Online Scheduling with Interval Conflicts

Dror Rawitz
Tel-Aviv University

Joint work with Magnús M. Halldórsson and Boaz Patt-Shamir
Online Algorithm:

- Input is revealed piece by piece over time
- Algorithm must make irrevocable decisions without access to whole input
Online Algorithms & Competitive Analysis

Online Algorithm:
- Input is revealed piece by piece over time
- Algorithm must make irrevocable decisions without access to whole input

Competitive Analysis:
- Solution is compared to offline OPT
- ALG has competitive ratio c if $\exists \alpha$ s.t.

$$\forall I, \ ALG(I) \geq \frac{OPT(I)}{c} - \alpha$$
Online Algorithms & Competitive Analysis

Online Algorithm:
- Input is revealed piece by piece over time
- Algorithm must make irrevocable decisions without access to whole input

Competitive Analysis:
- Solution is compared to offline OPT
- ALG has competitive ratio c if $\exists \alpha$ s.t.
 \[\forall I, \quad ALG(I) \geq \frac{OPT(I)}{c} - \alpha \]
- Game against an adversary
 - Knows algorithm
 - Determines the input sequence
 - Can obtain offline optimum
Problem Statement

Input:
- Set U of items, each with an integer identifier
- Collection C of *interval conflicts*
- Each conflict $C \in C$ contains all items within some interval
Problem Statement

□ Input:
- Set U of items, each with an integer identifier
- Collection C of *interval conflicts*
- Each conflict $C \in C$ contains all items within some interval

□ Algorithm:
- Given a conflict, decides which item survives
- All other items in the conflict set are eliminated

□ Goal:
- Maximize number of items that survive all their conflicts
Examples

- Rectangles represent conflicts
- A dot represents an item that survived a conflict

Example 1:
- Solution 1: \{5\}
Examples

- Rectangles represent conflicts
- A dot represents an item that survived a conflict

Example 1:
- Solution 1: \{5\}
- Solution 2: \{1, 3, 6, 8\}
Examples

- Rectangles represent conflicts
- A dot represents an item that survived a conflict

Example 1:
- Solution 1: \{5\}
- Solution 2: \{1, 3, 6, 8\}

Example 2:
- How would “choose leftmost” work? Distributively?
Examples

- Rectangles represent conflicts
- A dot represents an item that survived a conflict

Example 1:
- Solution 1: \{5\}
- Solution 2: \{1, 3, 6, 8\}

Example 2:
- How would “choose leftmost” work? Distributively?
Related Work: Multipart Tasks

Online Set Packing: [Emek, Halldórsson, Mansour, Patt-Shamir, Radhakrishnan, R '10]

- Conflicts are not required to be intervals
- \(k = \max \) number of conflicts per item \((\text{max set size})\)
- \(\sigma = \max \) conflict size \((\text{max element degree})\)
- \(\Omega(\sigma^{k-1}) \) deterministic lower bound
- \(\tilde{\Theta}(k\sqrt{\sigma}) \) randomized competitive ratio
Related Work: Multipart Tasks

- **Online Set Packing:** [Emek, Halldórsson, Mansour, Patt-Shamir, Radhakrishnan, R ’10]
 - Conflicts are not required to be intervals
 - $k = \max\ \text{number of conflicts per item}$ (max set size)
 - $\sigma = \max\ \text{conflict size}$ (max element degree)
 - $\Omega(\sigma^{k-1})$ deterministic lower bound
 - $\tilde{\Theta}(k\sqrt{\sigma})$ randomized competitive ratio

- **Packets with Dependencies:** [Kesselman, Patt-Shamir, Scalosub 09]
 - Data items composed of k packets arrive at a FIFO buffer
 - No competitive deterministic online algorithm
 - Order respecting arrival sequences:
 - Deterministic lower bound $\Omega(k)$
 - Deterministic upper bound $O(k^2)$
Problem Variants

Centralized vs. Distributed:

