
TRANSACTIONS ON DATA PRIVACY 3 (2010) 149–175

Efficient Anonymizations with Enhanced
Utility

Jacob Goldberger ∗, Tamir Tassa ∗∗

∗ School of Engineering, Bar-Ilan University, Ramat-Gan, Israel

∗∗ Division of Computer Science, The Open University, Ra’anana, Israel

E-mail: goldbej@eng.biu.ac.il,tamirta@openu.ac.il

Abstract. One of the most well studied models of privacy preservation is k-anonymity. Previous
studies of k-anonymization used various utility measures that aim at enhancing the correlation be-
tween the original public data and the generalized public data. We, bearing in mind that a primary
goal in releasing the anonymized database for data mining is to deduce methods of predicting the pri-
vate data from the public data, propose a new information-theoretic measure that aims at enhancing
the correlation between the generalized public data and the private data. Such a measure signifi-
cantly enhances the utility of the released anonymized database for data mining. We then proceed to
describe a new algorithm that is designed to achieve k-anonymity with high utility, independently
of the underlying utility measure. That algorithm is based on a modified version of sequential clus-
tering which is the method of choice in clustering. Experimental comparison with four well known
algorithms of k-anonymity show that the sequential clustering algorithm is an efficient algorithm
that achieves the best utility results. We also describe a modification of the algorithm that outputs
k-anonymizations which respect the additional security measure of ℓ-diversity.

Keywords. k-anonymity, privacy-preserving data mining, clustering, mutual information,
ℓ-diversity

1 Introduction

Our society experiences in recent years unprecedented growth in the amount of data that is
collected on individuals, organizations, companies and other entities. Of particular interest
are data containing structured information on individuals. Data holders are then faced
with the intricate task of releasing data in order to detect interesting trends or correlations,
while still protecting the privacy of individuals. Privacy-preserving data mining [3] has
been proposed as a paradigm of exercising data mining while protecting the privacy of
individuals. Many approaches were suggested, implemented and theoretically studied
for playing this delicate game that requires finding the right path between data hiding
and data disclosure. One of these approaches, proposed by Samarati and Sweeney [22],

∗This article is an extended version of a paper presented at the 2009 IEEE International Workshop on Privacy
Aspects of Data Mining (PADM 2009), Miami, Florida, USA, Dec. 6, 2009.

149

150 Jacob Goldberger, Tamir Tassa

is k-anonymization. The method of k-anonymization suggests to modify the values of the
public attributes of the data by means of generalization so that if the database is projected
on the subset of the public attributes, each record of the table becomes indistinguishable
from at least k−1 other records. Consequently, the private data may be linked to sets of
individuals of size no less than k, whence the privacy of the individuals is protected to some
extent. The model of k-anonymity has been shown to be insufficient to protect against all
types of linking attack, whence it must be enhanced by additional security measures such
as ℓ-diversity, e.g. [7, 17, 25].
The main challenge is to achieve k-anonymity with minimal loss of information or, al-

ternatively speaking, with maximal utility. The definition of the target function, namely,
the measure of utility, is critical in this discussion. Several measures of utility were sug-
gested in the literature. The problem of finding the k-anonymization with maximal utility
(or minimal information loss) was shown to be NP-hard [2, 10, 18]. Hence, the possible
approaches are either heuristical algorithms [5, 8, 9, 20] or approximation algorithms with
a guaranteed approximation factor [2, 10, 12, 18]. Usually, algorithms of the former type
outperform algorithms of the latter type.
Our contribution in this study is twofold: First, we propose a new information-theoretic

measure of utility that takes into account the private attributes and aims at enhancing the
correlation between the generalized public data and the private data. This is in contrast to
most of the measures of utility that were used in previous studies that rely only on the pub-
lic data and quantify the correlation between the original public data and the generalized
public data. A primary goal of data mining is to find frequent patterns or rules to predict
the private data from the public data. Hence, we deem our measure as one that best serves
the purpose of obtaining anonymized tables with maximal utility for such applications of
data mining. Then, we proceed to describe a sequential clustering algorithm that obtains
high-utility anonymizations. Our algorithm, which is independent of the underlying utility
measure, is based on a modified version of sequential clustering that is the method of choice
in clustering. Experimental comparisons with four well known algorithms of k-anonymity
showed that the sequential algorithm, together with the agglomerative algorithm [9, 20],
achieve the best results in terms of utility. As the sequential clustering is significantly faster
than the agglomerative algorithm, it appears to be the algorithm of choice for achieving
high-utility k anonymizations efficiently.
We would like to note that several studies in recent years focused on methods of increasing

the utility of k-anonymized tables, e.g. [1, 13, 26]. Most of those studies achieve improved
utility by breaking out of the basic k-anonymity framework. For example, Aggrawal et. al.
[1] suggested clustering the database records into clusters of size no less than k, and then
publishing the cluster centers, sizes and private information; Kifer and Gehrke [13] sug-
gested publishing additional information in the form of anonymized marginals; Xiao and
Tao [26] proposed a method called Anatomy which allows the release of exact public values
while maintaining privacy by separating the private data from the records of public data.
The first part of our paper proposes another way of increasing the utility of k-anonymized
tables. In contrast to the above mentioned studies, it achieves that goal within the basic
framework of k-anonymity (i.e., by generalizing the entries of the public database until it
becomes k-anonymous); it does so by suggesting a more appropriate measure that is tai-
lored to match the prediction task which is one of the main purposes of data mining the
anonymized table.
The paper is organized as follows. In Section 2 we provide the basic notations and termi-

nology. In Section 3 we review previously used utility measures. In Section 4 we discuss
the mutual information utility measure [10]. That discussion sets the ground for the intro-

TRANSACTIONS ON DATA PRIVACY 3 (2010)

Efficient Anonymizations with Enhanced Utility 151

duction of our private mutual information utility measure in Section 5. Then, we proceed to
describe in Section 6 our proposed sequential clustering algorithm. That section includes
also a detailed survey of other algorithms of k-anonymity, with which we compare our
algorithm later on. In Section 7 we describe a modification of the sequential clustering al-
gorithm that supports the additional security measure of ℓ-diversity. Section 8 is devoted
to experimental results. The paper concludes in Section 9.

2 Notations and Terminology

Consider a database that holds information on individuals in some population. Each in-
dividual is described by a collection of r public attributes, A1, . . . , Ar (e.g. gender, age,
occupation), and a private attribute, Ar+1 (that could represent, for example, a medical di-
agnosis for that individual, his credit limit etc.).1 Each of the attributes consists of several
possible values: Aj = {aj,ℓ : 1 ≤ ℓ ≤ mj}, 1 ≤ j ≤ r + 1 . For example, if Aj is gender then
Aj = {M, F}, while if it is the age of the individual, it is a bounded nonnegative natural
number. The public database holds all publicly available information on the individuals;
letting n denote the number of individuals, it takes the form

D = {R1, . . . , Rn} , where Ri ∈ A1 × · · · ×Ar . (1)

The corresponding private database holds the private information,

D′ = {S1, . . . , Sn} , Si ∈ Ar+1 . (2)

The complete database is the concatenation of those two databases, D‖D′ = {R1‖S1, . . . , Rn‖Sn}.
We refer hereinafter to the tuples Ri and Si, 1 ≤ i ≤ n, as the public and private records,
respectively. The jth component of the record Ri (namely, the (i, j)th entry in the database
D) will be denoted hereinafter by Ri(j).
The basic technique for obtaining k-anonymization is by means of generalization. By gen-

eralization we refer to the act of replacing the values that appear in the public database
with subsets of values, so that each entry Ri(j) ∈ Aj is replaced by a subset Ri(j) ⊆ Aj

that includes that element.

Definition 1. Let Aj , 1 ≤ j ≤ r, be finite sets and let Aj ⊆ P(Aj) be a collection of subsets
of Aj . Let D = {R1, . . . , Rn} be a table where each record Ri, 1 ≤ i ≤ n, is taken from
A1 × · · · × Ar. A table g(D) = {R1, . . . , Rn} is a generalization of D, if Ri ∈ A1 × · · · ×Ar,
and Ri(j) ∈ Ri(j), for all 1 ≤ i ≤ n and 1 ≤ j ≤ r.

A special kind of generalization is generalization by suppression, where Aj = Aj ∪ {Aj}
for all 1 ≤ j ≤ r (e.g. [18]). Namely, each entry is either left unchanged or is totally
suppressed. A more refined scheme of generalization [2] is that in which there is a hierarchy
of clusterings of Aj , the finest one consisting of all singleton subsets, and the coarsest one
consisting of just the entire set.
It should be noted that Definition 1 poses no restrictions on the subsets in each collection.

For example, if Aj is a numeric attribute (say, age), the subsets in Aj may consist of non-
continuous ranges. Our algorithm and analysis are indifferent to such anomalies, whence
we do not pose here any restrictions on the collections of subsets. In practice, those subsets

1We assume one private attribute for the sake of simplicity; the extension to any number of private attributes
is straightforward.

