ
(
K + 2

α

)

Γ (K)
. (31)
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Substituting (8) and (31) into (9) and using Theorem 1 results in the following upper bound for

the spatial multiplexing case,

RS
UB (λ,K) = λ ∙

K∑

k=1

E

[

log2

(

1 +
νk

ΛS,K
α ∙ λ

α
2

)]

(32)

where S stands for spatial multiplexing, and

ΛS,K
α ,

(
πΓ
(
K + 2

α

)
Γ
(
1 − 2

α

))α
2

Γ
(
1 + α

2

)
(Γ (K))

α
2

. (33)

Note that (33) can be further simplified by using Kershaw’s inequality, [21], [22]:

Γ
(
K + 2

α

)

Γ (K)
≥

(

K −
1

2
+

1

α

) 2
α

(34)

which is very tight for all values of α > 2 and K ≥ 1.

The number of streams, K, affects the upper bound in three different ways in (34). The sum

outside the expectation increases the ERD as the number of streams increases. The second effect

is on the distribution of the k-th stream power, which is obviously less preferable than the power

of previous streams (due to the assumption that the singular values are ordered in decreasing

order). Thus, the expected rate of the k-th stream is lower than the rate of previous streams.

These two effects are similar in nature to the behavior of MIMO in the single user scenario.

But in the WANET case, there is also a third effect, through the effect of the number of streams

on the interference. This effect is seen through the ΛS,K
α term in the denominator of (32) as K

increases (considering (34), for large K, ΛS,K
α is approximately linear with K). This increase

in the interference term has a negative impact on all streams (and not only on the last stream

added). Thus, the use of a large number of spatial streams is less favorable than in the case of

single user MIMO, even if the transmission power is high. Hence, finding the optimal number

of streams in (32) is not trivial.

It is also interesting to compare the increase in the number of spatial streams per user to the

increase in the user density by the same ratio in (32). In both approaches the overall number

of streams in the network remain constant. However increasing K will approximately increase

the interference linearly with K whereas increasing the active user density will increase the

interference by a factor of λ
α
2 . This can be explained by two differences between the two

approaches. The first difference is that the receiver achieves complete interference cancellation

between the streams of the desired user. Thus, increasing K has a smaller effect on the received
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interference than the equivalent increase in the number of nodes. Furthermore, increasing the

node density also increases the probability of having a nearby interferer whereas increasing the

number of streams only affects the distribution of the power contributed by each interferer. Thus,

in terms of interference, it is always more beneficial to increase K than to increase the node

density by the same ratio.

On the other hand, if the interference term, ΛS,K
α ∙λ

α
2 , is very large, the upper bound (32) can

be approximated by:

RS
UB (λ,K)'

λ1−α
2 Γ
(
1 + α

2

)

(
πΓ
(
1 − 2

α

))α
2 ln(2)

∙
1

K− 1
2
+ 1

α

K∑

k=1

E [νk] (35)

where we used log (1 + x) ' x and (34). Recalling that α > 2, the expression in (35) is clearly

optimized by the eigen-beamforming scheme; i.e., K = 1.

Optimizing the network parameters of (32) requires a two dimensional optimization. This

optimization can be performed in two steps. The first step optimizes the density of active users

for each number of streams, K, i.e.:

RS
UB

(
λS,K

? , K
)

= max
λ

RS
UB(λ,K), K ∈ {1, 2, . . . ,M} . (36)

The second step optimizes the number of streams:

RS
UB

(
λS

?, K
S
?

)
= max

K∈{1,2,...,M}
RS

UB

(
λS,K

? , K
)
. (37)

Fig. 5 depicts the upper bound (32) as a function of the active user density for N = M = 6,

α = 4, Rayleigh fading channels, and K = 1, 2, 3, 4, 5, 6. The figure shows that for a low density

of active users (λ < 0.03) the optimal number of streams is equal to the maximum available;

i.e., K = 6. When the density of nodes grows, the optimal number of streams decreases and for

a high density of active users (λ > 0.75) eigen-beamforming (K = 1) is the optimal selection.