□ Sequential model:
 – Conflicts arrive at the same location, sequentially
 – Algorithm resolves them one by one, knowing past conflicts and decisions

□ Oblivious model:
 – Conflicts arrive in different locations, possibly in parallel
 – Algorithm required to resolve conflicts without knowledge of other conflicts
Problem Variants

Centralized vs. Distributed:

□ Sequential model:
 – Conflicts arrive at the same location, sequentially
 – Algorithm resolves them one by one, knowing past conflicts and decisions

□ Oblivious model:
 – Conflicts arrive in different locations, possibly in parallel
 – Algorithm required to resolve conflicts without knowledge of other conflicts

Conflicts Type:

□ Contiguous: \(C = [\min(C), \max(C)] \)

□ General: \(C = U \cap [\min(C), \max(C)] \)
Our Results

- **Deterministic competitive ratio**

<table>
<thead>
<tr>
<th></th>
<th>sequential</th>
<th>oblivious</th>
</tr>
</thead>
<tbody>
<tr>
<td>contiguous</td>
<td>$\Omega(\log \sigma)$</td>
<td>$O(\log \sigma)$</td>
</tr>
<tr>
<td>general</td>
<td>$O(\log \sigma)$</td>
<td>$\Omega(n)$</td>
</tr>
</tbody>
</table>

- $\sigma = \text{maximum size of a conflict}$
- $n = \text{number of items}$
- Sequential algorithm applies to weighted case
- $\Omega(n)$ applies to $\sigma = 2$
Our Results

- Deterministic competitive ratio

<table>
<thead>
<tr>
<th></th>
<th>sequential</th>
<th>oblivious</th>
</tr>
</thead>
<tbody>
<tr>
<td>contiguous</td>
<td>$\Omega(\log \sigma)$</td>
<td>$O(\log \sigma)$</td>
</tr>
<tr>
<td>general</td>
<td>$O(\log \sigma)$</td>
<td>$\Omega(n)$</td>
</tr>
</tbody>
</table>

- $\sigma =$ maximum size of a conflict
- $n =$ number of items
- Sequential algorithm applies to weighted case
- $\Omega(n)$ applies to $\sigma = 2$

- Additional results:
 - $O(\log(\sigma/b))$-competitive oblivious algorithm for the case where b items may survive each conflict
 - $O(k)$ sequential algorithm
 - 1-competitive algorithm when allowed to accept two items per conflict
Observation:
If all items can be covered by m conflicts, then $\text{OPT} \leq m$
Observation:
If all items can be covered by \(m \) conflicts, then \(\text{OPT} \leq m \)

Definition:
Given an execution, an elimination chain is a sequence of items \(i_0, \ldots, i_m \) s.t. \(i_j \) eliminated \(i_{j-1} \).
Elimination Chains

- **Observation:**
 If all items can be covered by m conflicts, then $\text{OPT} \leq m$

- **Definition:**
 Given an execution, an *elimination chain* is a sequence of items i_0, \ldots, i_m s.t. i_j eliminated i_{j-1}

- **Lemma:**
 If all elimination chains of ALG are shorter than m, then ALG has competitive ratio at most $2m$

Proof:
From each chain ALG gets 1 while OPT gets at most $2m$
Oblivious Algorithm for Contiguous Instances

Algorithm:

- Priority: \(p(i) \triangleq \max \{ \ell : 2^\ell \text{ divides } i \} \)
- Decision rule: choose task with highest priority
Oblivious Algorithm for Contiguous Instances

- **Algorithm:**
 - **Priority:** \(p(i) \triangleq \max \{ \ell : 2^\ell \text{ divides } i \} \)
 - **Decision rule:** choose task with highest priority

- **Properties:**
 - Well defined: task with highest priority always exists
 - Oblivious
 - No need to know \(\sigma \)
Oblivious Algorithm for Contiguous Instances

- Algorithm:
 - Priority: \(p(i) \triangleq \max \{ \ell : 2^\ell \text{ divides } i \} \)
 - Decision rule: choose task with highest priority

