An Extension of the Nemhauser & Trotter Theorem to Generalized Vertex Cover with Applications

Reuven Bar-Yehuda
Technion

Danny Hermelin
University of Haifa

Dror Rawitz
Tel Aviv University
Minimum Vertex Cover

Coffee Chain Problem:
- Place coffee house in every street segment
- Coffee houses are placed in street corners
- Locations have different costs
- Minimize costs
Coffee Chain Problem:

- Place coffee house in every street segment
- Coffee houses are placed in street corners
- Locations have different costs
- Minimize costs
Minimum Vertex Cover

Coffee Chain Problem:
- Place coffee house in every street segment
- Coffee houses are placed in street corners
- Locations have different costs
- Minimize costs

Vertex Cover:

Instance: Graph $G = (V, E)$, weights $w : V \rightarrow \mathbb{R}^+$
Solution: $C \subseteq V$ such that $\forall e \in E, \ e \cap C \neq \emptyset$
Objective: $\min \sum_{u \in C} w(u)$
Half Integrality of LP Formulation

\[
\begin{align*}
\text{min} & \quad \sum_u w(u)x(u) \\
\text{s.t.} & \quad x(v) + x(u) \geq 1 \quad \forall (v,u) \in E \\
& \quad x(v) \geq 0 \quad \forall v \in V
\end{align*}
\]
Half Integrality of LP Formulation

\[
\begin{align*}
\text{min} & \quad \sum_u w(v)x(v) \\
\text{s.t.} & \quad x(v) + x(u) \geq 1 \quad \forall (v, u) \in E \\
& \quad x(v) \geq 0 \quad \forall v \in V
\end{align*}
\]

Half Integrality:

- x is basic feasible $\Rightarrow x \in \{0, \frac{1}{2}, 1\}^n$
- \exists optimal solution $x^* \in \{0, \frac{1}{2}, 1\}^n$
Minimizing $\sum w(v)x(v)$ subject to $x(v) + x(u) \geq 1 \quad \forall (v, u) \in E$

Half Integrality:
- x is basic feasible $\Rightarrow x \in \{0, \frac{1}{2}, 1\}^n$
- \exists optimal solution $x^* \in \{0, \frac{1}{2}, 1\}^n$

Computing Half-Integral Optimal Solution:
Using algorithm for Vertex Cover in bipartite graphs

$V_1 = \{v : |\{v, v'\} \cap C| = 2\}$
$V_{1/2} = \{v : |\{v, v'\} \cap C| = 1\}$
$V_0 = \{v : |\{v, v'\} \cap C| = 0\}$
Partition of V:

- $V_1 = \{v : x(v) = 1\}$
- $V_{1/2} = \{v : x(v) = \frac{1}{2}\}$
- $V_0 = \{v : x(v) = 0\}$
Nemhauser & Trotter Theorem

Partition of V:

- $V_1 = \{ v : x(v) = 1 \}$
- $V_{1/2} = \{ v : x(v) = \frac{1}{2} \}$
- $V_0 = \{ v : x(v) = 0 \}$

Nemhauser & Trotter Theorem (1975):

(i) C is a vertex cover in $G[V_{1/2}] \Rightarrow w(C) \geq w(V_{1/2})/2$

(ii) C is α-approx for $G[V_{1/2}] \Rightarrow V_1 \cup C$ is α-approx for G
Nemhauser & Trotter Theorem

Partition of V:

- $V_1 = \{v : x(v) = 1\}$
- $V_{1/2} = \{v : x(v) = \frac{1}{2}\}$
- $V_0 = \{v : x(v) = 0\}$

Nemhauser & Trotter Theorem (1975):

(i) C is a vertex cover in $G[V_{1/2}] \Rightarrow w(C) \geq w(V_{1/2})/2$

(ii) C is α-approx for $G[V_{1/2}] \Rightarrow V_1 \cup C$ is α-approx for G

Corollaries:

- First 2-approximation algorithm for Vertex Cover
- We may assume that $\text{OPT} \geq \frac{w(V)}{2}$ when designing an approximation alg. for Vertex Cover
Corollary: We may assume that $\text{OPT} \geq \frac{w(V)}{2}$

