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ABSTRACT

In this thesis we present alternative statistical models of phonetically based seg-
ments for use in continuous speech recognition. Segment models as opposed to
hidden Markov models treat an entire phonetic segment as a single entity. This
approach aims to capture the local behavior and statistical dependencies, as well as
the long term variability existing in the acoustic feature sequence used to represent
the speech waveform. The random trajectory segmental modeling approach tries to
achieve these modeling goals by describing the mean trajectory of a phonetic unit
along time as a random process instead of a fixed parameter. The main part of this
work analyzes the short-comings of random trajectory segmental models suggested
in the past and presents models that hopefully function better.

Random segmental models that have been proposed suffer from modeling prob-
lems caused by the fact that segment realizations of the same phone differ in length.
A study described here shows the benefits of rescaling the model parameters ac-
cording to the segment length. In the rescaled model the variance of the random
mean trajectory is inversely proportional to the segment length. It is shown that,
unlike previously suggested models, each frame contributes the same amount of in-
formation during the mean trajectory estimation process. A technical advantage
of rescaling is the much simplified parameter estimation procedure. In a rescaled
model there is no need to approximate the target function or to use an iterative
procedure in order to find the maximum likelihood estimate. Instead, a closed form
can be obtained. Phonetic classification experiment results support this approach.
It was found that rescaling the model can improve recognition rate.

In order to capture the local dynamic behavior of speech, we propose a non-
parametric description of the mean trajectory. This model does not impose any
smooth structure on the random mean trajectory. Instead, it represents it by speci-
fying a list of sample points along time. Classification experiments demonstrate the

importance of modeling the local dynamic behavior.

The coarticulation effect approves the usage of triphone models. We concentrate
on a segmental model which is based on a description of the mean trajectory along
the feature space. We present a method for constructing a synthetic mean trajectory

for each triphone context in order to enable model sharing across triphones.
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Chapter 1

Introduction

1.1 Automatic Speech Recognition

Today, as the twentieth century draws to a close, it is argued that computers can per-
form most data processing tasks more accurately and quickly than humans. There
are, however, areas where the human mind still outperforms automated machines.
Processing human language is still an intriguing challenge in computer science. For
example, we have yet to develop an automatic procedure for translation from one
language to another which yields results comparable to that of a professional human
translator. One explanation for the exceptional difficulties in automatic manipula-
tion of human language is that language is not only a means of communication
between individuals but an outgrowth of human perception. This idea was formu-
lated by Ludwig Wittgenstein in his book Tractatus Logico Philosophicus in the
famous phrase : “the limits of my language mean the limits of my world”. In au-
tomatic speech recognition there is another level of complexity. In addition to the
philosophical and linguistic problems, there is the technical problem of extracting
the linguistic information from the acoustic waveform. Most of the information con-

veyed in recorded speech is irrelevant and can even be misleading for the purpose of



automatic determination of the word transcription from a given utterance.

The progress in computer architecture over the past twenty years has encouraged
the interest in a new research area which deals with developing accurate speech
recognition systems. A speech recognition system is composed of several elements.
The first element is signal processing. The recorded speech waveform is processed in
order to extract a sequence of feature vectors that preserve the linguistic information
incorporated in the signal which is necessary for recognition. The feature vectors are
associated with phonetic units of the language via acoustic models that describe how
abstract linguistic elements are represented by acoustic events. Another element of
speech recognition is the formulation of efficient algorithms that operate on an entire
sentence. These algorithms integrate the local information obtained from acoustic
models in order to find the best word transcription of the recorded waveform. Other
knowledge sources can be integrated in the system. The most important source is
language modeling. Knowledge of grammatical rules and the statistics of words in
the language can greatly reduce the uncertainty about the message conveyed in the
speech signal.

Speech recognition is largely focused on acoustic modeling. The modeling diffi-
culty is caused by the fact that on the one hand a model is expected to exhibit a
precise and informative description of the data. On the other hand, however, the
acoustic model must be relaxed enough to manage the acoustic variability exhibited
by different speakers, dialects, recording equipment and adverse conditions. Several
approaches to acoustic modeling have been proposed over the last twenty years.
The template based approach was the first to be suggested. This approach is based
on the Dynamic Time Warping (DTW) algorithm [60]. An unknown utterance is
compared against a list of pre-recorded words in order to find the best match. A
drawback of template comparison is that there is no attempt to understand the
structure of the speech. Therefore, there is no possibility of generalizing the in-
formation conveyed in the template to various speech situations. This approach,

however, is still the best known in scenarios of user dependent, small vocabulary,



isolated word recognition systems where there is a demand for training a word from
a small number of occurrences. In recent years there has been an attempt to model
speech acoustics using artificial neural networks. Neural networks are well suited for
acoustic scoring, as they can accept continuous valued inputs without making any
assumption as to the parametric shape of the density function. The most successful
approach for acoustic modeling is, however, the statistical one. The introduction of
hidden Markov models (HMM) into speech recognition in the late seventies [2] was
a revolutionary step. Today HMM is the dominant paradigm in the area and most
state-of-the-art large vocabulary systems are HMM based.

The enormous success of HMM caused a reaction of critical analysis of the short-
comings that still remain in this approach. The HMM presents a considerable suc-
cess in automatic segmentation of speech into a sequence of phonetic-acoustic events.
Mixture densities HMM is a relaxed and flexible model that can survive speech vari-
ability. The local acoustic modeling of HMM, however, suffers from the fact that the
frame serves as the basic modeling unit. A frame oriented point of view is too local.
Many speech effects last for an entire utterance or at least along the pronunciation
of a phonetic unit. The HMM theory does not provide tools for modeling effects
that remain fixed over a sequence of consecutive frames.

In this thesis we shall discuss in detail the shortcomings of HMM. We present
the segmental modeling approach which intends to overcome these shortcomings by
modeling an entire acoustic event as a single entity. In this study we concentrate on
a particular family of segmental models known as random segmental models. The
essence of random models is treating the mean trajectory along the feature space
as a random process instead of a fixed parameter. It is assumed that this random
process is updated at a slower rate than the frame producing rate and therefore it
preserves the long term variability of the speech signal. The main part of this work
analyzes the short-comings of random models suggested in the past and suggests

random models that hopefully function better.



1.2 Thesis Outline

The first two chapters of this thesis provide some essential background and a sum-
mary of related work in speech recognition. Chapter 2 describes the hidden Markov
model and explains how it is trained and used in speech recognition tasks. Chapter 3
describes the segmental modeling concept and reviews segmental models which are
related to our work. The remainder of this thesis describes our own research on
random segmental models. Chapter 4 presents alternative algorithms for training
the random segmental model and introduces the concept of scaled random model-
ing. Chapter 5 extends the random segmental theory to the case of non-parametric
representation of the mean trajectory. Chapter 6 presents a method for sharing
segmental models, which describe the mean trajectory, across triphone contexts.

Chapter 7 draws overall conclusions and suggests possible future work.



Chapter 2

Hidden Markov Models

In this chapter we shall present the concept of hidden Markov models (HMM), which
is the predominant technique employed in automatic speech recognition. We shall
first define the probabilistic model and present algorithms for decoding. Then, we
re-derive the Baum-Welch training algorithm which can be considered a special case
of the EM algorithm. Finally, we shall discuss how the speech recognition problem
can be handled with HMM.

2.1 The Hidden Markov Model

A Hidden Markov Model(HMM) is a parametric probabilistic model that was found
to be suitable for describing speech events. One of the reasons for the success
of HMMs in speech recognition tasks is the existence of computationally efficient
algorithms for decoding a given unknown utterance and for estimating the model
parameters. The performance of speech recognizers that employ hidden Markov
modeling has been proven superior to alternative recognition methods in a variety
of real life applications, and in particular for speaker independent large vocabulary

recognition tasks. HMM was introduced by Baum [3] in the early seventies. The



first implementation of HMM for speech recognition was conducted by Baker [2]
and the IBM Speech Group [36]. This chapter includes a brief survey of the HMM
theory. A detailed treatment of the hidden Markov model and its applications can
be found in [53] [55] [32].

A discrete stochastic process has a Markovian distribution if the conditional
probability of the current event, given all the past events, depends only on the most
recent event. The probability of a sample sequence from a Markovian source can be

written as :

P(s1, 0 5n) = p(51)p(s251) - - p(8n]5n-1)

A stochastic process x has a hidden Markov distribution, if there exists a Markov

process s such that the probability of  can be written as :

p(@1, . mn) = Y. p(s) ﬁ p(x|se)

»
Il
%
=
»
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In other words, the process is HMM if the samples are independent given the hidden
Markov states. We can consider the HMM as a two step experiment. In the first
step, a state sequence is realized according to the Markov model. In the second step,
an output variables sequence is realized according to the state sequence in such a
manner that the output at time ¢ is sampled according to the distribution associated
with the state of the Markov process at time ¢. At the end of the experiment only
the output is reported and the state sequence remains unobserved.

The parametric representation of the hidden Markov model consists of the fol-

lowing components :
1. Initial state distribution : \; = p(s; = j).

2. State transition probabilities of the unobserved stationary Markov process :

P(kaj) :p(3t+1 :j‘st = k)



3. Output probability distribution associated with each state which determines

the likelihood of the observations generated by this state :

fj(l‘t) = f(mt|3t = J)

Several approaches exist for modeling the output distribution. One possibility is
to use discrete distributions [46]. Each observed vector is quantized into a symbol
from a finite symbol set. A vector quantizer selects a vector closest to the observed
vector from a pre-defined code-book. A discrete distribution of the code-book entries
is associated with each state, and the probability of the observation is defined to
be the probability of the chosen entry. A disadvantage of this approach is the
quantization noise added to the data.

Another commonly used distribution is the Gaussian and more generally a mix-
ture of several Gaussian distributions [38] [54]. The term mixture stands for a convex
combination of distributions. The concept of mixture of densities fits naturally into
the framework of HMM. The choice of a particular member of the distribution set,
that composes the mixture distribution, can be considered as part of the unobserved
Markov process. Hence, output density can remain relatively simple.