TRANSACTIONS ON DATA PRIVACY 3 (2010)

152 Jacob Goldberger, Tamir Tassa

should be selected in accord with the underlying semantics of the attribute, so that each
subset contains elements that have some semantic proximity or common denominator.
There are two main models of generalization. In global recoding, e.g. [4, 11, 14, 25], each

collection of subsets Aj is a clustering of the set Aj (in the sense that Aj includes disjoint
sets whose union equals Aj). In such cases, every entry in the jth column of the database
is mapped to the unique subset in Aj that contains it. As a consequence, every single value
a ∈ Aj is always generalized in the same manner. On the other hand, in local recoding,
e.g. [8, 9, 10, 12, 18, 21, 25], the collection of subsets Aj covers the set Aj but it is not a
clustering (namely, the subsets in the collection may intersect). In such cases, each entry
in the table’s jth column is generalized independently to one of the subsets in Aj which
includes it. Hence, if the age 34, for example, appears in the table in several records, it may
be left unchanged in some, or generalized to 30 - 39, or totally suppressed in other records.

In this study we consider the case of local recoding that allows greater flexibility and,
hence, enables achieving k-anonymity with (possibly) smaller information loss. As men-
tioned before, the problem of k-anonymization with minimal loss of information is NP-
hard in the case of local recoding.

3 Previously Used Utility Measures

Let D be the original public database and g(D) be a generalization of D. A critical question
in the context of k-anonymization is how to define Π(D, g(D)) – the distance between D
and g(D) in the sense of the amount of information that was lost due to the application
of the generalization operator g. Meyerson and Williams [18] considered the case of gen-
eralization by suppression, and their measure simply counted the number of suppressed
entries in the generalized database. Aggarwal et al. [2] used the more general model of
generalization by hierarchical clustering. Assume a monotone sequence of h + 1 cluster-
ings, where the finest and coarsest clusterings in the sequence are the trivial ones. Then
if we replace an exact database entry with a subset from the ith finest clustering that con-
tains it, where 0 ≤ i ≤ h, the corresponding loss of information is i/h. The overall loss of
information is then defined as the average loss per entry.
The Loss Metric LM [11, 20] is a more precise and a more general version of the above

defined measure. According to the LM measure, the cost per each table entry is a number
between 0 (no generalization at all) and 1 (total suppression) that penalizes the generaliza-
tion that was made in that entry according to the size of the generalized subset. The overall
cost is the average cost per table entry:

ΠLM(D, g(D)) =
1

nr
·

n
∑

i=1

r
∑

j=1

|Ri(j)| − 1

|Aj | − 1
. (3)

In some works [5, 8], the two above measures were combined – the LM measure for nu-
merical attributes and the measure of [2] for categorial attributes.
The Ambiguity Metric AM [20] is the average size of the Cartesian products of all gen-

eralized entries in each record in the table. This measure represents the number of (the-
oretically) possible combinations of original records that a generalized record can stand
for:

ΠAM(D, g(D)) =
1

n
·

n
∑

i=1

r
∏

j=1

|Ri(j)| . (4)

TRANSACTIONS ON DATA PRIVACY 3 (2010)

Efficient Anonymizations with Enhanced Utility 153

An immediate drawback of the AM cost measure is that it counts also combinations of
attribute values that do not appear in the original database.

The Discernibility Metric DM [4] defines the cost of each generalized record Ri as the
number of generalized records in the anonymized table that are indistinguishable from it.
A suppressed record is penalized by the size of the entire database |D|. Therefore, the total
cost of the DM measure is the sum of squares of the sizes of all non-suppressed clusters,
plus the number of totally suppressed records multiplied by |D|. Since in k-anonymizations
that are near-optimal, all clusters are of sizes close to k, all such anonymizations have ap-
proximately the same DM cost, what makes this measure less useful.

In [13] another measure was defined. They considered the probability distribution that
is induced by the original table on the space of quasi-identifiers, A1 × · · · × Ar, and the
probability distribution that is induced by the anonymized table on the same space, and
then defined the information loss as the Kullback-Leibler divergence between the two dis-
tributions.

While all of the measures that were described above consider only the values of the pub-
lic attributes of the database, the next measure takes into account also the private attribute.
The Classification Metric CM [11] defines a possible penalty for each generalized record of
the table, based on its private attribute. A record Ri is penalized either if its private value
differs from the majority of the private values in its cluster, or if Ri is totally suppressed.
The CM measure is then defined as the average of the penalties of all rows. The ratio-
nale behind the classification metric is that homogenous clusters have more utility than
heterogenous clusters, because they indicate a stronger association between the public at-
tribute values of the cluster and the trained classified attribute. The information-theoretic
measure that we present in Section 5 is motivated by a similar rationale, but it is much more
accurate than the above described crude measure.

4 The Mutual Information Utility Measure

None of the measures that were described in the previous section was information-theoretic,
even though they aim to measure information. Two information-theoretic measures of
information-loss were introduced in [10] - the entropy measure, and the non-uniform en-
tropy measure. We concentrate here on the latter measure and describe it here in a manner
that is based on the notion of mutual information. Our description is somewhat different
from the one in [10]. In particular, we describe it as a utility measure (denoted U(g(D))
rather than a measure of information-loss; as such, the goal is to maximize it (while mea-
sures of information-loss are sought to be minimized). The discussion here of that utility
measure, to which we refer as the mutual information utility measure, provides the techni-
cal background and motivation for the new utility measure that we introduce in the next
section.

Let D = {R1, . . . , Rn} be a database and let A1, . . . , Ar be its public attributes. For each
1 ≤ j ≤ r, denote by Xj the random variable that corresponds to the attribute Aj . By
looking at the table’s jth column – {R1(j), . . . , Rn(j)} – as the sample space for the variable
Xj , we get the probability distribution:

Pr(Xj = a) =
|{1 ≤ i ≤ n : Ri(j) = a}|

n
, a ∈ Aj . (5)

TRANSACTIONS ON DATA PRIVACY 3 (2010)

154 Jacob Goldberger, Tamir Tassa

The entropy of Xj is then defined as follows [6],

H(Xj) = −
∑

a∈Aj

Pr(Xj = a) log Pr(Xj = a) . (6)

First, we derive the mutual information utility measure in the case of global recoding. In
such settings, each column in g(D) includes subsets that constitute a clustering of the corre-
sponding attribute. Letting Aj , 1 ≤ j ≤ r, be one of the public attributes, the corresponding

column in the generalized table includes values from Âj = {C1, . . . , Ctj
}where Âj is just a

clustering of Aj in the sense that C1, . . . , Ctj
are disjoint subsets of Aj whose union equal

Aj . (For example, if Aj is the age, Âj may consist of ranges of ages of the form 10 − 19,
20− 29, 30− 39 etc.)
While the jth column in D defines a random variable Xj on Aj , the jth column in g(D)

defines a random variable X̂j on Âj , where for each Cℓ ∈ Âj :

Pr(X̂j = Cℓ) =
∑

a∈Cℓ

Pr(Xj =a) .

The conditional entropy of Xj given X̂j is:

H(Xj |X̂j) = −
∑

a∈Aj

Pr(Xj = a) log Pr(Xj = a|X̂j = g(a)) ,

where g(a) is the (unique) generalization of a ∈ Aj .
The mutual information between two random variables is a measure of the information

that is disclosed on one of those variables by providing the value of the other one. The

mutual information between Xj and X̂j is:

I(Xj ; X̂j) = H(Xj)−H(Xj |X̂j) =
∑

a∈Aj

Pr(Xj = a) log
Pr(Xj = a|X̂j = g(a))

Pr(Xj = a)
.

Using Equation (5) we get that

I(Xj ; X̂j) =
1

n

n
∑

i=1

log
Pr(Xj = Ri(j)|Xj ∈ Ri(j))

Pr(Xj = Ri(j))
. (7)

The mutual information between the tuples 〈X1, ..., Xr〉 and 〈X̂1, ..., X̂r〉 is a natural way
to measure the information that the anonymized table reveals on the original table. How-
ever, the relative sparsity of the multidimensional data makes the empirical estimation
unreliable. Hence, we use instead an approximation based on the assumption that the
attribute random variables are independent (an assumption that implicitly underlies all
previously used measures). This yields the mutual information utility measure U(g(D)) :=
I(D; g(D)) where I(D; g(D)) is the following mutual information,

I(D; g(D)) :=
1

r

r
∑

j=1

I(Xj ; X̂j) .

Hence, the goal is to find a clustering of each of the attributes that will render the database
k-anonymized while keeping the mutual information, I(D; g(D)), maximal.

TRANSACTIONS ON DATA PRIVACY 3 (2010)

Efficient Anonymizations with Enhanced Utility 155

Having defined the mutual information utility measure in the case of global recoding, we
proceed to define it in the case of local recoding. Assuming that Aj is the collection of sub-
sets of Aj that may be used as generalized values, the generalized table g(D) takes the form
g(D) = {R1, . . . , Rn} where Ri(j) ∈ Aj . Although we cannot formalize this local general-
ization as a joint distribution of the two random-variables (the original one and the general-
ized one) we can still apply the local interpretation of the mutual information between the
jth column in the original table and the corresponding column in the anonymized table,
(7). Therefore, the preserved information per attribute can still be written as

I(Xj ; R(j)) =
1

n

n
∑

i=1

log
Pr(Xj = Ri(j)|Xj ∈ Ri(j))

Pr(Xj = Ri(j))
(8)

where R(j) stands for the jth column in g(D). Finally, the mutual information (MI) utility
measure is U(g(D)) := I(D; g(D)) where

I(D; g(D)) :=
1

r

r
∑

j=1

I(Xj ; R(j)) (9)

=
1

nr

n
∑

i=1

r
∑

j=1

log
Pr(Xj = Ri(j)|Xj ∈ Ri(j))

Pr(Xj = Ri(j))
.