Application:
\exists independent set I s.t. $w(I) \geq \varepsilon \cdot w(V)$

$\Rightarrow w(V \setminus I) \leq (1 - \varepsilon)w(V) \leq 2(1 - \varepsilon)\text{OPT}$
Corollary: We may assume that $\text{OPT} \geq \frac{w(V)}{2}$

Application:
\[\exists \text{ independent set } I \text{ s.t. } w(I) \geq \varepsilon \cdot w(V) \]
\[\Rightarrow w(V \setminus I) \leq (1 - \varepsilon)w(V) \leq 2(1 - \varepsilon)\text{OPT} \]

Example [Hochbaum 83]:
- Using a k-coloring of G: $\exists I, w(I) \geq \frac{w(V)}{k} \Rightarrow (2 - \frac{2}{k})$-approx
- G is planar: $\exists I, w(I) \geq \frac{w(V)}{4} \Rightarrow \frac{3}{2}$-approx
- G has bounded degree d: $\exists I, w(I) \geq \frac{w(V)}{d} \Rightarrow (2 - \frac{2}{d})$-approx
EPTAS for planar graphs [Baker 94]:

- Partition V into V_0, \ldots, V_k such that $G[V \setminus V_i]$ is k-outerplanar

- $k + 1$ candidate solutions:

$$C_i = V_i \cup \text{OPT}_i$$
Applications of the Nemhauser & Trotter Theorem

EPTAS for planar graphs [Baker 94]:

- Partition V into V_0, \ldots, V_k such that $G[V \setminus V_i]$ is k-outerplanar

- $k + 1$ candidate solutions:
 \[C_i = V_i \cup \text{OPT}_i \]

- Total weight of candidate solutions:
 \[
 \sum_i w(C_i) = w(V) + \sum_i \text{OPT}_i \\
 \leq 2\text{OPT} + (k + 1)\text{OPT} \\
 = (k + 3)\text{OPT}
 \]
EPTAS for planar graphs [Baker 94]:

- Partition V into V_0, \ldots, V_k such that $G[V \setminus V_i]$ is k-outerplanar

- $k + 1$ candidate solutions:

$$C_i = V_i \cup \text{OPT}_i$$

- Total weight of candidate solutions:

$$\sum_i w(C_i) = w(V) + \sum_i \text{OPT}_i \leq 2\text{OPT} + (k + 1)\text{OPT} = (k + 3)\text{OPT}$$

- $(1 + \varepsilon)$-approx:

$$\min_i w(C_i) \leq (1 + \frac{2}{k+1})\text{OPT} = (1 + \varepsilon)\text{OPT}$$
Applications of the Nemhauser & Trotter Theorem

Other Applications:

□ (2 − \frac{\log \log n}{2 \log n})-approx [Bar-Yehuda Even 85]

– Short odd cycles are removed using local ratio
– Nemhauser & Trotter Theorem
– Compute vertex cover \(C \) such that \(w(C) \leq (1 - \frac{1}{2k})w(V_{1/2}) \)

□ 2k kernel for Vertex Cover [Chen et al. 01]

– If \(w(V_{1/2}) > 2k \), then \(\text{OPT} > k \)
Generalized Coffee Chain Problem:

- Cover streets with coffee-houses
- Coffee houses can be located on street corners or on streets
- Locations have different costs
- Minimize costs
Generalized Vertex Cover

Generalized Coffee Chain Problem:

- Cover streets with coffee-houses
- Coffee houses can be located on street corners or on streets
- Locations have different costs
- Minimize costs

Generalized Vertex Cover:

Instance: Graph $G = (V, E)$, weights $w : V \cup E \rightarrow \mathbb{R}^+$
Solution: $C \subseteq V$
Objective: $\min \sum_{u \in C} w(u) + \sum_{e : e \cap C = \emptyset} w(e)$
Half Integrality of LP Formulation

LP Relaxation: min $\sum_u w(v)x(v) + \sum_e w(e)z(e)$

s.t. $x(v) + x(u) + z(e) \geq 1$ $\forall e = (v, u) \in E$

$x(v) \geq 0$ $\forall v \in V$

$z(e) \geq 0$ $\forall e \in E$
Half Integrality of LP Formulation

LP Relaxation: \[
\min \sum_u w(v)x(v) + \sum_e w(e)z(e) \\
\text{s.t.} \quad x(v) + x(u) + z(e) \geq 1 \quad \forall e = (v, u) \in E \\
x(v) \geq 0 \quad \forall v \in V \\
z(e) \geq 0 \quad \forall e \in E
\]