Note also that the ERD has a single maximum for each selection of K. Further insights on the

curves’ maxima can be derived from Fig. 6.

Fig. 6 depicts the maximum rate density of the upper bound (presented in (36)), the ERD and

the rate density of the lower bound (integration of (11) and (9)) as a function of the optimal

active user density for N = M = 6, and α = 4. The figure only shows the point that represents

the maximum of each curve, for K = 1, 2, 3, 4, 5, 6. For each K the location of the point is

determined according to the maximum ERD achieved by this number of streams (y-axis) and
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the active user density that achieves this maximum (x-axis). Note that the optimal user density,

λS,K
? , is a decreasing function of the number of spatial streams, K.

As can be seen, the curve of both bounds exhibits the same behavior as the actual ERD. But

the upper bound gives better predictions for the optimal user density for any given number of

streams. In addition, all curves are maximized for KS
? = 3. Thus, the optimum active user density

(defined by (37)) is λS
? = 0.25, the maximal upper bound on the ERD is RS

UB

(
λS

?, K
S
?

)
= 1.66

bit/sec/m2 and the maximal ERD is 1.22 bit/sec/m2. Note that the ratio between the maximum

of the lower bound and the maximum of the upper bound is exactly 54% as was anticipated by

Theorem 2.

Unlike the case of single user MIMO, the additional gain from spatial multiplexing in density-

optimized WANETs seems to be quite limited compared to the eigen-beamforming scheme

(K = 1). Capacity analysis in single user MIMO shows that the spectral efficiency increases

monotonically with the number of spatial streams, and that the capacity gain approaches M for

high enough SNR. In contrast, in the WANET MIMO case, the ERD is not monotonic with the

number of spatial streams. In the example in Fig. 6, plotted for the high SNR regime and density-

optimized WANETs, the gain from the selection of the optimal number of streams compared to

the eigen-beamforming scheme is only 20%. It is important to emphasize that the limited gain

of spatial multiplexing does not mean that the gain of multiple antennas is limited. Rather, it

shows that in a density optimized WANET, even a single stream WANET gains significantly

from the use of multiple antennas.

The upper bound can also be used to analyze the asymptotic behavior of MIMO WANETs as

the number of antennas grows, i.e., M → ∞. We first analyze the density optimized eigen-

beamforming case. For Rayleigh fading, the normalized largest singular value converges to

lim
M→∞

ν1/M = 4M , [23]. Substituting into (32) and using the change of variables λ′ = λM− 2
α

results in

lim
M→∞

RS
UB (λ′, 1)

M
2
α

= λ′ ∙ E

[

log2

(

1 +
4

ΛS,1
α ∙ (λ′)

α
2

)]

. (38)

Thus, the density optimized ERD can be approximated as

RS
UB

(
λS

?, 1
)
' M

2
α ∙ max

λ′
λ′∙ E

[

log2

(

1+
4

ΛS,1
α ∙ (λ′)

α
2

)]

, (39)
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and the ERD of density optimized WANET that transmits a single stream scales as M
2
α . This

matches the TC scaling derived for the case of eigen-beamforming in [5]. Note that [24] showed

a linear scaling of the SIR with the number of antennas. This linear scaling can be translated

into linear scaling of the ERD, but only under a strong interference assumption. This assumption

does not hold when the number of antennas is very large, and hence the actual scaling of the

ERD is only as M
2
α .