In real situations there are many states, and there is insufficient training data for
reliable parameter estimation of the mixture distribution associated with each state.
In these cases a combination of continuous and discrete distributions can be used.
This modeling approach is usually termed semi-continuous or tied mixture [31]. A
tied mixture model is composed of a set of Gaussian densities which are common to
all states. Fach state is only characterized by its own set of mixture weights. The
concept of tied mixtures was a key step in constructing large vocabulary systems.
Many tying methods have been suggested. We shall return to this subject in chapter
6.

There are several efficient algorithms which are an important part of the HMM

theory. The following algorithm enables efficient computation of the likelihood of



an observation sequence. The definition of the hidden Markov model implies that

the likelihood of a sample sequence z1, .., z,, is

(1, ... Z)\ 51 H (selsi1 H (x4|s1) (2.1)
=1

t=2

where the summation extends over all possible length-n state sequences. Direct
computation of this expression involves summation over an exponential number of
terms which is not feasible. However, there exists a recursive approach which can
significantly facilitate the computation.

For each t define the following column vector :

At(.]) = p(l‘la vy Ty St = ])

A recursion formula can be derived for A;(j) in the following way :

At(7) = p(xla -y Ly St = 7) - Zp(xla ~y Ly St—1 = kast - 7)
k
= Zp(:rl, Xy 1,81 =k) - plsg = Jlay, 1,801 = k) -
k

plaxy, oy w1, i1 =k, s¢ = J)

= ZAtfl(k)p(St:.ﬂStfl =k) f(wsy = j) = ZAt 1 2 J) fwse = 7)
k

Matrix notation can be used to express this recursion :

Al - )\TMl

At = At,1 _PMt t:2,...,n

where A\ denotes the initial state distribution column vector, P denotes the transition

matrix of the Markov process and M, is a diagonal matrix with the following diagonal



elements :

My(5,5) = f(welse = )

Note that

p(ml’ ’,E”) = Zp(mla coey Ty Sp = ]) = Anl
J

where 1 is an all ones column vector. From the recursive relation we can derive an

explicit expression for the likelihood function :
p(xy,.x,) =AM PMy - PM, 1

The complexity of this matrix multiplication is linear in the length of the observa-
tion sequence and quadratic in the number of states. Hence, the likelihood can be
efficiently computed. Further technical issues can be found in [53] [32].

The likelihood of the observations is obtained from summing over all the state
sequences. The single most likely state sequence may also be required in algorithms
which approximate the exact likelihood. The single best state sequence can be

computed using the Viterbi algorithm [64] as follows :

6(7,1) = Aj flzals1 =)
6(j,t) = mgx{é(k:,t—1)P(k,j)}f(:rt\st:j) t=2,..,n
U(j,t) = argml?x{é(k‘,t— 1) P(k,j)} t=2,...n

The probabilistic interpretation of 6(j,t) is :
6(]7t) = masxilp(mla'--amtasla"'astflast:j)

81,4, t

Therefore, the joint probability of the observations and the most likely state sequence



1S :

max p(z, s) = max 8(j, n)
s J

The best state sequence can be found in a traceback pass :

Sn = argmaxé(j,n)
J

§t = w(ét—l—l;t_'—l) t:n—l,,l

2.2 Parameter Estimation

Training HMM systems involves estimating the model parameters. The most pop-
ular estimation criterion is maximum likelihood (ML). There is no known closed-
form solution to the problem of finding ML estimators for the HMM parameters.
There exists, however, an elegant iterative algorithm for this problem, namely the
Baum-Welch algorithm. This algorithm can be considered a special case of the EM
algorithm which is described in its general form in the appendix of this chapter. To
simplify the derivation of the training algorithm we assume that the output proba-
bility function associated with each state is Gaussian. Training algorithms for other
output distributions can be found in [53]. Denote the Gaussian density function
associated with state j by N(u;,%;). The model parameters are, therefore, the ini-
tial distribution, the Markov transition matrix and the parameters of the Gaussian
distributions associated with each state. We shall now describe the derivation of the
EM re-estimation equations. Denote the current estimate of the parameters by 6.
In each iteration of the EM, the parameters are re-estimated. The general theory
of the EM algorithm ensures an increase in the likelihood in each iteration. Let
x1, ..., 21 be L sequences consisting the training data-base. Denote the length of x;
by n;. The elements of the sequence z; are denoted by ;1. ..., 2;,,. Denote by s,

the underlying state at time ¢ for the sequence x;. Using EM terminology we can

10



refer to the sequences sy, ..., s, as the missing data. The iterative algorithm relies
on the fact that if these sequences were known, we could have obtained closed-form

expressions for the ML estimation. From equation (2.1) we obtain :

logp(x1, 81..., 21, 81,,0) =

L L n;
Zzl{si,lzj} 10g )‘j + ZZZ[{Si,t—lzk L Sit=J} 10gP(I{J,7)

i=1 j i=11=2 jk

1 _
3 Y3 =iy (@ig — 1) T35 (i — 1) +log [325])
i ot g
where [, is the indicator random variable associated with the event A.

1 weA
Ii(w) =

0 we A°

Denote :

wl(]’ t) = E(I{Si,t:j}‘mia 90)

ul(ka ja t) = E(I{Si,t—1:k75i,t:j}|l‘i7 90)

w;(7,1) is the aposteriori probability that while producing the sequence z;, state j

was visited at time t. The EM auxiliary function in this case is :

Q(aaHO) = ZE(IOgP(%,Si,Q)‘%HO)
= Y S w(Dlogd; + S S wi(k. 1) log Pk, j)
P i t=2 jk

XS Wi ) (i 1) e ) + log |5

11



Maximization of Q(6,6y) yields the following re-estimation equations :

h = 22 o wi(J, 1)
! i X wi(j,t)

$ > e wi( ) (wie — ) (wig — p15)"
I Zz Zt wi(jat)

Efficient computation of the terms w;(j,t) and u;(k, j,t) which appear in the re-
estimation equations can be done using the forward-backward algorithm that will

now be presented. Applying the Bayese rule yields :

P(ffz' ; Sit = .7\90)
p($i|90)

wi(j: 75) = E(I{si,t:j}|$i, 90) = P(Sz’,t = .7|5Ei, 90) =

p(ﬁi y Sit—1 = k. Sit = j\eo)
p($i|90)

ui(kajat) = E(I{Si,t—1:k75i,t:j}|l‘i7 90) =

Define the following diagonal matrices :
Mz,t(?:?) :f(xi,t‘si,t:.jaeﬂ) t= 1,...,7L
Denote the current estimate of the initial state distribution by Ay and the current

estimate of the transition Markov matrix by Fy. From the likelihood equation (2.1)

we obtain :

p(xiw[]) = )\UT Mi,l Py - B Mz’,tfl Py Mz’,t s Mznl 1

12



Define the following forward-backward equations :

A = )\OT M; 1

Aip = A1 Po My t=2,..,mn;
Bi,ni =1
Bir = Py M1 Bira t=mn; —1,..,1

Note that A;; is a row vector and B, ; is a column vector, both having the following

probabilistic interpretation :

Az’,t(.j) = p(xi,la---axi,tast:jw(])

Bii(j) = p(Tits1s--s Tiny St = J|60)

Using the above definitions it can be seen that :

p(;|60) = Ain 1
p(xi, siv = jlbo) = A7) Bi:())

p(ﬂiz’, Sit—1 = k, Sit = j\eo) = Az’,tfl(k) Po(k;j)Mz',t(j; .7) Bz’,t(j)

Therefore using the results of the forward-backward algorithm we can derive the

following efficiently computed expressions :

wi(j,t) = (Aii(j) Bis(4)) / (Ain; 1)
ui(k,j,t) = (Aig—1(k) Po(k, j) M;4(5,7) Bii(3)) / (Ain 1)

An alternative training method is the segmental k-means algorithm [37], which

13



approximates the E-step of the Baum-Welch. The maximization step remains the
same. The E-step consists of the computation of the aposteriory distribution of the
state variables given the observation sequences. The segmental k-means uses the
Viterbi algorithm in order to determine the most likely state sequence. Denote by
S; the best suited state value at time ¢ in the i-th sequence. The segmental k-means

uses the following approximation :

p(sie = jlai, 00) =~ I =5

Experiments have shown that using this approximation does not cause any signifi-

cant degradation in the performance of HMM based recognition systems.

2.3 Using HMM for Speech Recognition

A speech signal is built of a sequence of linguistic units that are transformed into
acoustic events. Speech is a product of the vocal tract, a continuously varying
system. There is always continuous movement from one phonetic unit to the next.
It is, therefore, not easy to find the boundaries between acoustic realizations of
phonetic units. Moreover, in continuous speech an exact transition point between
phonetic units can not be determined even manually and actually does not exist at
all.

When speech is modeled using HMM, each state is associated with a phonetic
unit. The model assumes that within a state’s boundaries, each observation is
dependent only upon that state. In other words, the output distribution associated
with the state describes the feature sequence as an IID (independent, identically
distributed) process. Although this assumption is far from reality, it can function
as a satisfactory approximation. The unobserved state sequence implies a specific
segmentation of the utterance into phonetic units. The algorithm, that computes

the likelihood, automatically checks all possible state segmentations and chooses the

14



best phonetic unit sequence and the best locations for the transition points between
those units.

HMM was successfully implemented for small-vocabulary word base tasks [54].
For each word in the vocabulary, a hidden Markov model is trained. The Markov
topology which is commonly used is a left to right one, such that each state is
connected to itself and its successor. The states of the model are supposed to
describe the acoustic events during the word pronunciation.