Cost of a Solution:

- Any vertex set \(C \) is a solution
- \(\text{COST}(C) = w(C) + w(V \setminus C, V \setminus C) \)
Half Integrality of LP Formulation

LP Relaxation: \[
\begin{align*}
& \text{min} & & \sum_v w(v)x(v) + \sum_e w(e)z(e) \\
& \text{s.t.} & & x(v) + x(u) + z(e) \geq 1 & \forall e = (v, u) \in E \\
& & & x(v) \geq 0 & \forall v \in V \\
& & & z(e) \geq 0 & \forall e \in E
\end{align*}
\]

Cost of a Solution:
- Any vertex set \(C \) is a solution
- \(\text{COST}(C) = w(C) + w(V \setminus C, V \setminus C) \)

Previous Results:
- 2-approx and half integrality [Hochbaum 02]
- Linear time 2-approx [Bar-Yehuda Rawitz 05]
- 2-approx for a more general problem [Hassin Levin 06]
Extended Nemhauser & Trotter Theorem:
Let \((G, w)\) be an instance of \textit{Generalized Vertex Cover}.

There is a poly-time algorithm that partitions \(V\) into 3 subsets, \(V_1, V_0,\) and \(V_{1/2}\), and constructs a weight function \(\tilde{w}\), s.t.

(i) \(C\) is \(\alpha\)-approx for \(G[V_{1/2}], \tilde{w}\) \(\Rightarrow\) \(V_1 \cup C\) is \(\alpha\)-approx for \(G, w\)

(ii) \(C \subseteq V_{1/2}\) \(\Rightarrow\) \(\text{COST}(C) \geq \tilde{w}(V_{1/2})/2\)
Main Result

Extended Nemhauser & Trotter Theorem:
Let \((G, w)\) be an instance of Generalized Vertex Cover

There is a poly-time algorithm that partitions \(V\) into 3 subsets, \(V_1, V_0\) and \(V_{1/2}\), and constructs a weight function \(\tilde{w}\), s.t.

(i) \(C\) is \(\alpha\)-approx for \(G[V_{1/2}], \tilde{w}\) \(\Rightarrow\) \(V_1 \cup C\) is \(\alpha\)-approx for \(G, w\)

(ii) \(C \subseteq V_{1/2}\) \(\Rightarrow\) \(\text{COST}(C) \geq \tilde{w}(V_{1/2})/2\)

Corollary:
We may assume that \(\text{OPT} \geq \frac{w(V)}{2}\) when designing an approximation alg. for Generalized VC
More Results:

- $(2 - \frac{2}{d})$-approx for graphs of bounded degree d

 - Generalized VC can be solved in poly-time time if $d \leq 2$
Applications of the Extended N&T Theorem

More Results:

- (2 − \(\frac{2}{d} \))-approx for graphs of bounded degree \(d \)
 - Generalized VC can be solved in poly-time time if \(d \leq 2 \)

- EPTAS for planar graphs
 - Generalized VC can be solved in \(2^{O(w)} n \) if \(\text{treewidth}(G) \leq w \)
More Results:

- $(2 - \frac{2}{d})$-approx for graphs of bounded degree d
 - Generalized VC can be solved in poly-time time if $d \leq 2$

- EPTAS for planar graphs
 - Generalized VC can be solved in $2^{O(w)} n$ if treewidth$(G) \leq w$

- $(2 - \frac{\log \log n}{2 \log n})$-approx
 - Short odd cycles are removed using local ratio
 - “Reduction” to Vertex Cover
Applications of the Extended N&T Theorem

More Results:

- (2 − \(\frac{2}{d}\))-approx for graphs of bounded degree \(d\)
 - Generalized VC can be solved in poly-time time if \(d \leq 2\)

- EPTAS for planar graphs
 - Generalized VC can be solved in \(2^{O(w)}n\) if \(\text{treewidth}(G) \leq w\)

- \((2 − \log \log n - \log n)\)-approx
 - Short odd cycles are removed using local ratio
 - “Reduction” to Vertex Cover