In order to analyze the case of multiple stream transmission we allow K to increase with

M , but keep the ratio between the number of streams and the number of antennas as constant,

denoted by β , K/M. Define the empirical Cumulative Density Function (CDF) of the normalized

stream power, F ν
M

(x) =
1

M

∞∑

i=k

1
( νi

M
< x

)
where 1(condition) is the indicator function which

equals 1 if the condition is satisfied and zero otherwise. For an asymptotic number of antennas

and Rayleigh fading, the empirical CDF converges, and the corresponding PDF is given by [25]:

lim
M→∞

f ν
M

(x) =
1

2π

√
4 − x

x
(40)

where 0 < x < 4. Defining ψ(β) , lim
M→∞

νK

M
leads to the relation:

1

2π

∫ 4

ψ(β)

√
4 − x

x
dx = β. (41)

Thus, for an asymptotic number of antennas the summation in the upper bound, (32), converges

to:

lim
M→∞

RS
UB

M
(λ,K) = lim

M→∞

λ

M

∫ 4

ψ(β)

log2

(

1 +
M ∙ x

ΛS,K
α ∙ λ

α
2

)

∙
(
M ∙ f ν

M
(x)
)
dx

=
λ

2π

∫ 4

ψ(β)

log2

(

1 +
x

Lαλ
α
2

)

∙

√
4 − x

x
dx (42)

where the second line substituted (40) and the definition:

Lα , lim
M→∞

M

ΛS,K
α

. (43)

Using (34) we have Lα =
Γ
(
1 + α

2

)
∙ β

(
πΓ
(
1 − 2

α

))α
2

. One can readily verify that the integral in the last

line of (42) exists and is bounded for any α > 2. Hence, the scaling law of the ERD for spatial
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multiplexing WANET is linear with the number of antennas, M , for any value of λ and β. As

the lower bound of (11) has the same structure as the analyzed upper bound, it also results in

the same scaling of the ERD with the number of antennas. Thus, the linear scaling that was

proved in (42) is the exact scaling of the ERD (and not only an upper bound).

The linear scaling of the ERD with the number of antennas is similar to the known scaling of

TC in MIMO WANETs [6], [26]. However, the linear TC scaling was derived for WANETs

that employed interference cancellation of neighboring transmissions, while our result only

requires spatial multiplexing. This difference is important, because cancellation of neighboring

transmission requires channel measurements of many neighbor transmissions, which is not

needed for spatial multiplexing.

To conclude the MIMO WANET example, we summarize as follows: when the number of

spatial streams decreases, the optimal density of active users increases. For a small path loss

factor (which results in high interference) eigen-beamforming is likely to be the optimal scheme;

for a general path loss factor, a two-dimensional optimization of both the density of active users

and the number of streams is essential to achieve the maximum ERD. Nevertheless, the gain from

the optimal spatial-multiplexing scheme compared to eigen-beamforming in density-optimized

WANETs is much smaller than the potential capacity gain of single user MIMO. For large

number of antennas, M , the ERD scales as M
2
α for eigen-beamforming, and as M when the

number of spatial streams is optimized.

V. CONCLUSION

We derived a novel upper bound on the ergodic rate density of random WANETs. The upper

bound is very general and can support various transmission/reception schemes and general fading

distributions.

The formula of the upper bound is shown to be similar to the formula of a recently published

lower bound. This similarity is utilized for the quantification of the maximum gap between the

bounds. The maximum gap was presented as a closed form expression which bounds the ratio

between the two bounds and is only a function of the path loss factor. This expression shows

that for all cases of practical interest, the ratio between the bounds is at most 50% (for example,

for a path loss factor of 3 the gap between the bounds is shown to be at most 31%).
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The usefulness and the simplicity of the bound was demonstrated by two applications: beam-

forming and spatial multiplexing. For the beamforming application we presented analytical

expressions for the optimal density of active users and the optimal ERD as a function of the

number of antennas. For the application of spatial-multiplexing we presented an upper bound

that depends on the number of antennas, the number of spatial streams and the density of active

users. We also proved that for large number of antennas, M , the ERD scales as M
2
α for eigen-

beamforming, and as M when the number of spatial streams is optimized.