A word is the basic linguistic unit, and therefore words are the most natural units
for acoustic modeling. In large vocabulary systems, however, word modeling is not
possible. Training data can not be shared between words, and therefore, each word
must be individually trained. Many examples of each word are needed necessitating
an enormous quantity of training data. Other problems are the memory storage
needed and the high complexity of the recognition procedure. A possible solution is
to use small acoustic-phonetic units in order to allow sharing across words. Acoustic
realizations of words are composed from a small set of basic acoustic sounds named
phones. In English there are approximately 50 phones. A phone is an acoustic
realization of a phoneme which is an abstract basic linguistic unit. KEach word
can be presented in phonetic transcription as a concatenation of phonemes. Phone
models can be easily trained. They can be sufficiently trained with only few hundred
sentences.

A phone is a simple acoustic event compared to a full word. Therefore, the
topology of the HMM representing a phone can be simple as well. A typical structure
of hidden Markov modeling of a phone is composed of three states. The first state
models the transition into the phone; the second models the steady state part of the
phone and the third state models the transition to the next phone. Other topologies
for phone based HMM have been proposed [46]. The concept of phone based HMM
made it possible to build large vocabulary continuous speech recognition systems
with satisfactory results.

In order to illustrate phone modeling we present a concrete example. The data

15



we used was a set of realizations of the phone ‘p’ in the triphone context ow-eh taken
from the Wall Street Journal corpus. In Figure 2.1 we show the mean trajectory of
the first cepstral coefficient and the approximation of this trajectory with a three
state HMM. In Figure 2.2 we show how the approximation is improved by using

three mixtures.
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Figure 2.1: Modeling the mean trajectory of the phone ‘p’ using 3 states HMM.
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Figure 2.2: Modeling the mean trajectory of the phone ‘p’ using 3 states 3 mixture
HMM.
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Appendix 2.A

The EM algorithm is a major component in the theory of acoustic modeling. It is
an iterative numerical procedure for finding a maximum likelihood estimation for a
given model. The EM was first formulated by Laird, Dempster and Rubin in 1977
[5]. The Baum-Welch algorithm used for training hidden Markov models is a special
case of the EM algorithm . In this appendix we give a brief presentation of the EM
algorithm.

Let X and Y be two sample spaces such that X is mapped into Y by a non-
invertible function F. We call x € X the complete data and y = F(x) € Y the
incomplete data. The information needed to reconstruct x from y is called the
missing data. In each experiment we sample x € X and report F(z) € Y. Assume
that fx(z,0) is a family of densities on X depending on a parameter § € ©. A
densities family on Y is defined by fy(y,0) = Jr-1(y) [x(z,0)dz. Given a random
sample y1, ..., yn, the EM algorithm finds 6 = arg max fy (y1, ..., Yn, 0) using the fact
that in some cases it is much more convenient to deal with fx(z,0) than with

fy(y,0). From the definition stated above we obtain :

fx(z,0) = fy(y, e)fX\Y:y(r)(xa 0)

Hence,

log fY(ya 9) - log fX(:EJ 0) - log fX\Y:y(z)(:EJ 0)

By taking the conditional expectation given Y = y according to parameter value 6,

we obtain :

log fy(y,0) = E(log fx(x,0)]Y =y,0) — E(log fx|v—y@(z,0)|Y =y, 0)
= Q(0,0,) —H(0,6))
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Q is refereed as the auxiliary function of the EM algorithm. Applying Jensen’s
inequality we obtain that H(6,6), considered as a function of ¢, has a maximum
point at = 6. Therefore Q(0,6y) > Q(by,0y) implies fy(y,0) > fy(y,0). This
enables us to define an iterative algorithm for computing a maximum likelihood

estimation. Each iteration is composed of the following two steps :

Expectation : Q(0,0,) = E(log fx(z,0)[Y = y.,0,)

Maximization 0,41 = arg max Q0,0,)
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Chapter 3

Segmental Models

In this chapter we shall discuss some of the shortcomings of the HMM paradigm.
We present the segmental modeling concept and explain how some of the difficulties
in HMM modeling can be solved. In the remainder of the chapter we review the

main segmental models related to our work.

3.1 Limitations of the HMM Paradigm

The standard left to right HMM provides a technique for modeling the acoustic fea-
ture vector sequence, that represents some speech utterance, by a piecewise station-
ary process. The model assumes the existence of states, in which the observations
are locally independent and identically distributed (IID) within each one. Several
HMM variants exist. The simplest variant employs a discrete output probability
distribution function (PDF) to describe the acoustic feature vector at each HMM
state. A refinement of the above is obtained by replacing the discrete PDF with a
continuous PDF, which is usually a mixture of Gaussians with a diagonal covariance
matrix. All these variants share the common assumption that the probability of an

acoustic vector in a particular state is not dependent on the other vectors in that
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state. This simplifying assumption assures computationally efficient algorithms for
system training and recognition.

The TID assumption is reasonable for some of the HMM states (e.g., states that
correspond to a steady state vowel in a user dependent system). Most states, how-
ever, clearly violate this assumption (e.g., states corresponding to vowel-consonant
transition, diphthongs, etc.) and are in fact characterized by a highly correlated
and non-stationary speech signal. The consequence is a reduced accuracy of speech
acoustic modeling which in practical terms corresponds to a reduction in the recog-
nition rate.

The traditional formulation of a single Gaussian HMM has been based on a
piecewise constant fitting of the acoustic feature vector data sequence [53], [55]. This
model assumes that the sequence of observation vectors within a state © = x4, ..., z,,

is generated according to :

Ty = b+ € t=1,...,n

where p is a state dependent parameter that represents the mean vector and ¢, is an
additive, zero mean, white noise vector (i.e., its covariance matrix is diagonal) with
state dependent variances. In Figure 3.1 we present the sixth cepstral coefficient
of the acoustic vector sequence of the word ‘seven’. The smooth curve is obtained
from empirical averaging of utterances of the word ‘seven’ taken from the database
TIDIGITS. A nonlinear warping is applied to these utterances to synchronize them.
The piecewise constant function is a five state HMM approximation.

The most common method of encoding the dependency between consecutive
frames is to extend the feature vector to include the first and at times the second
derivative of the static features. In Figure 3.2 we present the same data that was
presented in Figure 3.1, for the first derivative of the sixth cepstral coefficient.

In a standard stationary-state HMM, the trajectories of the feature vectors are

approximated by a piecewise constant function. Each region of constant value cor-
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Figure 3.1: Sixth cepstral coefficient of the acoustic vector and its HMM approxi-
mation.
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Figure 3.2: Time derivative of the sixth cepstral coefficient of the acoustic vector
and its HMM approximation.

responds to an HMM state. As can be seen from Figure 3.1 and Figure 3.2, a
piecewise constant function is usually a poor approximation to the mean trajectory.
Another problem of this model arises from the fact that we try to model simulta-
neously a static feature vector (e.g. the cepstrum function) and its time derivative.
To observe the disadvantage associated with this model, consider Figure 3.3, that
presents a feature vector that consists of two components. The first component is a
sine wave; the second is the time derivative of the first, hence a 7/2 phase shifted
sine wave. Figure 3.3 also presents the optimal partitioning into states of these com-
ponents, and the resulting piecewise constant approximation. As can be seen, the
state partitioning that is required for optimally approximating the trajectory of the
first component is different from the one required for approximating the trajectory
of the second. However, since the same state partitioning should be used for both

components, this results in an approximation of reduced quality.
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Figure 3.3: Piecewise constant approximation of sin and its derivative cos.

To gain further insight, consider a speaker independent, mixture of Gaussians,
HMM system. The improved performance of this system, compared to a single
Gaussian HMM is usually attributed to the fact that mixtures help to improve the
modeling of the true state distribution which is clearly non-Gaussian, and in this
way to improve the modeling of the variation between different speech styles.

We now suggest an alternative explanation for this phenomenon. Essentially,
we assert that mixtures help to describe the non-stationary behavior of the feature
vectors within a state. Assume that the trajectory of the mean in a state changes
from ag at the beginning of the state to a; at the end. By setting the mean values
of three mixture components to ag, (a9 + a1)/2 and a; we may obtain improved
modeling of the mean trajectory by segmenting the state into three parts. These
mixture values can now be associated with the beginning, middle and final periods
of this state respectively.

In Figure 3.4 we present the sixth cepstral coefficient of the acoustic feature vec-
tor, and its HMM parameters, for a word-based HMM with 5 states and 3 mixtures
(the word shown is ‘seven’). In Figure 3.5 we present the same data for the time
derivative of the sixth cepstral coefficient. These figures demonstrate how the model
employs these mixtures to track the trajectory of the mean. For example, consider
the second state in Figure 3.4. The three mixture components refine the HMM
approximation of the dynamic behavior of the mean trajectory.

To assess further the validity of the proposed explanation, we recorded the statis-

tics of the transition between mixtures, using the sequence of most likely mixture
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at each frame. Such a sequence is obtained using supervised Viterbi segmentation.
The transition matrix for three mixtures at the second state of the word ‘seven’ is
shown in Table 3.1. As can be seen, the IID within a state assumption is not valid
in practice. In fact, there is a clear trend to choose the mixtures in a fixed order
(3 — 2 — 1). Similar data is shown in Table 3.2 except that a consecutive self tran-
sition is counted only once. This observation validates the explanation that we set
above. Mixtures of Gaussians may thus be considered a tool for refining the HMM
approximation but still there is no direct reference in this model to the continuous

nature of the local dynamics within a state.
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Figure 3.4: HMM with 5 states and 3 mixtures that models the sixth cepstral
coefficient.