The corresponding mutual information measure of information-loss is

ΠMI(D, g(D)) = −
1

nr

n
∑

i=1

r
∑

j=1

log Pr(Xj = Ri(j)|Xj ∈ Ri(j)) . (10)

Clearly, ΠMI(D, g(D)) is minimized when the utility measure U(g(D)) = I(D; g(D)) in (9)
is maximized.

A natural property that one might expect from any utility measure is monotonicity. In
other words, we expect that coarser generalizations will be characterized by smaller values
of the utility measure.

Definition 2. Let D be a table and let g1(D) and g2(D) be any two generalizations of D. A
utility metric U(·) is called monotone if U(g2(D)) ≤ U(g1(D)) whenever g2(D) is a gener-
alization of g1(D), in the sense that every entry in g2(D) is a superset of the corresponding
entry in g1(D).

In other words, we expect that coarser generalizations will be characterized by smaller
values of the utility measure.

Proposition 3. The MI utility measure is monotone.

Proof. Let R
1

i (j) and R
2

i (j) be generalized items associated with a generalization g1(D)

and a coarser generalization g2(D) of the same database D. As R
1

i (j) ⊆ R
2

i (j) and Ri(j) ∈

R
1

i (j), we infer that:

Pr(Xj = Ri(j)|Xj ∈ R
1

i (j)) ≥ Pr(Xj = Ri(j)|Xj ∈ R
2

i (j)) .

Summing over all public attributes and all database records we obtain the monotonicity
property U(g1(D)) ≥ U(g2(D)) (or, alternatively, that ΠMI(D, g1(D)) ≤ ΠMI(D, g2(D))).
�

TRANSACTIONS ON DATA PRIVACY 3 (2010)

156 Jacob Goldberger, Tamir Tassa

5 The Private Mutual Information Utility Measure

All previously used measures of information-loss are based entirely on the public informa-
tion and ignore the private information, the only exception being the Classification Met-
ric CM. However, one should keep in mind that one of the main goals in publishing the
database is to learn the relation between the public data and private data and to deduce
methods of predicting the private data from the public data. Therefore, the information-
loss caused by the generalization process should be measured in the context of this predic-
tion task. Specifically, generalization of public attributes that are weakly correlated with
the private data should be less penalized than generalization of other public attributes that
are strongly correlated with the private data.
We proceed to present here a new utility measure that quantifies the mutual informa-

tion between the generalized public data and the private data. So, instead of looking at
I(D; g(D)) (namely, how much information do the generalized public data reveal on the
original public data), we look at U(g(D)) := I(D′; g(D)) – the amount of information that
the generalized public data reveal on the private data. (Recall that D′ = {S1, . . . , Sn},
where Si ∈ Ar+1, is the ith private record, see Equation (2).) As before, let Xj denote the
random variable that corresponds to the jth public attribute and let R(j) stand for the jth
column in g(D), 1 ≤ j ≤ r. In addition, we introduce the random variable Y that corre-
sponds to the private attribute. (The probability distribution of Y on the set of possible
values for the attribute Ar+1 is derived from the private database D′ in similarity to the
way that we defined the probability distribution of Xj according to the jth column in D.)
In a way similar to definition (8) in the previous section, we define the mutual information
between Y and the anonymized version of the jth public attribute Xj as follows:

I(Y ; R(j)) =
1

n

n
∑

i=1

log
Pr(Y = Si|Xj ∈ Ri(j))

Pr(Y = Si)
. (11)

The mutual information I(Y ; R(1), ..., R(r)) can be utilized to measure the information that
the anonymized table reveals on the private data. However, as discussed in the previous
section, the relative sparsity of the multidimensional data makes the empirical estimation
unreliable. Hence, we approximate that expression with the following one that can be
easily computed:

I(D′; g(D)) :=
1

r

r
∑

j=1

I(Y ; R(j)) . (12)

The goal is then to maximize U(g(D)) := I(D′; g(D)) that is defined through (11)+(12), i.e.,

I(D′; g(D)) =
1

nr

n
∑

i=1

r
∑

j=1

log
Pr(Y = Si|Xj ∈ Ri(j))

Pr(Y = Si)
. (13)

We refer to this utility measure as the private mutual information utility measure (PMI). The
corresponding information-loss measure is

ΠPMI(D, g(D)) = −
1

nr

n
∑

i=1

r
∑

j=1

log Pr(Y = Si|Xj ∈ Ri(j)) . (14)

It expresses the amount of mutual information that is lost by replacing D with g(D). Clearly,
ΠPMI(D, g(D)) is minimized when I(D′; g(D)) is maximized.

TRANSACTIONS ON DATA PRIVACY 3 (2010)

Efficient Anonymizations with Enhanced Utility 157

The PMI utility measure is defined in (12) as an average of the mutual information be-
tween the private attribute and each of the generalized public attributes. As such an aver-
aging might hide a strong correlation of one of the generalized public attributes with the
private attribute, another possible definition of that measure is

I(D′; g(D)) := max
1≤j≤r

I(Y ; R(j)) . (15)

A possible compromise between the ℓ1-norm in (12) and the ℓ∞-norm in (15) is the ℓ2-norm
version

I(D′; g(D)) :=
1

r





r
∑

j=1

I(Y ; R(j))2





1/2

. (16)

In this study we focus on the first ℓ1-version, (12). The comparison between the effective-
ness of the different versions is left for future experiments and study.

5.1 Monotonicity

We now turn to discuss the monotonicity of the PMI utility measure, U(g(D)) = I(D′; g(D)).
We begin by considering the case of global recoding. Assume that g2(D) is a generalization
that is coarser than g1(D). Since both g1(D) and g2(D) are based on global recoding, they

define for the jth attribute two random variables X̂1
j and X̂2

j respectively (see Section 4).

The random variables Y, Xj, X̂
1
j and X̂2

j form a Markov chain:

Y ←− Xj −→ X̂1
j −→ X̂2

j .

Hence, the Data Processing Lemma [6] implies that

I(Y ; X̂1
j) ≥ I(Y ; X̂2

j) . (17)

For completeness we provide here the proof. The chain rule for mutual information implies
that:

I(Y ; X̂1
j , X̂2

j) = I(Y ; X̂1
j) + I(Y ; X̂2

j |X̂
1
j) = I(Y ; X̂2

j) + I(Y ; X̂1
j |X̂

2
j) . (18)

The Markovian chain structure (i.e. the fact that g2(D) is a coarsening of g1(D)) implies

that I(Y ; X̂2
j |X̂

1
j) = 0. Hence,

I(Y ; X̂1
j) = I(Y ; X̂2

j) + I(Y ; X̂1
j |X̂

2
j) .

Finally, as mutual information is always non-negative, inequality (17) immediately follows.
Hence, by summing up inequalities (17) for all 1 ≤ j ≤ r and dividing by r we conclude
that I(D′; g1(D)) ≥ I(D′; g2(D)).
In the more general case of generalization based on local recoding, the PMI utility measure

(13) is not always monotone. For example, let D be the following table with a single public
attribute and a single private attribute:

D a a a a b b b b c
D′ 0 0 0 1 0 1 1 1 1

Consider the following 3-anonymization of D:

g1(D) a a a * * b b b *
D′ 0 0 0 1 0 1 1 1 1

TRANSACTIONS ON DATA PRIVACY 3 (2010)

158 Jacob Goldberger, Tamir Tassa

In this case (see (14)),

ΠPMI(D, g1(D)) = −
1

9
·

[(

6 log
3

4
+ 2 log

5

9
+ log

4

9

)

−

(

6 log
3

4
+ 2 log

1

4
+ log 1

)]

≈ −0.126 .

As ΠPMI(D, g1(D)) is negative, we conclude that I(D′; D) < I(D′; g1(D)), even though
g1(D) is a generalization of D, whence monotonicity is violated. Nonetheless, the PMI
utility measure is still meaningful for local recoding and serves well the purposes of data-
mining, as exemplified in this example. All 3-anonymizations of D will have to generalize
the c-record together with one of the a-records and one of the b-records. An easy calcula-
tion shows that any of the other selections of an ’a’-record or a ’b’-record results in a greater
information loss as measured by the PMI measure. Consider, for example, the generaliza-
tion

g2(D) a a * a * b b b *
D′ 0 0 0 1 0 1 1 1 1

.

For that generalization we have

ΠPMI(D, g2(D)) =

[(

5 log
3

4
+ log

1

4
+ 2 log

4

9
+ log

5

9

)

−

(

6 log
3

4
+ 2 log

1

4
+ log 1

)]

·

(

−
1

9

)

≈ 0.086 .