- 2\(k\) kernel for parameterized Generalized VC
 - Parameter is the cost of the solution
Algorithm for Bipartite Graphs:

- Construct network
Algorithm for Bipartite Graphs:

- Construct network
- Compute minimum \(s, t \)-cut \((S, T) \)
Algorithm for Bipartite Graphs:

- Construct network
- Compute minimum s, t-cut (S, T)
- Return $(L \cap T) \cup (R \cap S)$
Computing Half-Integral Optimal Solution:

- Compute partition of V using algorithm for bipartite graphs:

 $V_1 = \{v : |\{v, v'\} \cap C| = 2\}$

 $V_{1/2} = \{v : |\{v, v'\} \cap C| = 1\}$

 $V_0 = \{v : |\{v, v'\} \cap C| = 0\}$
On Proving the Extended N&T Theorem

Computing Half-Integral Optimal Solution:

- Compute partition of V using algorithm for bipartite graphs:
 - $V_1 = \{v : |\{v, v\}' \cap C| = 2\}$
 - $V_{1/2} = \{v : |\{v, v\}' \cap C| = 1\}$
 - $V_0 = \{v : |\{v, v\}' \cap C| = 0\}$

- Observations:
 - V_0 is not an independent set
 - There are edges between V_0 and $V_{1/2}$
On Proving the Extended N&T Theorem

Computing Half-Integral Optimal Solution:

- Compute partition of V using algorithm for bipartite graphs:

 $V_1 = \{v : |\{v, v'\} \cap C| = 2\}$

 $V_{1/2} = \{v : |\{v, v'\} \cap C| = 1\}$

 $V_0 = \{v : |\{v, v'\} \cap C| = 0\}$

- Observations:
 - V_0 is not an independent set
 - There are edges between V_0 and $V_{1/2}$

- Problem:
 $C \subseteq V_{1/2}$ may not cover edges between V_0 and $V_{1/2}$
Problem:
\(C \subseteq V_{1/2} \) may not cover edges between \(V_0 \) and \(V_{1/2} \)

We can still show that:
- There exists an optimal solution \(C \) s.t. \(V_1 \subseteq C \subseteq V_1 \cup V_{1/2} \)
- \(C \) is \(\alpha \)-approx for \(G[V_{1/2} \cup V_0] \) \(\Rightarrow \) \(V_1 \cup C \) is \(\alpha \)-approx for \(G \)
Problem:
\(C \subseteq V_{1/2} \) may not cover edges between \(V_0 \) and \(V_{1/2} \)

We can still show that:
- There exists an optimal solution \(C \) s.t. \(V_1 \subseteq C \subseteq V_1 \cup V_{1/2} \)
- \(C \) is \(\alpha \)-approx for \(G[V_{1/2} \cup V_0] \) \(\Rightarrow \) \(V_1 \cup C \) is \(\alpha \)-approx for \(G \)

Solution:
- We use local ratio to move some vertices from \(V_{1/2} \) to \(V_1 \)
- New weight function \(\tilde{w} \)
Our Results:

- Extend N&T Theorem to Generalized Vertex Cover
- Applications:
 - \((2 - \frac{1}{d})\)-approx when max degree is \(d\)
 - EPTAS for planar graphs
 - \((2 - \frac{\log \log n}{2 \log n})\)-approx
 - \(2k\) kernal for parametrized variant
Conclusion

Our Results:

- Extend N&T Theorem to **Generalized Vertex Cover**

- Applications:
 - $(2 - \frac{1}{d})$-approx when max degree is d
 - EPTAS for planar graphs
 - $(2 - \frac{\log \log n}{2 \log n})$-approx
 - 2^k kernal for parametrized variant

Open Problems:

- Find more applications of extend N&T Theorem
 - Improve approx ratio for **Generalized Vertex Cover**
Conclusion

Our Results:

- Extend N&T Theorem to **Generalized Vertex Cover**
- Applications:
 - \((2 - \frac{1}{d})\)-approx when max degree is \(d\)
 - EPTAS for planar graphs
 - \((2 - \frac{\log \log n}{2 \log n})\)-approx
 - \(2k\) kernal for parametrized variant

Open Problems:

- Find more applications of extend N&T Theorem
 - Improve approx ratio for **Generalized Vertex Cover**
- Reduction from **Generalized VC** to **Vertex Cover**