80

60 —

ao - -

20 —

—ao0l

—eo b 4

—80

o 10 20 30 a0 50 60 70 80

Figure 3.5: HMM with 5 states and 3 mixtures that models the derivative of the
sixth cepstral coefficient.
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3.2 The Concept of Segmental Modeling

The local IID assumption of standard HMM implies that once we have decided on the
state boundaries, we model the data on a frame base level and ignore the continuous
dynamic nature of the speech signal within the state. An alternative approach is
segmental modeling, where the basic modeled unit is not a frame, but a segment.
A segment is a variable duration part of the speech waveform that corresponds to a
phonetic unit. A segment is commonly taken to correspond to a phone, but it may,
however, correspond to a sub-phonetic event (one phone may be represented as a
sequence of several segments). In the segmental approach the basic observation is
not just a single frame from the sequence comprising the utterance, but rather a
complete acoustic event. This enables us to model explicitly the correlation between
successive frames, the dynamics along the segment and the statistical behavior of
the segment duration. We can, therefore, reduce the portion of the data which is
left unexplained in the standard HMM and considered as white noise.

Apart from the advantage of segmental modeling there are also some difficulties.
The dimension of an acoustic unit is much larger than the dimension of a single
frame. Therefore, the problems in parameter estimation become more serious. An-
other difficulty is that the length of a segment varies from phone to phone and among
different realizations of the same phone. This is in contrast to HMM where we model
each frame separately, and the feature vector is of a constant length. Another prob-
lem with a segmental model is the high complexity involved with computing the

density of a given utterance. In HMM during the dynamic programming we have to

mix1 | mix2 | mix3
mix1 | 394 0 0
mix2 | 202 582 6
mix3 | 2 216 1540

Table 3.1: Transition matrix of the three mixtures of the second state presented in
figure 3.4.
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mix1 | mix2 | mix3
mix1 | 196 0 0
mix2 | 202 212 6
mix3 | 2 216 212

Table 3.2: Same as Table 3.1, consecutive self transitions is counted only once.

remember for each frame just the possible states associated with it. In a segmental
model, however, every possible beginning and ending time should be considered for
each segment model in the dynamic programming procedure. Therefore, with each
possible beginning and ending time pair we must compute the segmental score. No
recursion formula could be used even if there is only one frame difference.

The complexity problem is caused by the need to check all possible segmenta-
tions of a given utterance. A possible solution is to use an HMM system or any
other simpler model to provide a set of sentence hypotheses that will be re-scored
by the segmental model in a post-processing step. The sentence hypotheses can be
described as a N-best list or a word lattice. In both cases the segmental model is not
involved with the segmentation process. In updated large vocabulary recognition
systems [51] [56], rescoring serves as a useful mechanism for combining additional
knowledge sources (e.g. detailed linguistic model) to the acoustic model. The seg-
mental model can be integrated into a speech recognition system as one of these
knowledge sources. The scores from different sources are linearly combined, and us-
ing optimization procedure [39], we can find the optimized weight of the segmental

model contribution.

3.3 Previous Segmental Models

Recently there have been a number of segment based approaches to the phonetic
recognition problem. A comprehensive survey on segment models can be found in

[49]. In this section we describe in some detail those segmental models that are
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closely related to our work.

Stochastic Segment Model

Ostendorf and Roucos [50] suggested a general framework for segment models
termed Stochastic Segment Model (SSM). They handled the variable length of an
observed segment by assuming that the observation is a partially observed samples
of a fixed length trajectory [57]. Another way to solve the variable length problem
is by re-sampling the observation into a fixed length sequence using linear interpola-
tion [49]. The grand vector which is the concatenation of the re-sampled frames, is
modeled by a multivariate Gaussian distribution. The full covariance matrix allows
explicit modeling of the time correlation. The general formulation of the SSM suf-
fers from the estimation problem caused by the large number of parameters in the
covariance matrix. To avoid this problem, a Gauss-Markov (GM) structure can be
imposed on the covariance matrix of the SSM [4] [65] [41]. A Discrete observation
Markov assumption was explored by Paliwal [52]. The GM model did not achieve
significant improvement over the standard HMM [41]. A possible explanation for
this is that in real situations of speech recognition there are large differences be-
tween speakers, dialects and recording equipment. This difference can be modeled
as a noise signal added to the outputs of the Gauss-Markov process. Digalakis et
al. [12] formulated this idea in the introduction of linear Dynamical System(DS)
method into speech recognition. A fixed length observation sequence y associated

with a phonetic state-segment s is generated according to the DS model as follows :

Tiy1 — Ft(S)l‘t + wy (31)

Yir1 = Ty + Uy

The sequences w and v are realizations of uncorrelated Gaussian white noises with
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model dependent variances. The hidden Gauss-Markov process is denoted by .
It is assumed that the initial state xy is Gaussian with model dependent mean and
variance. Fi(s)is a first order Markovian factor which depends on the segment s and
the time index within the state ¢. The observation sequence y is obtained as a result
of adding white noise to x. In order to reduce the number of free parameters the
segment is divided into regions of equal length. It is assumed that the GM process is
locally stationary within the region. This can be considered as a kind of parameter
tying. The recognition is performed using a version of the Kalman predictor to
compute the probability of the segment. Phoneme classification rate reported using
a DS model was significantly better than the one obtained using independent frame
HMM. A disadvantage of this model, however, is its high computational cost in both
recognition and training. Some efficient yet suboptimal algorithms that reduce the

number of segment evaluations during sentence recognition are described in [13].

Polynomial approximations

Deng et al. [7] dealt with the non-stationarity of the speech signal within a state
by using a parametric function of time to model the mean trajectory in each state.
Deng gave the name Trend HMM to this approach. In this model the observation

sequence within a state x = x4, ..., z,, is generated according to :
xt:Zuktk—l—et t=1,...,n (3.2)
k

where the first term is a state dependent polynomial function of t and the second
term is the residual noise assumed to be the output of an IID zero-mean Gaussian
source with state dependent covariance matrix. The time origin of the polynomial
function in each state begins from the time the state is first entered. When the

degree of the polynomial is zero, the model is reduced to the standard Gaussian
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HMM.

In order to illustrate the strength of Deng’s model, we compare the data fitting
performance between the use of the trend HMM and the standard one. The data
we used was a set of realizations of the phone ‘I’ in the triphone context aa-ih taken
from the Wall Street Journal corpus. In Figure 3.6 we show the mean trajectory of
the first cepstral coefficient and the relatively poor approximation of this trajectory
with a 3 state HMM. In Figure 3.7 the same curve is approximated with a three state
trended HMM, such that the regression polynomial is linear. From these figures it
is evident that the trended HMM fits the data better than the standard HMM.
Experimental results also show the superiority over standard HMM in recognition

accuracy.
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Figure 3.6: Modeling the mean trajectory of the phone ‘I’ with 3 states HMM.
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Figure 3.7: Modeling the mean trajectory of the phone ‘I’ with 3 states linear trended
HMM.



When this model is implemented in the recognition step we can use Viterbi
decoding to determine the division of the utterance into states according to the
ML state sequence. This approach is computationally expensive. This is because
during the dynamic programming we must remember not only the state associated
with each frame, as we do in standard HMM, but also the time index of this frame.
Another method is to implement this model as a post-processor. We can use this
model to rescore the result obtained by a standard HMM system. Training of the
model can be performed using an extension of the segmental k-means algorithm [37].
The algorithm is composed of two iterative steps. The first one is a segmentation
step where we use Viterbi decoding in a way similar to the decoding algorithm we
use during the recognition. After applying the Viterbi decoding we can split each
utterance into separate segments. The next step of the segmental k-means algorithm
is the maximization step. Given a list of segment realizations the problem of finding
the polynomial coefficients is a linear one and can be solved using the least-squares
method [8].

Deng and Rathinavelu [8] combined the models presented in the two last sections.
They extended the polynomial model to the Gauss-Markov case. The model can be

written as :

Ty = Z aRTi_p + Z hit' + €
k=1 =0

They reported that this model produces higher recognition accuracy than the simpler
models from which it is built.

A model similar to Deng’s was suggested by Gish and Ng [20] for keywords
spotting task. They also consider a generalization where we allow a mixture of
parametric trajectories to describe the variation among different realization of the
modeled segment. The training of this model is slightly more complicated. We still
use the Viterbi decoding to find the states alignment of the training data. Given the
states alignments, the ML estimate of the model parameters can not be computed
directly as was done in Deng model. Instead, we must use the EM algorithm as

it happens in other mixture situations. A Parametric model that describes the
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mean trajectory using an exponential function rather than a polynomial one, was
suggested by Deng [10]. This model has the advantage of smooth movement between

consecutive phoneme trajectories.

Non-Parametric Models

Another attempt to model explicitly the observations dependence on the time
index was made by Ghitza and Sondhi [19]. They suggested that instead of imposing
an a-priori constraint of parametric structure on the mean trajectory, we may choose
a typical segment realization to capture the nonlinear nature of the dynamics within
the segment. In this framework a phonetic unit is modeled as one HMM non-
stationary state to which a template is associated. Non-parametric representation
enables us to perform a non-linear warping for optimized matching between the
model and the observation sequence. This can not be done if we use a polynomial
regression function to represent the mean trajectory. The typical template is chosen
from the ensemble of segments found in the training data-base for a selected phonetic
unit. Ghitza and Sondhi defined a distance between sequences as the one used in the
DTW method [60] in word recognition (the frame level distance is a Euclidean one,
such that the vectors components are normalized to have an equal variance). The
selected template is defined as the observation sequence whose cumulative distance
from all other sequences in the ensemble is minimal. Once the template has been
derived, each segment in the training set can be warped against it and the covariance
matrix is estimated from the aligned segments. Computation of the probability of
an unknown test segment is performed by dynamic programming. In this procedure,
the test segment is non-linearly warped to the length of the template and then a
Gaussian likelihood score is computed.