Indeed, the generalization g1(D) is the best one for data mining since it selects to obfuscate
the outlier records. In fact, this is the reason why the PMI utility measure favors the gen-
eralization g1(D) over the original table D, since the latter has outlier records that blur the
two prominent association rules “a implies 0” and “b implies 1”, while the former elimi-
nates those outliers and accentuates those two rules.
The above example exemplifies the advantage that our newly proposed utility measure

has to offer with respect to the previous measures. All the measures that rely only on the
public attributes, e.g. LM and MI measures, cannot distinguish between g1(D) and g2(D).
Hence, using the PMI measure may yield anonymized tables with greater utility for data
mining.

6 Algorithms for k-Anonymity

The problem of finding a k-anonymization of a given table with minimal information
loss is NP-hard. Several polynomial-time approximation algorithms were devised for this
problem. The first one [18] has an approximation guarantee of O(k log n) and runtime of
O(rn2 + n3) (for the case of suppressions only). The algorithm in [2] runs in time O(kn2)
and approximates the optimal solution to within O(k) (for the case of generalization by hi-
erarchical clustering). As k may be relatively large in practice, those approximation factors
might be unsatisfactory. A significant improvement was proposed in [10], with an O(log k)-
approximation algorithm that applies to any generalization and any measure. Alas, its run
time, O(n2k), renders it impractical. A more efficient O(log k)-approximation algorithm
was proposed in [21], but it is restricted only to generalizations by suppression.

TRANSACTIONS ON DATA PRIVACY 3 (2010)

Efficient Anonymizations with Enhanced Utility 159

Due to the poor performance and limitations of the provable approximation algorithms,
heuristical algorithms are invoked. In Section 6.2 we describe three classes of k-anonymization
algorithms, that include the most well known algorithms. Then, we proceed to describe in
Section 6.3 an alternative approach, based on sequential clustering, that we propose in this
context. As a preliminary discussion, we provide in Section 6.1 the basic definitions of
cluster closure and generalization cost, terms which are utilized by any k-anonymization
algorithm.

6.1 Generalization cost

Any k-anonymization induces a clustering of the records in D to clusters of size at least k.
Conversely, every clustering of D into clusters of size at least k induces a k-anonymization,
g(D), in the following manner. Assume that {Ri1 , . . . , Rim

} is one of the clusters. Then the
records Ri1 , . . . , Rim

in g(D) will be all equal, and their jth entry will be the minimal set
in Aj that includes the values Ri1(j), . . . , Rim

(j). We aim at finding such a clustering that
induces an optimal k-anonymization under a given measure of loss of information.

Let C = {C1, . . . , Ct} be a clustering of the records in D, where all clusters are of size
at least k. Such a clustering induces a k-anonymization g(D) of D. Letting Π be some
measure of information-loss, we proceed to define an anonymization cost, gc, for each of
the clusters, Ci, 1 ≤ i ≤ t. The generalization cost gc will be defined so that the information-
loss of the anonymization g(D) will be given by

Π(D, g(D)) =
1

n

t
∑

j=1

gc(Cj) · |Cj | . (19)

In other words, we wish to define gc so that the average over all n records in D of the gc
value of that record’s cluster will be the information-loss of the anonymization g(D) that is
induced by that clustering.

Let C be one of the clusters in C. Without loss of generality, we assume that C = {R1, . . . , Rm}.
The closure of C is the minimal generalized record R that generalizes every record in C.
Namely, for all 1 ≤ j ≤ r, R(j) is the minimal set in the collection Aj that includes all of the
values R1(j), . . . , Rm(j). In the anonymized table g(D) that corresponds to the clustering
C, all records in C will be replaced by the closure of C. Then the corresponding generaliza-
tion cost of C, gc(C), is the average information loss that is caused by replacing each of the
records in C by the generalized record R = (R(1), . . . , R(r)).

For example, for the LM measure, (3), we have

gcLM (C) =
1

r
·

r
∑

j=1

|R(j)| − 1

|Aj | − 1
. (20)

The generalization cost in that case is the same for all records that belong to the same
cluster. For the MI measure, (10), and the PMI measure, (14), on the other hand, the gen-
eralization cost may differ from one record to another in the same cluster. In the former, it
depends on the original public attributes in the record,

gcMI(C) = −
1

mr

m
∑

i=1

r
∑

j=1

log Pr(Xj = Ri(j)|Xj ∈ Ri(j)) ,

TRANSACTIONS ON DATA PRIVACY 3 (2010)

160 Jacob Goldberger, Tamir Tassa

while in the latter it depends on the private attribute in the record,

gcPMI(C) = −
1

mr

m
∑

i=1

r
∑

j=1

log
Pr(Y = Si|Xj ∈ Ri(j))

Pr(Y = Si|Xj = Ri(j))
.

6.2 Previous k-anonymity algorithms

Here we overview some of the prominent algorithms of k-anonymity. The survey is sepa-
rated to three sections, each one is devoted to a different type of algorithms.

6.2.1 Agglomerative algorithms

Agglomerative algorithms were proposed in [9, 20]. The basic idea in such algorithms is to
define a distance function dist(·, ·) between clusters, where the distance between two given
clusters is correlated with the change in the overall utility in case we unify them. With
such a definition of distance, agglomerative algorithms begin to build a clustering from the
bottom upwards. Namely, they start with the trivial clustering that consists of singleton
clusters and then keep unifying the two closest clusters until all clusters become larger
than k. A key ingredient in such algorithms is the definition of the distance function. It is
natural to define the distance so that it best fits the cost function of the k-anonymization.
We used in our experiments one of the distance functions that were proposed in [9],

dist(A, B) = |A ∪B| · gc(A ∪B)− |A| · gc(A) − |B| · gc(B) ,

which, in view of Equation (19), expresses the difference in the overall generalization cost
if we unify the clusters A and B.
A different agglomerative algorithm was considered in [5]. That algorithm, which was

called k-member clustering, selects one of the records as a center for a new cluster, and
then looks for the k − 1 closest records, where, as before, a distance between records is
defined in terms of the generalization cost, i.e.,

dist(Ri, Rj) = gc({Ri, Rj}) . (21)

The center record together with its k − 1 closest records are grouped together as a cluster,
and then the process continues similarly with the remaining records.

6.2.2 Top-down algorithms

The basic agglomerative algorithm is a bottom-up clustering algorithm. Another approach
in clustering is the top-down approach. The most well-known representative of that ap-
proach in k-anonymity is the Mondrian algorithm [15]. In that algorithm one starts with
the other trivial clustering, in which all records are placed in a single cluster, and then
keeps greedily splitting the clusters into smaller clusters until no further splits are possible
without violating the k-anonymity constraint.
The Mondrian algorithm assumes that each attribute is totally ordered, so that the table

records may be viewed as points in an r-dimensional space. The top-down approach is
then implemented by separating those points by means of cuts; a cut of an r-dimensional
domain A is a separation of that domain to two sub-domains along one of its dimensions,
where the two sub-domains are of the form {x ∈ A : xj ≤ a0} and {x ∈ A : xj > a0},
for some 1 ≤ j ≤ r. Hence, when the algorithm stops, the set of r-dimensional points is

TRANSACTIONS ON DATA PRIVACY 3 (2010)

Efficient Anonymizations with Enhanced Utility 161

separated to rectangular regions with boundaries of the form aj ≤ xj ≤ bj . That separation
defines the clustering. All points (records) within the same region (cluster) will be gener-
alized to the closure of that cluster. Here lies the main difference between this approach
and other clustering approaches that are not guided by geometry. In this approach, two
identical records will always be generalized in the same way (with the exception of records
that fall on the boundary between two regions and then we may choose to associate such
records with either of the two regions). Such a model of generalization is called global multi-
dimensional recoding. It falls between local and global recoding, in the sense that any global
recoding is a special case of global multidimensional recoding, which is a special case of
local recoding. Hence, local recoding is a more flexible generalization model than global
multidimensional recoding. As a result, it usually yields anonymizations with better utility,
as exemplified later in Section 8.1.

6.2.3 An algorithm based on space-filling curves

Even though the problem of optimal k-anonymity is NP-hard in general, it is possible to
solve it optimally and efficiently in polynomial time in the case of one-dimensional data, us-
ing dynamic programming [8]. Hence, a possible approach is to map the multidimensional
data to one-dimensional data, in a manner that attempts to preserve proximity, and then to
apply on the one-dimensional data the optimal k-anonymization algorithm. Space-filling
curves are good candidates for such mappings. Two types of such curves were examined
in [8]; one of them was the Hilbert space-filling curve [19], and it was found to yield the
best results. The Hilbert curve of order t maps all points of integral coordinates in the box
[0, 2t − 1]r to integers in the interval [0, 2tr − 1].
It turns out that such algorithms are extremely sensitive to the different ranges of the

attributes. Consequently, they tend to operate well when the ranges of all attributes are
similar, but may produce bad anonymizations otherwise. As a toy example, consider a
table that has the 4D-records that are listed in the left column of Table 1, where each one
of them appears exactly k/2 times (namely, there are n = 2k records in total). The second
column in the table gives the 1D-Hilbert curve mapping of the 4D-records. An optimal

original record 1D value re-scaled record modified 1D value
R1 = (0, 0, 0, 0) 0 (0, 0, 0, 0) 0
R2 = (1, 1, 1, 0) 9 (2, 2, 2, 0) 220
R3 = (0, 0, 0, 2) 118 (0, 0, 0, 2) 118
R4 = (1, 1, 1, 2) 123 (2, 2, 2, 2) 162