APPENDIX A

PROOF OF THEOREM 1

Substituting (4) into (8) and using Jensen’s inequality results in:

RfV ,fY ,fρ
(λ)) ≤ λ ∙ E

[

log2

(

1 + E

[
1

I

]

∙ ρ ∙ Y

)]

. (44)

Denote the Probability Density Function (PDF) of the interference, I , by fI (I). Motivated by

the mathematical formulation in [9, proof of proposition 2], we use the relation between the

characteristic function of I and the expectation of its inverse:

E

[
1

I

]

=

∫ ∞

0

(
1

I

)

fI (I) dI

=

∫ ∞

0

(∫ ∞

0

e−sIds

)

fI (I) dI

=

∫ ∞

0

(∫ ∞

0

fI (I) e−sIdI

)

ds

=

∫ ∞

0

E
[
e−sI

]
ds

=

∫ ∞

0

Φ(s)ds (45)

where Φ(s) = E
[
e−sI

]
is the characteristic function of I . The PDF of the interference, fI (I),

has no known closed-form expression. However, its characteristic function is known and given

by (e.g., [27], [28]):

Φ(s) = exp

(

−λ

∫ ∞

0

E
[
1 − e−sV ρr−α

]
2πrdr

)

= exp

(

−πλs
2
α E
[
V

2
α

]
E
[
ρ

2
α

]
Γ

(

1 −
2

α

))

. (46)
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Substituting (46) into (45) results in:

E

[
1

I

]

=

∫ ∞

0

e
−πλE

[
V

2
α

]
E
[
ρ

2
α

]
Γ(1− 2

α)x
2
α
dx

= Γ
(
1 +

α

2

)(

πλE
[
V

2
α

]
E
[
ρ

2
α

]
Γ

(

1 −
2

α

))−α
2

=
1

Λαλ
α
2

(47)

where Λα is defined in (15). Substituting (47) into (44) concludes the proof. �

APPENDIX B

PROOF OF THEOREM 2

The left-hand side of the inequality in (24) is trivial from the definition of the lower bound.

The theorem considers the density range of:

λ ≤ λLB
? = λUB

? ∙ Ωα (48)

where (21) was used. For λ ≤ λUB
? the upper bound, RUB,fV ,fY ,fρ (λ), increases with λ. Thus,

using Ωα ≤ 1 (which is proved by Lemma 1 below) leads to:

RUB,fV ,fY ,fρ

(
λ ∙ Ω−1

α

)
≥ RUB,fV ,fY ,fρ (λ) ∀λ ≤ λLB

? . (49)

Substituting (49) into (17) proves the right-hand side of the inequality in (24) and concludes the

proof of the theorem. �

Lemma 1: For any α > 2, the value of Ωα, defined in (18), satisfies: Ωα ≤ 1.

Proof of Lemma 1: Starting from the inequality [29]:
(
Γ (x + 1)

)a

Γ (ax + 1)
≤ 1 , ∀x ∈ [0, 1], a ≥ 1 (50)

and substituting x = 1 −
2

α
and a =

α

2
leads to:

(
Γ
(
2 − 2

α

))α
2

Γ
(

α
2

) ≤ 1. (51)

Raising both sides of (51) to the power of 2/α and using Definition (18) concludes the proof of

the lemma.
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Fig. 1. Rate density as a function of active user density for α = 3 and Rayleigh fading channels.
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Fig. 2. Maximal rate density as a function of the path loss factor for Rayleigh fading channels.
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Fig. 3. The ratios between the ERD and the upper bound, the lower bound and the ERD, the lower bound and the upper bound

and the minimum bounds’ ratio expression (24) as a function of the path loss factor for Rayleigh fading channels.
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Fig. 4. Rate density as a function of the active user density for transmit beamforming with M = 1, N = 1, 3, 9, α = 3 and

Rayleigh fading channels.
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Fig. 5. The upper bound as a function of the active user density for MIMO 6 × 6, α = 4 and K = 1, 2, 3, 4, 5, 6 spatial

streams.
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Fig. 6. The maximum rate density of the upper bound, the ERD and the lower bound as a function of the optimal active user

density for MIMO 6 × 6, α = 4 and K = 1, 2, 3, 4, 5, 6 spatial streams.
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