Another non-parametric approach was suggested by Goldenthal and Glass [24].
They defined the notion of a “track” which is a synthetic template prototype. The
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tracks are computed from the training data by mapping the training segments of
each phone to a sequence of fixed length. The mapping is done by linear interpo-
lation. The track is obtained by averaging the fixed length segments. Once the
tracks have been created they serve as the initial stage in evaluating hypothesized
speech segments. To evaluate an unknown segment of length n, a synthetic segment
of length n is generated from the track using a deterministic linear interpolation.
Goldenthal and Glass proposed the following method to overcome the problem of
high dimensionality of the full covariance matrix. The likelihood score is computed
for the error vector obtained from the observations and the synthetic template. Their
solution involved dividing the error sequence into sub-segments of equal duration
and averaging the vectors within each sub-segment. The small sized averaged vector

is modeled with a Gaussian distribution having a full covariance matrix.

Segmental Mixture Model

One of the main reasons for the undoubtable success of HMM in user inde-
pendent large vocabulary recognition tasks is the use of mixtures of Gaussians to
describe the distribution of a frame within a segment. The addition of the mixture
component to the HMM formulation made it possible to present alternative acoustic
models in parallel for the same phonetic unit. In this manner we can overcome the
modeling problem caused by different realization of the same linguistic part. Much
of recent progress in HMM research is related to questions of better estimation of
the parameters of the mixture HMM. Given an observation sequence = = x4, ..., 1,
and a mixture distribution consisting of £ Gaussian models my, ..., my, the mixture

model can be written as :

flz) =11

t=11

Cz’f(xt‘mi)

n k
=1



where ¢; are the mixture coefficients.
The segmental analogue of the mixture concept is the assumption that the step
of choosing one of the models is not taken independently for each frame, but only

once in a state transition. The segmental mixture model can be written as :

k n
=Y _caf(elmi) =Y ¢ [T flwimi)

i=1 =1 t=1
where ¢; are the segmental mixture coefficients. The speech waveform is produced
by a continuous physical system, hence there is no physical justification to select
a different model for each new coming frame, as is done in frame level models. In
contrast, frame level mixture can serve as a mathematical tool to approximate the
real frame distribution which is certainly not Gaussian and not stationary. Kimball
[42] showed that training and recognition algorithms of frame level mixture HMM
can be generalized to the segment case. Especially the EM algorithm can be used
for training the segmental mixture model. Kimball also reported that the segmental
mixture model achieves a better recognition rate than the frame level mixture model
in context-independent phone classification tasks.

The concept of mixture of distributions can be used as an extension of any seg-
mental model. Instead of having only one segmental model to describe the acoustic
behavior in a phonetic unit, we can have an ensemble of such distributions which
are combined with mixtures weights. In this manner, the high variability in the
speech waveforms can be handled by using a number of acoustic models for the
same phonetic unit. For example, trended HMM, which consists of polynomial re-
gression function to describe the mean trajectory, is generalized by Gish and Ng [20)]
as model which has a mixture of these functions. Given a training procedure for a
segmental model, there is a general method for training the mixture version of this
model. The training can be done using the EM algorithm. In the E-step, for each
segment realization in the training set we compute the a-posteriori probability of

each of the models in the mixture distribution. In the M-step we can use the training
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procedure of the original segmental model to solve the optimization problem.
Another approach to segmental mixture modeling is to assume a prior distribu-
tion on the model parameters. For example, consider a Gaussian HMM such that
the mean is not a fixed parameter. Instead, it is a Gaussian random variable which
is sampled once in a state transition. This model was suggested by Russell [58] and
it belongs to the family of random segmental models. Random segmental models
will be discussed in detail in the next chapter. It should be noted that on the frame
level there is no meaning for random Gaussian HMM. If we would be allowed to
sample the mean independently for each frame, as we are in discrete mixture HMM,
we would obtain a model consisting of a sum of independent Gaussian random vari-
ables which is still Gaussian. Therefore, the random Gaussian HMM is equivalent

to the deterministic one.

Segmental Neural Network

We conclude this review on segmental models with a short exposition of how
segmental ideas are combined with neural networks. In recent years, Neural Net-
works (NN) have been used for tasks of speech recognition. Several attempts have
been made to build a hybrid HMM /NN system that would take advantage of both
HMM and NN abilities. HMM systems are better in efficiently handling the global
dynamic programming to find the best sentence transcription. In contrast, neural
networks are well suited for local acoustic scoring, as they can accept continuous
valued inputs without making any assumption as to the parametric shape of the
density function.

A Segmental Neural Net (SNN) is a neural network that attempts to recognize a
complete phonetic unit rather than a sequence of conditionally independent frames.
This allows the network to take advantage of the global acoustic structure of the

phone and also makes it easier to incorporate segmental information such as dura-
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tion. There are two main problems with implementing segmental neural nets. First,
the speech must be segmented before the neural net can evaluate the segment. The
second problem is that the segment length varies with different segment realiza-
tions. However, the topology of the NN forces the input to have a fixed length
representation.

Zavaliagkos et al. [66] [1] implemented SNN for continuous speech recognition.
They developed a hybrid HMM/NN system that uses the HMM to find the N-best
list of sentence hypotheses. The SNN is used to rescore the hypotheses and the scores
of the systems are combined. In order to overcome the variable length problem,
they converted each segment to a fixed number of frames using time re-sampling in
a manner similar to how it is done in stochastic segmental models [50].

Another segmental approach was suggested by Konig and Morgan [43] [44]. They
proposed a segmental phone classification where the input to the NN include a
time index that describes the relative location of the frame in the phonetic unit
in addition to the acoustic vector. In this manner the NN incorporates a non-
parametric representation for the trajectory of the acoustic signal associated with

the phonetic unit.
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Chapter 4

Scaled Random Trajectory

Segmental Models

In this chapter we present the concept of random trajectory segmental modeling.
We review specific random models that were proposed in the past and suggest an
alternative training algorithm for those models. We discuss the modeling problem
created by the fact that segment realizations of the same phone differ in length
and suggest an improved random segmental model that solves this problem. We
conclude with experimental results that demonstrate the difference in performance

among the models that are presented in this chapter.

4.1 Introduction

Over the past decade a number of studies have proposed a framework of stochastic
description of the mean trajectory, as an alternative to the multi description of the
mean trajectory, that is provided by an HMM whose state distributions are mixtures

of Gaussians.
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This concept of random trajectory segmental modeling (RTSM) was first sug-
gested by Russell [58] who named this approach ‘segmental HMM’. We prefer to use
the more specific term RTSM because it better reflects the particular characteristics
of the model that distinguish it from other segmental models. Random segmental
modeling can be thought of a generalization of the Gaussian HMM formalism. The
main difference is that the mean trajectory of the acoustic feature vector in a state
is not a fixed parameter. Instead, it is a random variable sampled once for each
state transition. The acoustic motivation for this framework is that we wish to sep-
arately model two distinct types of variability: long term variations, such as speaker
identity, and short term variations which occur within a given state as a result of
random fluctuations. The long term variability is modeled by a probability density
function (PDF) used to select the sampled mean. The short term variability within
a state is modeled by the deviation of the feature vectors from the sampled mean.
In standard HMM these two effects are modeled implicitly by a single PDF.

We first provide a formal description of the random trajectory segmental mod-
eling approach. Let f,(7) be a PDF defined on some family of valid trajectories,
v, at a given state, s. On arrival at state s, a trajectory is chosen according to
this PDF. Once 7y is determined, we can model the within-segment variation at each
frame independently. Denote by f,(z;|7,t) the PDF of the frame z; given the chosen
mean trajectory and the time index ¢. The PDF of the segment data realization

x = (xg, ..., Tn1) is given by

Pia) = [ ) LAl iy

t

According to Russell’s terminology [58], f,(7) accounts for extra-segmental variation
which would lead to different trajectories for the same phonetic unit, while f(z|v,t)
hopefully accounts for much smaller intra-segmental variations in the realization of

a particular trajectory.
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4.2 Static Random Segmental Model

In this section we concentrate on the case where the trajectories PDF is Gaussian and
the mean trajectory is constant over time. This static RT'SM was originally presented
by Russell [58]. More precisely, a static RTSM assumes that the observations within

a state © = (xg, ..., T, 1) are generated according to
.'Et:[t_"a/_l‘ﬁt tZO,,n*]. (41)

where g is a fixed parameter, associated with the state, that describes the grand
mean trajectory. The random variable a is a shift of the mean trajectory that is
global to the entire segment realization. It is assumed that a ~ N(0,02) (i.e., a is a
Gaussian random variable with mean 0 and variance ¢2). The short term variability
is represented by ¢;, which is a zero mean Gaussian random variable with state
dependent variance, ¢, ~ N(0,0%). To simplify notation, it will be assumed that
the observations are one dimensional. Generalization to the multi-dimensional case

is straight-forward. The PDF of the segment data realization, x, is given by

flz) = /Gf(x,a)da (4.2)
fw,a) = fla) ] f(ai|a) (4.3)

where

L 1
Tt T ) = e (4.4)

fla) =

In this presentation of the static RT'SM, the probability expressions are formulated
in terms of the shift of the trajectory from the model mean, rather than the location
of the trajectory itself as in Russell [58], and Gales and Young [17]. We are adopt-

ing this convention because it explicitly reflects the linear behavior of the model
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(equation 4.1).

Two methods for computing the likelihood score have been proposed. The first

one [58] is a maximum a posteriori (MAP) approach. The MAP method uses f(z, a)

instead of f(x) as the target function, where @ is the shift which maximizes the joint

PDF f(z,a). That is to say, segment identification is made based on the segment

hypothesis for which f(z,a) is maximized. A closed form for a is obtained by setting

the derivative, dlog f(z,a)/da equal to zero, thus yielding,

a 1 n—1
Tt lmpma)=
Hence,
. _ % >ty (@ — p)
a = argmax f(z,a) = -

We use the following notation

I S N
r — Ty r = Ty — Ly, n— | 5
=0 =0 o,
Using this notation, we have,
n
~ B —
Q UQVH( )

The last expression will be used to help evaluate f(z).

(4.5)

(4.7)

Following Gales and Young [17], we now derive a closed form expression for f(z).