Table 1: 4D records and their Hilbert curve mappings

clustering of those 2k records would place the k/2 records that equal R1 together with the
k/2 records that equal R3 in one cluster, the closure of which would be (0, 0, 0, ∗), and the
remaining k records in a cluster whose closure is (1, 1, 1, ∗). The overall suppression cost
of such a clustering is 2k. However, as the Hilbert-curve induced order of those records is
R1, R2, R3, R4, the resulting clustering would put together the k records that equal R1 or
R2 in a cluster whose closure is (∗, ∗, ∗, 0), and the other k records in a cluster whose closure
is (∗, ∗, ∗, 2). The overall suppression cost in this case is 6k.
The reason for this malfunction lies in the mapping strategy of the Hilbert curve. It first

maps all points that are confined to the box [0, 21 − 1]4. Only then it takes the remaining
points in the larger box [0, 22 − 1]4, and so forth. Note that in the above example, R1 and

TRANSACTIONS ON DATA PRIVACY 3 (2010)

162 Jacob Goldberger, Tamir Tassa

R2 are from the smaller box, while R3 and R4 are outside that box. Therefore, even though
in the 4D space, the point R1 is closer to R3 than it is to R2 (in the sense of the distance
definition (21)), the Hilbert curve fails to preserve proximity in this case.
A simple way to improve the algorithm is to first rescale all attributes so that they range

along the same interval. If we stretch the first three attributes to range in the interval [0, 2],
just like the fourth attribute, we get the set of 4D-points and their 1D image as given in the
two right columns of Table 1. Applying the optimal k-anonymity algorithm on this 1D data
gives the sought-after optimal clustering for the original set of records.
We verified that such a preprocessing of the input records improves significantly the per-

formance of the Hilbert curve based anonymization algorithm also on real data. In the
experimental section we report the performance of the above described improved version
of the algorithm.

6.3 The sequential clustering algorithm

The most fundamental non-agglomerative clustering technique is K-means [16]. As the
number of clusters is unknown, but is bounded from above by ⌊n/k⌋, we may set K to a
number in the vicinity of that upper bound, select K random centers, and then use any of
the utility measures that were defined in the previous sections as the underlying metric. Al-
ternatively, we can apply a greedy sequential algorithm that can be viewed as a sequential
version of the K-means algorithm. The sequential greedy algorithm is known to perform
well in terms of both clustering quality and computational complexity [23].
The basic sequential algorithm starts with a random partition of the data into clusters and

then it keeps scanning the data points and attempts to improve their allocation to clusters
in order to increase the value of the underlying utility. Usually, when one looks for optimal
clustering of data, the number of clusters is given as an input. In such settings, the cluster-
ing algorithm will look for an optimal clustering that has the required number of clusters.
For example, agglomerative (bottom-up) algorithms will execute the merging process until
the desired number of clusters is obtained. As another example, the original sequential
clustering algorithm [23] will be initialized with a random clustering having the specified
number of clusters. However, in our k-anonymization clustering problem, the constraint
is on the size of the clusters rather than on their number. To cope with this constraint,
the scheduling of the sequential algorithm should be modified. We proceed to describe an
adaptation of the sequential algorithm for the problem of finding k-anonymizations with
high utility.
The sequential clustering algorithm starts with a random partition of the records into

clusters. Then, it goes over the n records in a cyclic manner and for each record checks
whether it may be moved from its current cluster to another one while increasing the utility
of the induced anonymization. Specifically, if Ri belongs currently to cluster Cj , then the
change in the information loss if we move it to another cluster Ch is (in view of (19)),

∆i:j→h =
1

n
· { [gc(Cj \ {Ri}) · (|Cj | − 1) + gc(Ch ∪ {Ri}) · (|Ch|+ 1)]− (22)

− [gc(Cj) · |Cj |+ gc(Ch) · |Ch|] } .

If that difference is negative, then we gain from such a transition. Therefore, in each step
of the algorithm we reexamine the current location of each of the records Ri in D and then
look for an alternative location (cluster) that provides the best improvement in terms of in-
formation loss. This loop may be iterated until either we reach a local optimum (i.e., a stage

TRANSACTIONS ON DATA PRIVACY 3 (2010)

Efficient Anonymizations with Enhanced Utility 163

in which no single-record transition offers an improvement) or the local improvements of
the utility become sufficiently small.
At this point, some of the clusters are large, in the sense that their size is at least k, while

others are small. If there exist small clusters, we apply the agglomerative algorithm on
those clusters in order to merge them into larger clusters of size k or more. Finally, if we are
left at the end with a single cluster that is small, we merge it with the closest large cluster.

The initial number of clusters in the random clustering is set to ⌊n/k0⌋ and the initial
clusters are chosen so that all of them are of size k0 or k0+1, where k0 = αk is an integer and
α is some parameter that needs to be determined. Then, during the sequential algorithm,
we allow the size of the clusters to vary in the range [2, ωk], for some predetermined fixed
parameter ω, where 1 < ω ≤ 2. When a cluster becomes a singleton, we remove it and place
that record in one of the other clusters where it fits best. If a cluster becomes too large (i.e.,
its size becomes larger than the upper bound ωk), we split it into two (almost) equal-sized
clusters in a random manner.

It is preferable to have in the final clustering clusters of size close to k, since larger clusters
imply lesser utility. One way of controlling the cluster sizes is by selecting properly the size
of the initial clusters, k0 = αk, and by selecting the upper limit of cluster size, ωk. Our tests
indicated that it is preferable to set α to a value smaller than 1 (namely, initially all clusters
are smaller than k), and to set ω to a value smaller than 2. In all of our tests we used α = 0.5
and ω = 1.5.

This approach is summarized in Algorithm 1.

Algorithm 1 Sequential clustering algorithm for k-anonymization

input Table D = {R1, . . . , Rn}, an integer k.
output A clustering of D into clusters of size at least k.

1: Choose a random partition of the data records into t := ⌊n/k0⌋ clusters of sizes either
k0 or k0 + 1. Denote the clusters by C1, . . . , Ct.

2: for i = 1, . . . , n do
3: Let Cj be the cluster to which record Ri currently belongs.
4: For each of the other clusters, Ch, h 6= j, compute the difference in the information

loss if we move Ri from Cj to Ch — ∆i:j→h.
5: Let Ch0

be the cluster for which ∆i:j→h is minimal.
6: If Cj is a singleton, move Ri from Cj to Ch0

and remove cluster Cj .
7: Else, if ∆i:j→h0

< 0, move Ri from Cj to Ch0
.

8: end for
9: If there exist clusters of size greater than ωk, split each of those clusters randomly into

two (almost) equal-sized clusters.
10: If at least one record was moved during the last loop, go to Step 2.
11: while the number of clusters of size smaller than k is greater than 1 do
12: Unify the two closest small clusters.
13: end while
14: If there exists a small cluster, unify it with the cluster to which it is closest.
15: Output the resulting clustering.

As there is no guarantee that such a procedure finds the global optimum, it may be re-
peated several times with different random partitions as the starting point, in order to find
the best local optimum among those repeated searches.

Note that the agglomerative algorithm is in fact a special case of this sequential algorithm

TRANSACTIONS ON DATA PRIVACY 3 (2010)

164 Jacob Goldberger, Tamir Tassa

that corresponds to the selection k0 = 1.

7 Supporting ℓ-Diversity

The notion of ℓ-diversity was introduced in [17] as an enhancement to k-anonymity. In
that model, each cluster of size at least k of indistinguishable records must be sufficiently
diverse, in the sense that it has at least ℓ “well-represented” distinct values in the private
attribute. The basic diversity measure that was suggested in [17] is the entropy: Given a
cluster of records, its diversity is the entropy of the distribution that it induces on the pri-
vate attribute; the diversity of the entire clustering is the minimal diversity over all clusters.
The entropy measure is hard to enforce in practice. Hence, a simpler measure of diversity
was proposed in [25, 26]. A cluster of records respects ℓ-diversity according to that mea-
sure, if the frequency of each of the private values in the cluster does not exceed 1/ℓ. All
definitions of ℓ-diversity are monotone in the following sense. Let C1 and C2 be two clus-
terings of the same set of records and assume that C1 is coarser than C2 (i.e., every cluster
in C1 is a union of clusters in C2). Then if C2 is ℓ-diverse, so is C1.
In this section we modify the basic sequential algorithm to respect also ℓ-diversity, accord-

ing to the latter definition of ℓ-diversity. Namely, the input to the modified algorithm will
consist of a public table D and its corresponding private table D′, together with two param-
eters – k and ℓ – and it will issue k-anonymizations of D||D′ that respect also ℓ-diversity.
The private value in each record is taken from the attribute domain Ar+1, see Equation

(2). Let us denote the values in Ar+1 by a1, . . . , am. Then the frequency of ai ∈ Ar+1 is

fi :=
|{1 ≤ j ≤ n : Sj = ai}|

n
.