- Properties:
 - Well defined: task with highest priority always exists
 - Oblivious
 - No need to know \(\sigma \)

- Analysis:
 - Any interval contains at most one task with \(p(i) \geq \log \sigma \)
 - Length of any elimination chain is at most \(\log \sigma \)
 - Competitive ratio \(\leq 2 \log \sigma \)
Fix a deterministic oblivious algorithm \(\text{ALG} \)

Construction:

- 2-color the edges of \(K_N \):
 - \((v_i, v_j), \) for \(i < j \), is blue if \(i \prec_{\text{ALG}} j \), and otherwise red

\[\Rightarrow \]

By Ramsey's theorem \(K_N \) contains a monochromatic subgraph of \(n = \Omega(\log N) \) vertices
□ Fix a deterministic oblivious algorithm ALG

□ **Construction:**

- 2-color the edges of K_N: (v_i, v_j), for $i < j$, is blue if $i \prec_{\text{ALG}} j$, and otherwise red

\Rightarrow By Ramsey’s theorem K_N contains a monochromatic subgraph of $n = \Omega(\log N)$ vertices

\Rightarrow Increasing/decreasing sequence of n items i_1, \ldots, i_n such that ALG prefers i_ℓ over $i_{\ell-1}$, for any ℓ

- We introduce the conflicts $\{i_{\ell-1}, i_\ell\}$, for $\ell \in \{2, \ldots, n\}$
Fix a deterministic oblivious algorithm ALG

Construction:

- 2-color the edges of K_N: (v_i, v_j), for $i < j$, is blue if $i <_{\text{ALG}} j$, and otherwise red

\Rightarrow By Ramsey's theorem K_N contains a monochromatic subgraph of $n = \Omega(\log N)$ vertices

\Rightarrow Increasing/decreasing sequence of n items i_1, \ldots, i_n such that ALG prefers i_ℓ over $i_{\ell-1}$, for any ℓ

- We introduce the conflicts $\{i_{\ell-1}, i_\ell\}$, for $\ell \in \{2, \ldots, n\}$

Analysis:

- Only i_n survives the execution of ALG
- $\{i_\ell : \ell \text{ is odd}\}$ is feasible and of size $n/2$

\Rightarrow Competitive ratio is $\Omega(n)$
For each item i:
- **Weight class**: $c(i) = \lfloor \log w(i) \rfloor$
- **Left level**: $\text{left}(i)$
- **Right level**: $\text{right}(i)$
Sequential Algorithm

- For each item i:
 - Weight class: $c(i) = \lfloor \log w(i) \rfloor$
 - Left level: $\text{left}(i)$
 - Right level: $\text{right}(i)$

- **Algorithm**: Given a conflict
 - Drop all items but leftmost l and rightmost r in highest weight class
 - If $l = r$ \implies $\sqrt{}$
 - Else
 - If $\text{left}(l) > \text{right}(r)$ \implies l survives; $\text{right}(l) \leftarrow \text{right}(r) + 1$
 - Else \implies r survives; $\text{left}(r) \leftarrow \text{left}(l) + 1$
Sequential Algorithm

- For each item i:
 - Weight class: $c(i) = \lfloor \log w(i) \rfloor$
 - Left level: $\text{left}(i)$
 - Right level: $\text{right}(i)$

- Algorithm: Given a conflict
 - Drop all items but leftmost l and rightmost r in highest weight class
 - If $l = r \implies \checkmark$
 - Else
 - If $\text{left}(l) > \text{right}(r) \implies l \text{ survives}; \text{right}(l) \leftarrow \text{right}(r) + 1$
 - Else $\implies r \text{ survives}; \text{left}(r) \leftarrow \text{left}(l) + 1$

- Analysis ideas:
 - Heavy items fund light items
 - Elimination chain within weight class: $\#\text{items} = \Omega(2^{\#\text{interval}})$
 $\implies O(\log \sigma)$-competitive
Invariants after epoch q:

- $|\text{OPT}| = q \cdot |\text{ALG}|$
- $q - 1$ “OPT only” intervals separating “OPT+ALG” intervals
Invariants after epoch q:
- $|\text{OPT}| = q \cdot |\text{ALG}|$
- $q - 1$ “OPT only” intervals separating “OPT+ALG” intervals

Epoch 1:
- $n/2$ intervals of length 2
- OPT $= [n] \setminus \text{ALG}$
Invariants after epoch q:

- $|\text{OPT}| = q \cdot |\text{ALG}|$
- $q - 1$ “OPT only” intervals separating “OPT+ALG” intervals

Epoch 1:

- $n/2$ intervals of length 2
- $\text{OPT} = [n] \setminus \text{ALG}$

Epoch $q + 1$:
Invariants after epoch q:
- $|\text{OPT}| = q \cdot |\text{ALG}|$
- $q - 1$ “OPT only” intervals separating “OPT+ALG” intervals

Epoch 1:
- $n/2$ intervals of length 2
- $\text{OPT} = [n] \setminus \text{ALG}$

Epoch $q + 1$:
Invariants after epoch q:
- $|\text{OPT}| = q \cdot |\text{ALG}|$
- $q - 1$ “OPT only” intervals separating “OPT+ALG” intervals

Epoch 1:
- $n/2$ intervals of length 2
- $\text{OPT} = [n] \setminus \text{ALG}$

Epoch $q + 1$:

$\sigma_q \leq 5^q$

#epochs $= \Theta(\log \sigma)$

$|\text{OPT}| = \Omega(\log \sigma \cdot |\text{ALG}|)$
Resource Augmentation

- Online algorithm may select two survivors per conflict
- Compared to offline optimum that selects one survivor
Online algorithm may select two survivors per conflict
Compared to offline optimum that selects one survivor

Algorithm L&R:
In each conflict, select the first and last live tasks
Resource Augmentation

- Online algorithm may select two survivors per conflict
- Compared to offline optimum that selects one survivor

Algorithm L&R:
In each conflict, select the first and last live tasks

Analysis:

Lemma:
Let \(i, i' \in \text{OPT} \) s.t. \(i < i' \). Then, \(\exists j \in \text{L&R} \) s.t. \(j \in [i, i') \).

Proof:
Suppose not. Consider the time when L&R dropped the last task from \([i, i') \).
Must be due to a conflict strictly containing \([i, i') \), therefore containing both \(i, i' \), contradiction to \(i, i' \in \text{OPT} \).
Resource Augmentation

- Online algorithm may select two survivors per conflict
- Compared to offline optimum that selects one survivor

Algorithm L&R:
In each conflict, select the first and last live tasks

Analysis:

- **Lemma:**
 Let $i, i' \in \text{OPT}$ s.t. $i < i'$. Then, $\exists j \in L&R$ s.t. $j \in [i, i')$.

 Proof:
 Suppose not. Consider the time when L&R dropped the last task from $[i, i')$.
 Must be due to a conflict strictly containing $[i, i')$, therefore containing both i, i',
 contradiction to $i, i' \in \text{OPT}$

- **Corollary:** $|L&R| \geq |\text{OPT}|$
Conclusion

Our Results:

□ Introduced scheduling with interval conflicts
 – Sequential, Oblivious
 – Contiguous, Non-contiguous

□ $O(\log \sigma)$-competitive algorithms

□ $\Omega(\log \sigma)$ bound on competitive ratio

□ $\Omega(n)$ bound for oblivious non-contiguous model
Conclusion

Our Results:
- Introduced scheduling with interval conflicts
 - Sequential, Oblivious
 - Contiguous, Non-contiguous
- \(O(\log \sigma) \)-competitive algorithms
- \(\Omega(\log \sigma) \) bound on competitive ratio
- \(\Omega(n) \) bound for oblivious non-contiguous model

Open Questions:
- Randomized algorithms?
- Conflict capacities?
 - Lower bound
 - Non-uniform capacities