By (4.3) and (4.4),

1 1 \"
.’E, a) = 67§g(11a)
fz.a) V2mo, (\/ 27r0>
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where

a
g(w,a) = —+ 5> (v —p—a)
a t
1 n\ 1 2
1

Hence,

o) = (o ) 0= 0P 4 ate) (19)

o2 o2
R n o’
g(z,a) = 2 (Vw + W(Ew - M)2> (4.10)

The conditional distribution of the shift a given the segment data x, is therefore

Gaussian with mean and variance values given by,

E(alz)=a , Var(alz)=V, " (4.11)

n

Substituting (4.8) and (4.9), (4.10) in (4.2) and carrying out the integration opera-

0= () (7)< (12

2o
Comparison of (4.8) and (4.12) reveals the following relationship

f@) = (% + %)
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tion results in

N =

N =

| V27 f(x,d) (4.13)



As can be seen from (4.13), the likelihood score provided by the approximated MAP
method is identical to the true likelihood, except for a term which depends on the
length of the segment and not on the segment data.

When no? < o2, we have 62V, ~ 1, so that f(z) is reduced to

fla) ~ (ﬁ)p - o -

Hence, in that case, the RTSM degenerates to the deterministic model x; ~ N(u, 0?).
In the deterministic model, the PDF assigns equal weight to the empirical variance
of the samples and to the distance of the samples empirical average from the grand
mean. On the other hand, from (4.10) it can be seen that the RTSM assigns larger
weight to the empirical variance.

We now discuss the problem of parameter estimation for the static RTSM. We
discuss two general estimation schemes. The first is a generalized Baum-Welch
scheme which is a special case of the expectation - maximization (EM) algorithm
[5]. Each iteration is composed of two steps. In the first step (E-step), the condi-
tional expectation of the likelihood of some ‘complete data’, given the observed data
is evaluated. In the second step (M-step), an updated parameters set is obtained,
such that the conditional expectation at the new set attains its maximal value.
The resulting Baum-Welch algorithm consists of an objective function, in which
each state sequence realization, that is consistent with the given measurements, is
weighted by its probability of occurrence. At each iteration, the algorithm attempts
to bring the objective function to a maximum. The other estimation scheme is an
approximation of the Baum-Welch method, based on an extension of the segmental
k-means algorithm [37]. Each iteration is composed of two steps. In the first stage, a
Viterbi decoding algorithm is applied to obtain the most likely state sequence (using
the current values of the estimated parameters). Once the segments boundaries are
determined, in the second step of the iterative algorithm, the segmental model pa-

rameters are re-estimated. Following Ostendorf, Digalakis and Kimball [49], we have
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chosen to adopt segmental k-means notation in order to simplify the presentation.
We note however, that all the algorithms that will be presented in the sequel can
be plugged into the re-estimation step of the Baum-Welch scheme. Note also that
the various segmental k-means algorithms that will be presented, iteratively derive
optimal unit segmentation as a by-product of the algorithm. Since the Viterbi stage
of the segmental k-means algorithm is standard, we only discuss the re-estimation
stage (the second phase of each iteration).

Let x = (x1, ..., zx) be k segment realizations associated with the state s. Denote
the length of the sequence x; by n;. The frames of the segment x; are denoted
by Zi0,...,Zin—1. We wish to obtain the ML estimates of the model parameters

w, 02, 0% Setting the derivative of log f(z) in (4.12), with respect to p to zero, we

have,
) b = X (=) =0
o = 2022V, 0p " a = o2+ el " B =
Hence,
. f:lgu_ngg Pl mig
= k n;

i=1 g24n;02
When all segments have the same length, denoted by n, the expression above is

reduced to

—

1 k n—

= iy (4.14)
0

In this case we can also obtain the following closed form expressions for 62 and 62

~9 n

60’ = ———> "V, (4.15)
(n—1)k =

R 1 k ) 6.2

Gy = 7 2 (B — )’ - . (4.16)

—

(2

However, in the general case, where the segment realizations differ in length, we
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2

a

cannot obtain a closed form expression for the ML estimators of ¢2 and o2, unless
some approximation, such as n;o2 > o2 is used [17].

Russell [58] used the joint probability of the observations and the optimal trajec-
tory as the target function for the maximization problem. Setting the first partial

derivatives of f(z,a) with respect to the estimated parameters to zero yields,

1
2 T rne? 2t Ti

Z. __ Ny
¢ G'2+’Ili0'3

=
Il

. 1 R
UZ = 7 Z(ai)Q

1
~2 - 2
o - ZZ ni %Cr%t aZ lu’)

Note that a, which was obtained in (4.5), is a function of the unknown parameters.
Hence, the unknown parameters appear on both sides of each equation. Russell sug-
gested a heuristic iterative solution, where the parameters estimated in the previous
iteration of the segmental k-means algorithm are substituted back in the right-hand
sides of the equations.

Digalakis, Rohlicek and Ostendorf [12] considered the static RTSM (which they
referred to as a ‘target state’ segment model) as a special case of the dynamical
system model. They suggested to utilize the EM algorithm as an iterative procedure
for solving the maximization problem required in the second stage of the segmental
k-means algorithm. The hidden values of the random shifts, which are sampled for
each segment realization, are the missing data of the EM. A detailed derivation of
the EM algorithm for a more general RTSM can be found in Appendix 4.B. Note
that if a Baum-Welch algorithm is used, instead of segmental k-means, then the
resulting algorithm would involve two levels of EM. In that case, the algorithm in

Appendix 4.B, would be in the inner level of the iterations.
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4.3 Scaled Random Trajectory Segment Models

Holmes and Russell [29] have pointed out that there is a balancing problem between
the extra- and the intra-segmental components of the RTSM. Different explanations
of an utterance using different number of segments will use different number of
extra-segmental probabilities. Therefore, interpretations of the data which involve
a large number of short segments require more probability terms than ones which
use a small number of long segments. This phenomenon, which does not exist in
the standard HMM formalism, is caused by the random segmental element of the
RTSM. Holmes and Russell [29] observed that including self loop transitions in
the segment model improves recognition performance. Self loops allow freedom in
representing each occurrence of a basic phonetic unit using an optimal number of
segments. In this manner the two model components can be automatically balanced.
Their preferred solution is, however, to model the intra-segmental variability more
accurately. They have found that using a Richter instead of a Gaussian distribution
can greatly improve the performance. In this section we present yet another solution
to this balancing problem.

The RTSM can be analyzed from another point of view. As was noted in the
previous section, unlike standard HMM, RTSMs assign different weights in the PDF
to the empirical variance of the samples and to the distance of the empirical mean
of the samples from the grand mean. Recalling (4.12) and (4.10), this weighting
ratio is given by

1+ U—‘En
o
This ratio reflects the relative contribution of the extra- and the intra-segmental
components in the likelihood function. Note that this ratio depends on the segment
duration, n. Therefore, balancing problems can exist even in cases of interpretations
of the data which involve the same number of segments but with different segment
lengths.

We now suggest a modification of the static RTSM which aims to solve this
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balancing problem. In this model the ratio between the empirical variance of the
samples and the distance of the empirical mean of the samples from the grand mean
is independent of the segment duration. This model, which we have termed scaled

RTSM 23], is similar to Russell’s model [58] that was presented in the previous

2
aNN(O,&)
n

where n is the segment length. The scaled RTSM asserts that the variance is in-

section, except that

versely proportional to the segment length. To assess this assumption, triphone
realizations, that were extracted from the Wall Street Journal data base, using the
SRI DECIPHER system [14], were considered. The various segment realizations
were clustered into groups based on duration, such that all elements within a group
had the same duration. As was mentioned in the previous section, in cases where
all the segments have the same length, there is no need for using the methods we
have described. Instead, the closed form ML solution (4.14) - (4.16) can be used.
Hence, we were able to estimate the variance of the random trajectory o2, and the
variance of the samples given the trajectory o2, separately for each group. There-
fore, there was no pre-imposed assumption on the dependence of the parameters on
the segment length. This experiment enables us to obtain an empirical dependence
of 02 on the duration, n. We note that the number of segment realizations for each
segment was large enough to obtain a reliable estimate to o?.

Figure 4.1 shows the inverse of the variance of the sampled trajectory o2, as a
function of segment duration, for the first seven mel-cepstrum features, based on 750
realizations of the phoneme ‘t’ in the triphone context ‘s-t-ih’. It can be seen from
Figure 4.1 that the variance of the sampled trajectory ¢? is inversely proportional
to the segment length.