Let ℓ0 be the inverse of the maximal frequency, i.e., ℓ0 = (maxi fi)
−1

. Owing to the above
discussed monotonicity of the diversity measure, all anonymizations of that table respect
ℓ-diversity only if ℓ ≤ ℓ0.
In practice, in order to avoid anonymizations which are too coarse (namely, ones in which

the clusters are much too large, whence they carry very small utility), it might be necessary
to take ℓ which is strictly smaller than ℓ0. To exemplify that, let us consider the case of
a binary private attribute, Ar+1 = {0, 1}, and assume that among the n records in the
table, h records have the private value 0 and n − h records have the private value 1. If
h ≥ n − h then ℓ0 = n/h. Let us attempt to split the table into two clusters, each of
which still respects ℓ0-diversity. Let p and q denote the number of 0 records and 1 records,
respectively, in the first of the two clusters. It is easy to see that such a split respects ℓ0-
diversity if and only if p(n− h) = qh. Since p and q must be integers in the range 0 ≤ p ≤ h
and 0 ≤ q ≤ n − h, it is possible that the only integral solutions of that equation are
(p, q) = (0, 0) or (p, q) = (h, n − h). In that case, such a split is just the trivial split, where
one of the clusters is empty and the other one contains the entire table. Hence, the only
anonymization that respects ℓ0-diversity in this case is the one in which all records are
clustered together; in such an anonymized table, all records are totally suppressed.
In what follows, we describe a modification of Algorithm 1 that respects also ℓ-diversity.

The modified algorithm is given in Algorithm 2.
In Step 1 of Algorithm 1, we created a random partition of the data records to t clusters of

(almost) equal size. In Algorithm 2, we create a random partition so that the distribution of
the private attribute in each of the t clusters is as close as possible to its distribution in the

TRANSACTIONS ON DATA PRIVACY 3 (2010)

Efficient Anonymizations with Enhanced Utility 165

entire table. A strategy for performing such splits is described in Algorithm 3 in Section
7.1.
Let C1, . . . , Ct be the resulting clusters and let pj

i denote the number of records in Cj that
have the sensitive value ai, 1 ≤ j ≤ t, 1 ≤ i ≤ m. The diversity in Cj is div(Cj) :=
(

maxi pj
i/|Cj |

)−1

. Then the initial clustering is ℓ1-diverse with ℓ1 := minj div(Cj). As

discussed above, ℓ1 is no larger than ℓ0, which is the diversity of the whole table. However,
thanks to the splitting strategy that is described in Section 7.1, ℓ1 is close to ℓ0, since the
splitting strategy attempts to preserve in each cluster the global private distribution, as
much as possible.
We assume hereinafter that ℓ – the input parameter that indicates the required level of

diversity for the output anonymization, is no larger than ℓ1. As ℓ must be no larger than
ℓ0, and ℓ1 is close to ℓ0 (as implied by the splitting strategy and as indicated also by our
experiments), this assumption is reasonable. In case the input parameter ℓ is larger than ℓ1,
we output the trivial clustering that consists of one cluster that includes all records (Step
3).
After computing the initial clustering, which by our assumption is ℓ-diverse, we proceed

with the normal operation of the algorithm, while making sure that we do not create a
cluster with diversity smaller than ℓ. By doing so, we guarantee that all intermediate clus-
terings are also ℓ-diverse, and, consequently, so is the final output.
There are three types of operations that are made on the clustering during the sequential

clustering:

1. Transitions of records from one cluster to another.

2. Splitting of large clusters.

3. Unification of small clusters.

As for record transitions, Algorithm 2 performs such an action only if it does not violate
ℓ-diversity in neither the originating cluster, nor in the destiny cluster. Specifically, we
consider the option of moving a record from a cluster Cj only if such a removal would not
decrease the diversity of Cj to below ℓ; if it would, we move on to the next record (Step 6).
Otherwise, we look for a better cluster for that record only among those clusters that can
receive that record without violating ℓ-diversity (Steps 7-12).
The operation of unifying small clusters (Steps 17 and 19) needs no further testing, since

the unification of two ℓ-diverse clusters is also ℓ-diverse. Hence, we are left with the prob-
lem of splitting large clusters to smaller clusters. Here, whenever we receive a large cluster
that needs to be split, we apply on it the splitting strategy that is described in Section 7.1;
namely, the same strategy that we applied on the entire table in order to split it to t clusters,
may be applied also on a given large cluster in order to split it to two clusters. If the re-
sulting two clusters have diversity which is at least ℓ, then we were successful. However, if
one of the resulting clusters has a diversity smaller than ℓ, we do not split the large cluster
(Step 14).
This approach is described in Algorithm 2. We proceed to describe the splitting procedure,

Algorithm 3.

7.1 A splitting strategy that retains diversity

Let D||D′ = {R1||S1, . . . , Rn||Sn} be a set of records that needs to be split into t (almost)
equal-sized clusters such that the distribution of the private values Si in each of those clus-

TRANSACTIONS ON DATA PRIVACY 3 (2010)

166 Jacob Goldberger, Tamir Tassa

Algorithm 2 Sequential clustering algorithm for k-anonymization and ℓ-diversity

input Table D||D′ = {R1||S1, . . . , Rn||Sn}, an integer k, a real parameter ℓ ≥ 0.
output A clustering of D||D′ into clusters of size at least k that respect ℓ-diversity.

1: Compute ℓ0 = div(D||D′). If ℓ > ℓ0 stop and output “Input diversity parameter is
illegal”.

2: Call Algorithm 3 with inputs D||D′, and t := ⌊n/k0⌋. The algorithm returns a partition
of the data records into t clusters, C1, . . . , Ct, of sizes either k0 or k0 + 1.

3: Compute ℓ1 = min1≤i≤t div(Ci). If ℓ > ℓ1 stop and output the trivial clustering {D||D′}.
4: for i = 1, . . . , n do
5: Let Cj be the cluster to which record Ri||Si currently belongs.
6: If div(Cj \ {Ri||Si}) < ℓ continue to the next i.
7: Find the set of clusters B := {Ch : h 6= j, and div(Ch ∪ {Ri||Si}) ≥ ℓ}.
8: If B = ∅, continue to the next i.
9: For all Ch ∈ B, compute the difference in the information loss if we move Ri||Si from

Cj to Ch — ∆i:j→h.
10: Let Ch0

be the cluster for which ∆i:j→h is minimal.
11: If Cj is a singleton, move Ri||Si from Cj to Ch0

and remove cluster Cj .
12: Else, if ∆i:j→h0

< 0, move Ri||Si from Cj to Ch0
.

13: end for
14: For each cluster Cj where |Cj | > ωk, call Algorithm 3 with inputs Cj and 2. If the two

resulting clusters respect ℓ-diversity, replace Cj with them; otherwise, retain Cj .
15: If at least one record was moved during the last loop, go to Step 4.
16: while the number of clusters of size smaller than k is greater than 1 do
17: Unify the two closest small clusters.
18: end while
19: If there exists a small cluster, unify it with the cluster to which it is closest.
20: Output the resulting clustering.

ters will be as close as possible to the distribution in the entire set. Recall that the sensitive
values are taken from the domain Ar+1 = {a1, . . . , am}.
Let ℓ denote the diversity of D′. Namely, if pj is the number of occurrences of aj in D′,

then max1≤j≤m pj = n/ℓ. Given an integer t ≥ 2, the goal is to split D′ into t disjoint
subsets, D′ =

⋃

1≤i≤t D′
i, such that the frequency of each aj in each subset will be no larger

than 1/ℓ, and the subset sizes will be as close as possible, in the sense that the difference
between the sizes of the largest and smallest subsets is minimal. We may formalize this
problem as a problem of integer linear programming. The goal is to find mt integers, {xi,j :
1 ≤ i ≤ t, 1 ≤ j ≤ m}, where xi,j is the number of occurrences of aj in D′

i, such that

1.
∑t

i=1 xi,j = pj , 1 ≤ j ≤ m (consistency);

2. xi,j ≤
1
ℓ ·

∑m
j=1 xi,j , 1 ≤ i ≤ t, 1 ≤ j ≤ m (ℓ-diversity condition);

3.
∑m

j=1 x1,j ≥
∑m

j=1 x2,j ≥ · · · ≥
∑m

j=1 xt,j (monotonicity);

4.
∑m

j=1 x1,j −
∑m

j=1 xt,j is minimized (target function).

The last minimality condition is requested because in the original sequential algorithm the
set of records was split to equal-sized subsets; also, if we remove that minimality condition,
then the trivial split, where D′

1 = D′ and D′
i = ∅ for all i > 1, will be a feasible solution.

TRANSACTIONS ON DATA PRIVACY 3 (2010)

Efficient Anonymizations with Enhanced Utility 167

This linear program has the following non-integral solution,

xi,j =
pj

t
, 1 ≤ i ≤ t , 1 ≤ j ≤ m . (23)

But, as we seek an integral solution, the number of possible roundings is typically expo-
nential and consequently the integer linear program is NP-hard. Therefore, we select at
random one of the possible rounded solutions. To that end, we define:

yi,j =







⌈pj

t

⌉

1 ≤ i ≤ pj mod t ,

⌊pj

t

⌋

pj mod t + 1 ≤ i ≤ t .
(24)

Then, in order to select at random one of the possible rounded solutions in the neighbor-
hood of the optimal non-integral solution (23), we select for each 1 ≤ j ≤ m a random
permutation πj on {1, . . . , t}, and then set

xi,j = yπj(i),j , 1 ≤ i ≤ t , 1 ≤ j ≤ m . (25)

This procedure is summarized in Algorithm 3.

Algorithm 3 ℓ-diversity respecting splitting procedure

input A set of records D||D′ = {R1||S1, . . . , Rn||Sn}, an integer t.
output A clustering of D||D′ into t (almost) equal-sized clusters while attempting to pre-

serve in each cluster the overall distribution of the private values in D||D′.
1: Compute m, the number of distinct private values in D′, and {p1, . . . , pm}, the number

of occurrences of those values in D′.
2: For each 1 ≤ j ≤ m generate an independent and random permutation πj on {1, . . . , t}.
3: For all 1 ≤ i ≤ t and 1 ≤ j ≤ m compute xi,j using Eqs. (24)+(25) and πj .
4: for i = 1, . . . , t do
5: Set Ci = ∅.
6: for j = 1, . . . , m do
7: Select at random xi,j records from D||D′ with private value that equals the jth

private value. Add them to Ci and remove them from D||D′.
8: end for
9: end for

10: Output C1, . . . , Ct.

As πj is selected at random, we get that the expected value of xi,j is

E(xi,j) =
⌈pj

t

⌉

· θj +
⌊pj

t

⌋

· (1− θj) , θj :=
pj mod t

t
.

Therefore, the expected value of the size of the ith cluster is

E





m
∑

j=1

xi,j



 =

m
∑

j=1

(⌈pj

t

⌉

· θj +
⌊pj

t

⌋

· (1− θj)
)

. (26)

As the right hand side in Equation (26) is independent of i, we see that the expected size of
all clusters is the same. Hence, such a heuristic solution complies with our attempt to split
the original set of records into clusters of similar sizes.

TRANSACTIONS ON DATA PRIVACY 3 (2010)

168 Jacob Goldberger, Tamir Tassa

We would like to note that there exist more advanced algorithms for solving integer linear
programs, e.g. the branch and bound or branch and cut methods. Such methods may be
applied in the invocation of the splitting procedure in Step 1 of Algorithm 1, where the
entire table is split to the initial clusters, since that stage occurs only once. However, it is
too costly to apply such methods whenever we need to split a large cluster to two, since
such splits occur many times throughout the execution of Algorithm 1.

8 Experiments

In Section 8.1 we describe experiments that demonstrate the advantages of the sequential
clustering algorithm over other well known k-anonymization algorithms. In Section 8.2
we report additional experiments that examined properties of the sequential clustering.
Section 8.3 is devoted to experimentation of the modified sequential clustering that respects
ℓ-diversity. In Section 8.4 we describe the experiments that compare our proposed PMI
measure to the MI measure.

8.1 Comparing the sequential to other k-anonymity algorithms

We tested the sequential clustering algorithm versus the following algorithms that we de-
scribed in Section 6.2: The Mondrian algorithm, the agglomerative algorithm, k-member
algorithm due to Byun et al., and the improved Hilbert-curve algorithm. The experiments
were conducted on the dataset Adult from the UCI Machine Learning Repository.2. That
dataset was extracted from the US Census Bureau Data Extraction System. It contains de-
mographic information of a small sample of US population with 14 public attributes such
as age, education-level, marital-status, occupation, and native-country. The private infor-
mation is an indication whether that individual earns more or less than 50 thousand dollars
annually. The Adult data contains 45,222 records after tuples with missing values are re-
moved. The algorithms were implemented in C and ran on a Pentium (R) 4 CPU 3.40 GHz,
1.49 GB of RAM.
In the experiments that we report herein we restricted our attention to generalization by

suppression. In addition, we implemented a non-repetitive version of the sequential al-
gorithm, since, as we report later on, the repetitive version that performs the sequential
clustering several times, each time starting with a different random initial clustering, does
not offer a significant improvement in the results. We ran each of the five algorithms with
seven values of the anonymity parameter, k = 10, 20, 30, 40, 50, 75, 100. The LM-utility
results are given in Figure 1. (The plot does not include a curve for the agglomerative al-
gorithm since it issued results almost identical to those of the sequential algorithm.) The
corresponding runtimes are given in Figure 2. (Here we do not include the runtime of the
agglomerative algorithm since it was much higher than that of the other algorithms.)
We tested also the scalability of the algorithms. We ran them on extracts of different sizes

from the Adult dataset. The runtimes (for the case k = 50) are shown in Figure 3.
We see that the sequential and agglomerative algorithms offer the best results in terms

of utility, while the algorithm due to Byun et al. offers similar results, with only slightly
smaller utility values. Those three algorithms significantly outperform the Mondrian and
the improved Hilbert algorithms. In terms of runtime, the latter two are much faster than
the first three. From among the first three algorithms, the sequential algorithm offers the

2http://mlearn.ics.uci.edu/MLSummary.html

TRANSACTIONS ON DATA PRIVACY 3 (2010)

Efficient Anonymizations with Enhanced Utility 169

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Anonymity level (k)

 In
fo

rm
at

io
n

lo
ss

Mondrian
Hilbert
Byun
Sequential

Figure 1: Algorithm comparison – utility

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

Anonymity level (k)

 r
un

tim
e

(s
ec

on
ds

)

Mondrian
Hilbert
Byun
Sequential

Figure 2: Algorithm comparison – runtime

best runtime for most values of k. The runtime of the agglomerative and k-member algo-
rithms remains O(n2), almost independently of k. The runtime of the sequential algorithm,
on the other hand, decreases with k. Since the number of clusters is O(n/k), then each
pass over all records in the table involves O(n2/k) computations of utility gain by moving
a record from one cluster to another. The faster than O(1/k) decrease in the runtime stems
from the fact that the number of iterations also reduces with k. Since, in practice, higher val-
ues of k are required for greater privacy, the advantage offered by the sequential algorithm
over the agglomerative and k-member algorithms in terms of runtime is prominent.

8.2 Additional testing of the sequential clustering algorithm

In the previous section we used a non-repetitive version of the sequential algorithm, since
the algorithm exhibits very weak dependence on the random choices that it makes. In the
next set of experiments, we ran the sequential algorithm ten times on the same input with

TRANSACTIONS ON DATA PRIVACY 3 (2010)

170 Jacob Goldberger, Tamir Tassa

10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

data size (thousands of records)

 r
un

tim
e

(s
ec

on
ds

)

Mondrian
Hilbert
Byun
Sequential

Figure 3: Algorithm comparison – scalability

the same value of k. Table 2 shows the minimal value of the LM cost measure, the average
value and the standard variation along those ten repetitions. As can be seen, while repeated
runs do converge to different local minima, the change in the utility of the output is small.
Hence, repeated runs may be attempted, but they probably might not lead to a significant
improvement over the results of the non-repetitive version.

k minimum average standard deviation
10 0.298 0.302 0.03
20 0.338 0.340 0.03
30 0.361 0.364 0.03
40 0.378 0.380 0.03
50 0.390 0.394 0.03
60 0.416 0.419 0.04

100 0.433 0.439 0.04

Table 2: LM results over repeated runs of sequential clustering

Next, we tested the dependence of the runtime of the algorithm on the dimension r, which
is the number of quasi-identifiers. We ran the sequential clustering algorithm on extracts
of 5,8,11 and 14 quasi-identifiers from the Adult dataset (the original number of attributes
is 14). Figure 4 shows the runtime as a function of r for k = 20 and k = 50. As expected,
the dependence is roughly linear.

8.3 Testing the diversity-respecting version of the algorithm

We implemented the modified version of the sequential clustering algorithm that was de-
scribed in Section 7 in order to examine the effects of adding the diversity constraint on the
utility of the output anonymization.
The Adult database has a binary private attribute. Out of 45222 records, 11208 records

have a zero private value and 34014 have one as their private value. Hence, the table
respects ℓ0-diversity with ℓ0 = 1.3295. We ran the modified version of the sequential clus-
tering algorithm on the Adult database with several values of the diversity parameter ℓ.

TRANSACTIONS ON DATA PRIVACY 3 (2010)

Efficient Anonymizations with Enhanced Utility 171

4 6 8 10 12 14
5

10

15

20

25

30

35

40

45

50

dimension

 r
un

tim
e

(s
ec

on
ds

)

k=20
k=50

Figure 4: Runtime versus dimension

Figure 5 shows the resulting LM information loss values when the value of k was set to
k = 50. Each point on the curve corresponds to one experiment, where the horizontal co-
ordinate indicates the resulting measure of diversity of the output (namely, the diversity
of the least diverse cluster in the output), while the vertical coordinate indicates the LM
information loss. As can be seen, when ℓ = 1 (namely, when no diversity restriction is
imposed), we recover the result of the basic algorithm, as reported earlier in Figure 1. (In
both experiments the information loss was roughly 0.4; the slight difference stems from
the randomness of the algorithm.) The quality of the output, in terms of the LM informa-
tion loss, decreases when the diversity demand increases. The highest level of diversity
is very close to the theoretical bound of ℓ0 = 1.3295. The information loss in the most
diverse anonymization is still smaller than the information loss of the output of the mod-
ified Hilbert and the Mondrian algorithms (as reported in Figure 1) in which no diversity
demands were imposed.