The PDF of an observation segment x in the scaled model is obtained by sub-
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Figure 4.1: The inverse of the variances of the sampled trajectory as a function of
the segment length.

stituting 2 in place of o2 in (4.12), thus yielding

n

- (5a) () ol ) o

We now discuss the parameter estimation problem. A distinct advantage of the

N

scaled model is that we can solve the likelihood equations analytically and do not
need to use an iterative algorithm (e.g. EM) for that purpose. Let x = (xy, ..., 2%)
be k segment realizations associated with the state s. Denote the length of the
sequence x; by n;. To obtain the ML estimators for the model parameters, we set

the partial derivatives of f(z), (4.17) to zero as follows.

dlog f(x) 1

7
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do? 2(02 + 02) 5 o402
Hence,
1
ol +o%= . S ni(B,, — p)? (4.18)
dlog f(x) 1 1
- _ P | S Vo — 4.19
do? 207 < (n )+ 204 ;n ' (4.19)

1 1
k— (B, — u)?
2(gg+02)< ag+a22”( i “)>

i

Substituting (4.18) in (4.19) yields closed form solutions to the likelihood equations :

N Zi,t Tit
s > M
~9 Zz nszl
0" = —
Zi(ni - 1)
~9 1 ~N\2 ~2
O = E Z nZ(EﬂEl - M) - 0

It should be noted that the ML estimator for 0> can be negative. It can be
seen from the density expression (4.17) that the actual parameter is not o2 but
o? + o2, and the ML estimation of o + o2 is always non-negative. Negative values
for the estimator of o2 do occur in real situations. Later in this chapter we describe
experiments that have been conducted with real speech data. In these experiments
we trained static random models. In some experiments the estimated variance was
found to be negative. This fact does not coincide with the way we presented the
static RTSM. The model was stated as a two-step experiment where we first sample
a random mean trajectory and then add a Gaussian white noise to the sampled

trajectory. The normal distribution associated with the random mean trajectory
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has, of course, a non-negative variance. In order to understand what the meaning of
negative variance is, we must consider another interpretation for the random model.
The static RTSM assumes that the segment z = xg,...,x,; has a non-diagonal
multi-normal distribution, such that the covariance matrix has a certain structure.
We have defined the scaled static RT'SM as :

Tr=p+a+e a~N(0,-2) , &~ N(00%

SERH

The independence assumption between a and e implies that the first two moments

of the distribution of x are :
o2
Bx)=p-1 , V@)=c*-T+-21-1"
n

where 1 is an all ones column vector. Therefore, the scaled random model is no more

than the assumption that the observation sequence x has the following distribution :
o2
wa(u-l, 02-I+—“1-1T>
n

The determinant of the covariance matrix is (o?)" (@) The matrix is positive
definite if 6> > 0 and 02+ 0? > 0. Hence, 62 can be negative. The condition
02 > —o? ensures that the matrix o*- I+ ‘;—31 <17 is a valid covariance matrix. The
two-step model serves, when o2 has positive value, as an intuitive interpretation for
this distribution.

For purpose of comparison we rewrite the re-estimation formulas of the mean in

the scaled and non-scaled RTSMs :

1
2 i T 2t it

24 __n
L g24n,o2

~

non-scaled model : 4 =
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scaled model : 4 = 22”; it
n;

As can be seen, the re-estimation equation of the non-scaled model assigns smaller
weight to frames that correspond to segments with longer duration. On the other
hand, the scaled RTSM assigns equal weight to each frame, independently of the
duration of the segment that corresponds to that frame. Hence, the re-estimation
equation of the scaled model coincides with our intuition that each data sample
encapsulates the same amount of information about the mean trajectory.

The scaled model also possesses a computational advantage over the non-scaled
model. In order to compute the likelihood of a given utterance, the log-PDF values of
the segments in that utterance need to be summed up. Now, (4.12) shows that in the
non-scaled model, it is required to compute the logarithm of the term o%/(0? +no?),
which depends on n. On the other hand, in the scaled model, the corresponding
term, 0?/(0%+0?2), is independent on n, and may therefore be computed in advance.
By assuming a plausible range of segment durations, the duration-dependent vari-
ance terms obtained in the unscaled model can be still computed in advance, but

there are more terms to compute and therefore also more to store.

4.4 Scaled Linear Random Trajectory Segmental

Models

The assumption that the mean trajectory within a state is constant over time, is
shared both by the Gaussian HMM and by the static RTSM. In practice, most states
violate this assumption. A simple parametric extension of static models is obtained
by representing the mean trajectory as a linear function of time.

Deng et al. [7] proposed a segment model which generalized the standard Gaus-

sian HMM. In their model the mean trajectory is a deterministic linear function
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of time. In this linear HMM an observation sequence within a state is generated

according to :

1
J:15:,114114—/'”)( _§)+6t tZO,,n—l

n—
such that the time index ¢ is initialized to zero at the beginning of the state and then
incremented with each new incoming data frame. The linear trajectory is represented
here via the line mid point u, and the slope u, which are state dependent parameters.

Deng and Aksmanovic [9] extended this linear model by allowing a discrete mix-
ture of linear functions. Holmes and Russell [28] presented a continuous stochastic
variant of a linear HMM. In their model, the linear mean trajectory is a random
variable which is sampled on each arrival at the state. The long term variation in
this model is represented by an ensemble of linear mean trajectories. The short term
variation is considered to be a result of random fluctuation as it is in the static case.

In this model the segmented data is generated according to :

t 1
xtzua+a+(ub+b)(ﬁ—§)+et t=0,..,n—1

where g, ..., x,, 1 is the observation sequence, u, and u; are fixed parameters , a and

b are independent normal random variables :
a~ N0, , b~ N(0,0})

and ¢, is a Gaussian white noise term, ¢, ~ N(0,0?). The line p, + pp(-5 — 3) is the
average trajectory over all segment realizations and o, and o, define a distribution

function over all linear trajectories. Denote,

= ) (4.20)
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1 1 t

EII-T - 3 E x -
© Fu(n) ;xt " Fy(n) ;xt(n—l

- %) (4.21)

(@,b) = argmax f(z, a,b)

a,b

In Appendix 4.A we compute explicit expressions for a and b and prove that the

true PDF f(z) and the MAP approximation f(z,a, b) are related via

M=

fla) = (iQ + F“(Z”)>% (iz + F"@) o f(x, 1, D)

o o oh o

This relation corresponds to (4.13) in the static case.

As in the static case, there is no closed form expression for the ML estimation
of the linear model parameters. Holmes and Russell [28] proposed an approximated
solution which is an extension of their solution for the static RTSM. Alternatively,
although the linear RTSM is out of the scope of dynamical system models, the EM
approach for static RTSM, suggested by Digalakis [11], can be generalized to the lin-
ear case. The missing data in the EM algorithm are the hidden values of the random
variables a and b, which are sampled for each segment realization. The proposed
EM algorithm is developed in Appendix 4.B. The balancing problem, discussed in
the previous section, also exists in the linear model. The approach of using a Richter
distribution for better modeling the intra-segmental variability, was applied to the
linear RTSM by Holmes and Russell [30].

We now present the scaled version for the linear random segmental model. The
motivation for this model is similar to that for the static case. The scaled model
spreads the information on the hidden linear trajectory uniformly along the time

axis. The segment x is generated in the scaled model according to :

t 1
.’Et:ﬂa‘ka‘l‘(ﬂb"‘b)(ﬁfi)"‘ﬁt tZO,,n*]_

The difference from the unscaled linear model is that now the variances of ¢ and b
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are dependent on the segment duration as follows :

o) oo

The joint PDF of x, a and b is :

f(x,a,b):\/m\/m< ! )neégw,am

2mo, V2moy, \V21wo

F,(n)a®> Fy(n)b* 1 t 1.,
where  g(z,a,b) = o2 + e +§;($t—(ua+a)—(ﬂb+b)(ﬁ—5))

Algebraic manipulation of g(z, a,b) reveals :

(a,b) = argnﬁxf(:r,a, b) = E((a,b)|x) (4.22)
7 (e — pa) o7 (@ — w5 — 3)GEE — 9)
R + ) R)(% + )

To gain further insight to the probabilistic behavior of the model we derive an
explicit expression for f(z). In Appendix 4.A we compute the following equivalent

expression for g(x,a,b) :

gz, a,b) = (F“(") + F“(”)> (aa)2+<F”(") + F”(")> (b—b)2+g(w,a,b) (4.23)

2
op o

and g(z, a, 13) may be written as :

o) = (S + Rl (o (Fas — ) = (Fan?) (424)
+ R0y (B~ m)” — (Ba)’)
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The following explicit expression for f(x) results,

1 1
o? 2 o? 2 1 PR
— —59(=,a,b) 4.95
T <03+02> <0§+02> ( 2m> ’ (42

We shall now discuss the parameter estimation problem given the segmented

data. We use the modified segmental k-means approach in the same manner outlined
in the previous section. In spite of the fact that the linear model is more complicated
than the static one, using a scaled model enables us to derive closed form expressions
for the estimated parameters. Let = = (x1,...,2x) be k segment realizations
associated with the state s. Denote the length of the sequence x; by n;,. The ML

equations are :

dlog f(x) 1 3 (1 _ %Fa(nz)(Eaz - Ma)2> =0

2 2 1 2 2
Oo? o240 o240

Hence,
1
ol 40’ = . Z (1) (B, — fta)? (4.26)
dlog f(x) 1 1 )
do? 0’5+0’2§i: o + o2 (1) (B, — )
Hence,
1
0'5 + 02 = E ZFb(nZ)(Eb@l - [Lb)Q (427)
dlog f(x) 1
902 = 52 (n; — 2) (4.28)
1
= 2wl = Fa(ni) (o)’ = Fo(ni) (Ep)’)
7 t
b Y Em) (B, )’
0_2 + 0_2 0_2 + 0_2 Z a nl a,xr; ILLG
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A (k ! ZFb(ni)(Emeb)Q)

0% + o2 of + 0% %

Substituting (4.26) and (4.27) in (4.28) enables us to solve the likelihood equations.

Therefore the ML estimators are :

[AL _ ZFa(ni)Ea,ri _ Zi,t l‘i,t

¢ ZFa(nz) ZFa(nz)

S BB, Zutulas —3)
e ZFb(ni) ZFb(ni)

52 (2 xzz,t - Fa(ni)(Ea,ri)z - Fb(ni)(Eb;Ii)Q)

Zi(ni - 2)
1
(}2 = E Z Fa(ni)(Ea,zi - ﬂa)Q - o
. 1 . .
oy = EZFb("z’)(Eb,zi — ) - o

As in the static case the ML estimators for o2 and ¢} can be negative. Equation
(4.25), which present the density function of a given segment for the scaled linear
model, reveals that the actual parameters are o>+ and o} +0*. The ML estimation

of these expressions is always non negative.

4.5 Baum-Welch re-Estimation

In previous sections we have described a training procedure for scaled random models
that is an extension of the segmental k-means algorithm. In this section we present a
Baum-Welch type re-estimation procedure for the scaled segmental random model.
Using a scaled model enables us to perform the exact E- and M-steps of the Baum-

Welch algorithm. This can not be done in the unscaled model [58]. The E-step

33



can be performed even in the unscaled model. However, the optimization procedure
during the M-step does not yield a closed form for the estimated parameters.