As another illustration of the dependence of the information loss on diversity we repeated
the above experiment when the education attribute was considered sensitive and the re-
maining 13 attributes served as the public ones. The education attribute has 16 possible
values, among which ‘Bachelors’, ‘Some-college’ and ‘HS-grad’ are relatively frequent. The
entire table respects ℓ0-diversity with ℓ0 = 3.06. Figure 6 shows the resulting LM informa-
tion loss values when the value of k was set to k = 50. The information loss in the most di-
verse anonymization is similar to the information loss of the output of the modified Hilbert
algorithm (0.645) and less than the Mondrian (0.735) in which no diversity demands were
imposed.

8.4 Comparing the PMI and MI measures

After establishing the superiority of sequential clustering over agglomerative clustering,
we proceeded to test the PMI utility measure and compare it to the MI measure. We exem-
plify the effects of using the PMI utility measure, as compared to the MI measure, through
the entropy diversities of the anonymized clusters. Given a cluster of anonymized records,
its entropy diversity is the entropy of the distribution that it induces on the private attribute
[17]. For example, if all records in that cluster have the same private value then that clus-

TRANSACTIONS ON DATA PRIVACY 3 (2010)

172 Jacob Goldberger, Tamir Tassa

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35
0.4

0.45

0.5

0.55

0.6

0.65

l−diversity

 In
fo

rm
at

io
n

lo
ss

Figure 5: Information loss versus the diversity of the anonymization

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

l−diversity

 In
fo

rm
at

io
n

lo
ss

Figure 6: Information loss versus the education-diversity of the anonymization

ter’s diversity is zero; but if, on the other hand, all records have a unique private value
then the diversity is log m where m is the cluster size. On one hand, we wish to arrive at a
clustering in which every cluster has a low diversity since that would indicate a strong cor-
relation between the generalized public data and the private data. On the other hand, a too
low diversity (that helps learning) might jeopardize the privacy of the individuals in that
cluster. Therefore, Machanavajjhala et. al. [17] suggested to impose a minimal diversity as
a privacy measure.
We ran the sequential clustering on the Adult database with a weighted MI measure,

UwMI = w · UMI + (1− w) · UPMI ,

with w = 0, .25, .5, .75, 1, for k = 50, 75, 100. The average diversities of the resulting cluster-
ings in each of those cases are shown in Table 3.
We see that when w = 0 (which corresponds to the PMI measure) the correlation between

the generalized public data and the private one is much stronger than in the case w = 1

TRANSACTIONS ON DATA PRIVACY 3 (2010)

Efficient Anonymizations with Enhanced Utility 173

k\w 0 0.25 0.5 0.75 1
50 0.07 0.14 0.31 0.51 0.54
75 0.08 0.14 0.32 0.51 0.56

100 0.08 0.15 0.34 0.54 0.58

Table 3: Average diversities for different values of k and w.

(which corresponds to the MI measure). Hence, it is apparent that anonymizations that
were obtained by using the PMI measure clearly are more valuable for mining association
rules.

It should be pointed out that in all of our experiments (either with the above UwMI mea-
sures, for all values of w, or with other measures such as the LM) there were clusters with
zero diversity. Hence, the problem that was identified in [17] does occur, regardless of
the utility measure (or the clustering algorithm). Hence, it is necessary to impose also ℓ-
diversity, as described in Section 7. Therefore, using the PMI measure, as opposed to the
MI or other utility measures, could help minimizing the diversities, within the ℓ-diversity
condition, and hence increase the utility of the resulting anonymized tables.

9 Conclusions

In this study we proposed the private mutual information (PMI) utility measure that aims
at maximizing the correlation between the generalized public data and the private data.
We showed that this measure is much more adequate for the purposes of data mining that
aims at finding association rules to predict the private data from the public data. We then
described the sequential clustering algorithm. That algorithm, which is independent of
the underlying utility measure, appears to be the algorithm of choice for efficiently finding
k-anonymizations with high utility, as indicated by experimental comparison with other
popular algorithms.

In a recent work [24], other significant advantages of the sequential clustering algorithm
were demonstrated. That study considered the problem of k-anonymizing distributed
databases. Given a database that is partitioned between several sites, either horizontally or
vertically, it is required to devise secure distributed anonymization algorithms that allow
the different sites to obtain a k-anonymized view of the union of their databases, without
disclosing sensitive information. The algorithms in [24] are based on the sequential cluster-
ing algorithm, which offers anonymizations with utility that is significantly better than that
offered by previous algorithms that were implemented in the distributed setting (the Mon-
drian algorithm [15] and the approximation algorithm of [18]). The distributed versions of
the sequential algorithm apply to any number of sites, any generalization technique and
any utility measure, and can support ℓ-diversity. The most important advantage of basing
the distributed algorithm on sequential clustering is that such a solution relies on minimal
cryptographic assumptions, as opposed to previous distributed algorithms that depend on
costly cryptographic primitives.

Our initial experiments regarding the diversity show that the PMI measure is much more
suitable when the goal is to achieve anonymizations from which association rules or meth-
ods of predicting the private data from the public data can be mined. A more thorough
experimental validation of this claim will proceed as follows: We intend to obtain several k-
anonymizations of the same table using different measures of information-loss. Then each

TRANSACTIONS ON DATA PRIVACY 3 (2010)

174 Jacob Goldberger, Tamir Tassa

of those tables will be used either for mining association rules or for the computation of a
classifier. Our conjecture, which is supported by our initial experiments that we reported
here, is that the PMI-related table will produce a set of association rules which is closer to
the set of association rules that can be mined from the original table; also, the PMI-derived
classifier is believed to be more accurate than a classifier that is based on anonymizations
that are based on other measures of information-loss.

References

[1] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy, D. Thomas, and A. Zhu. Achiev-
ing anonymity via clustering. In PODS, 2006.

[2] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and A. Zhu.
Approximation algorithms for k-anonymity. J. of Privacy Tech., 2005.

[3] R. Agrawal and R. Srikant. Privacy-preserving data mining. ACM SIGMOD Record, 29(2), 2000.

[4] R. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In ICDE, 2005.

[5] J.W. Byun, A. Kamra, E. Bertino, and N.Li. Efficient k-anonymization using clustering tech-
niques. In DASFAA, 2007.

[6] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley, New York, 1991.

[7] J. Domingo-Ferrer and V. Torra. A critique of k-anonymity and some of its enhancements. In
ARES, 2008.

[8] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis. A framework for efficient data anonymization
under privacy and accuracy constraints. ACM Trans. Database Syst., 34, 2009.

[9] A. Gionis, A. Mazza, and T. Tassa. k-Anonymization revisited. In ICDE, 2008.

[10] A. Gionis and T. Tassa. k-Anonymization with minimal loss of information. IEEE Trans. Knowl.
Data Eng., 21, 2009.

[11] V. Iyengar. Transforming data to satisfy privacy constraints. In SIGKDD, 2002.

[12] B. Kenig and T. Tassa. A practical approximation algorithm for optimal k-anonymity. Submitted.

[13] D. Kifer and J. Gehrke. Injecting utility into anonymized datasets. In ICDM, 2006.

[14] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Incognito: efficient full-domain k-anonymity. In
ACM-SIGMOD International Conference on Management of Data (SIGMOD), pages 49–60, 2005.

[15] K. LeFevre, David J. DeWitt, and R. Ramakrishnan. Mondrian multidimensional k-anonymity.
In International Conference on Data Engineering (ICDE), 2006.

[16] S.P. Lloyd. Least square quantization in PCM. IEEE Transactions on Information Theory, 28(2):129–
137, 1982.

[17] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. l-Diversity: privacy
beyond k-anonymity. In ICDE, 2006.

[18] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In PODS, 2004.

[19] B. Moon, H. Jagadish, and C. Faloutsos. Analysis of the clustering properties of the Hilbert
space-filling curve. The New England Journal of Medicine, 13(1):124–141, 2001.

[20] M. E. Nergiz and C. Clifton. Thoughts on k-anonymization. In ICDE Workshops, 2006.

[21] H. Park and K. Shim. Approximate algorithms for k-anonymity. In SIGMOD, 2007.

[22] P. Samarati and L. Sweeney. Generalizing data to provide anonymity when disclosing informa-
tion (abstract). In PODS, 1998.

[23] N. Slonim, N. Friedman, and N. Tishby. Unsupervised document classification using sequential
information maximization. In ACM SIGIR, 2002.

TRANSACTIONS ON DATA PRIVACY 3 (2010)

Efficient Anonymizations with Enhanced Utility 175

[24] T. Tassa, I. Tamir, and E. Gudes. Secure distributed computation of anonymized views of shared
databases. Submitted.

[25] R.C.W. Wong, J. Li, A.W.C. Fu, and K. Wang. (α, k)-anonymity: An enhanced k-anonymity
model for privacy preserving data publishing. In KDD, pages 754–759, 2006.

[26] X. Xiao and Y. Tao. Anatomy: Simple and Effective Privacy Preservation. In International Con-
ference on Very Large Data Bases (VLDB), 2006.

TRANSACTIONS ON DATA PRIVACY 3 (2010)