Consider a left to right segmental HMM consisting of m states. Denote the
segmental models associated with the states by M, ..., M,,. Only one segment from
each utterance is associated with a particular state. In other words, the utterance
is divided into m segments that correspond to the m segmental models. While this
assumption simplifies notation, it is not necessary. Other HMM topologies can be
analyzed in a similar manner.

According to this model, a state sequence is associated with each utterance.
During the generation of the utterance, first a state sequence is chosen and then
the observations sequence is sampled according to that state sequence. Denote
by ts(s,j) the time index of the transition into the state j in the sequence s (for
example, if s=11122333 then ts(s,2) = 4). Denote by te(s, j) the time index of the
transition out from the state j in the sequence s. We denote the time interval of

the visit in the state j in the sequence s by :

t(SJJ) = ts(87])7t8(87.7)+17 "'Jte(SJ.j)

Using this notation we can write the joint density of a given utterance x and a state

sequence s as follows :

m

H ftsy | M;)

The probability of the utterance x is obtained by summing over all possible state

sequences :

:Zf(l‘as)

Dynamic programming must be applied in order to efficiently compute this expres-
sion. Denote by «(j,t) the conditional probability of 1, ..., x;, given that the last

visited state is j, and this sojourn is ended at time index ¢. A recursion formula for
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«(7,t) can be stated in the following way :
a(l,t) = f(xq, ..., x| My) t=1,...,n

aj,t) = Za(j—l,u)f(xuﬂ, M) j=2,.m , t=1,..n

u<t

where f is the density function of a entire segment according to a segmental model.
The likelihood score of the utterance is f(x) = a(m,n), where n is the utterance
length and m is the index of the state at the end of the word. This recursion
formula reflects the topology of the HMM. Other topologies (e.g. addition of a self
loop to permit multiple entry to the same state) imply modification of the recursion
step. Similar dynamic programming is performed in order to compute the likelihood
score in the standard HMM [53]. However, in segmental models computation of the
density function is far more complex. This is due to the fact that the probability
of a frame does not depend only on the state but also on the location of this frame
within the segment sampled during the visit in the state. In a segmental model we
can not compute the probability of a single frame in a state. We must compute the
probability of the entire segment. The complexity of the algorithm can be reduced
by assuming a maximal state duration.

In the Viterbi decoding approach we choose the best suited state sequence. For
the Baum-Welch algorithm we must consider all the possible state sequences. Each
state sequence is considered according to its relative weight. Denote by w(j, 1, t2)
the a-posteriori probability that the portion of the utterance x sampled at state j
is Xy, ..., Ty,. Applying Bayes rule yields :

N N .'E, S
w(j,ty, 1) = Z{sts<s71>—t1;e(<;)ﬂ>—tz} f(z )

An extension of the Forward-Backward algorithm can be applied for efficient compu-

tation of w(j,t1,t3). Denote by (3(j,t) the conditional probability of zy, ..., z,, given
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that at time index ¢ there was a transition into the state j. A recursion formula for
B(t, ) is :
B(m,t) = f(x4, ..., xn| M,,) t=1,...n
B(j.t) =D f(@e, ooy ur [ M;)B(+1, 1) t=1,..,mn , j=1,..,m—1
u>t

Using this notation we derive the following expression for w(7j, t1,ty) :

a(.j_latl_l)f(xtw th2‘M])/6(7+17t2+]‘)
(@)

’U}(], tl, tz) =

Computing the expression w(j,t1, %) is the main step in performing the EM itera-
tion in the Baum-Welch framework. In this chapter it is assumed that the obser-
vations are scalar. In case of multi-dimensional observations and diagonal matrix
covariances, the weight w(j, 1, 9) is computed for all the observations components
together. Once the weight is computed, the estimation can be done for each com-
ponent separately.

Until now we have discussed segmental models in general. Assume that the
segmental model associated with the states is the scaled linear RTSM. Denote the

parameters of the model M; by {u; ., sz’a, b, o?

24,05 }. According to the definition

of the scaled linear RTSM, given in the previous section, the model M, can be

written as :
t—1t, 1

tr%1_§)+q

Ty = a0+ a+ (i +0)(

where tq,...,1y is the time interval of the sojourn in the state j, and a and b are
sampled at the transition into the state j. Assume that the training data-base
consists of the k utterances zy,...,x;. Denote the length of x; by n;. Denote by
w;(J,11,ty) the a-posteriori probability that the portion of x; sampled at state j is

Titys--- Tig,- The EM auxiliary function is :

Q(0,00) = E(logf(x,s,0)|x,0)
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Z Z f(s|xi, 0p) log f (x4, s,0)

Differentiating the auxiliary function with respect to p;, yields :

9Q(0. o) — sz |xz,90 logf(xz,s 0o)

8,uj7a
- Z Z f |‘/L‘ZJ 9[]

8
= Z Z w; ]atlatZ all 1ng(xzt1""7xi,tz|Mj)

1 t1<to

logf(xzts] ‘M)

ta

1
= Z Z W; ],tl,tz +0_2 Z(l‘i,t - ,uj,a)

i t1<ta J t=t1

Setting this partial derivative to zero yields the re-estimation formula for p,. In a
similar manner we can obtain re-estimation formulae for the other parameters. The
algebraic manipulation involved here is similar to one presented in Appendix 4.B
for the segmental k-means training procedure. In order to simplify the presentation

of the re-estimation formulae, we defined the following notation :

At - tg*t1+1

1 Xk

F, (A1) t:Z Vit

5]

Ea,zi (tl 3 t?)

1 & t—t 1
By, (th,t S zi(— — =
bas(f1,72) Fy(At) t:tlx’t(trn 32

We can now state the re-estimation equations of Baum-Welch algorithm for training

the scaled linear RTSM :

i _ 2 Ztl <ty Wi (7: t1, tz) Z?:tl Tt
e Zl Ztl <t Wi (]7 tl’ tQ)Fa(At)
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> Ztl <ty Wi (7: ty, tz) Z?:tl xi,t(éittll - %)

i = > S <tr wilJ, tr, 1) Fy(AL)
o i e Wil T, 1) (X w7, — Fu(At) By, (ty, 2)” — Fy(A)(Epe,(t1,12))°)
J Zz Zt1<t2 wl(]a tla tQ)(At o 2)
. 1 . . .
0']2-7,1 = E Z Z wi(]; l1, t2)Fa(At)(Ea,wi(t1= t2) - :uj,a)z B ]2
1 t1<t2
. 1 . . .
o = 72 2 wilh b ) F(AD By, (t1,12) — f150)° — 6
1 t1<t2

The random model is more informative than the deterministic one. Therefore,
it is more sensitive to the initial values of the model parameters. Initialization can
be done in the following manner [28]. First, train a deterministic linear model or
even a standard HMM. Then given the deterministic model, we can apply Viterbi
decoding to divide each utterance into segments. The segmented data can be used

as an input for the initialization process described in Appendix 4.B.

4.6 Experimental Results

We evaluated the model presented in the previous section using the ARPA, large
vocabulary, speaker independent, continuous speech, Wall Street Journal (WSJ) cor-
pus [15]. Experiments were conducted with DECIPHER, SRI’s continuous speech
recognition system [14]. A detailed description of the WSJ data-base and the signal
processing performed in the DECIPHER system can be found in Appendix A. The
automatic segmentation is not perfect and is not comparable with that of a pro-
fessional phonetician. However, this segmentation enables us to perform a fair and
extensive comparison between different acoustic models.

The task we choose for evaluation is phonetic classification. In classification the
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correct segmentation (phone beginning and ending time) of the input observation
sequence is given. Our objective is to assign correct phone labels to each segment.
The DECIPHER system was used to determine automatically the phone segmenta-
tion for each sentence in the database. Having obtained phonetically aligned test
data, the actual classification process is just a matter of finding the most likely phone
label for a speech segment according to the models being evaluated. The training
set consists of 100 realizations in various contexts for each phone. The testing set
consists of another 100 realizations for each phoneme.

The goal of the experiments we have conducted is to compare between the per-
formance of the scaled and unscaled random mean trajectory models. In previous
sections we have discussed both the cases of constant and linear mean trajectories.
The experiments were performed for static as well as linear models. This enable us to
find how much the assumption of linear mean trajectory improves the performance.
We also add results for models where the mean trajectory is a deterministic parame-
ter (i.e. standard Gaussian HMM and Deng’s linear model) as a reference. It should
be noted that a deterministic model has less parameters than the corresponding

random model. The acoustic models we implemented for evaluation were:
1. Standard Gaussian HMM.
2. Static RTSM (Russell [58]).
3. Scaled static RTSM (presented in section 3).
4. Linear mean trajectory segment model (Deng et al. [7]).
5. Linear RTSM (Holmes and Russell [28]).
6. Scaled linear RTSM (presented in section 4).

Several alternatives for model topologies have been employed in order to analyze
the balancing problem in different situations. The first analyzed topology assigns

one segment to the entire phone. The second one still associates a single segment
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model one state | one state | three states | three states
self-loop with skips
deterministic 52.1 61.7 61.9
static | non-scaled 50.7 52.4 61.1 61.7
scaled 51.5 55.1 62.3 62.8
deterministic 57.2 57.8 61.8 62.3
linear | non-scaled 58.0 57.0 63.3 63.9
scaled 59.1 58.1 62.2 64.1

Table 4.1: Phoneme classification rate results

model with each phone, but includes self loops. In other words, the phone can be
modeled by a number of segments which are all corresponding to the same segmental
model. The third topology, models each phone using three states. The last examined
topology is also a three state model but a skip over a state is allowed. In this manner
a phone can be explained using at most three states. Note that in the second and
the forth topologies the number of segments per phone is not fixed. Balancing the
model components in those cases is critical.

Training the models that includes more than one segment per phone was done
using the segmental k-means algorithm. The parameters of the unscaled random
models were computed using the iterative inner EM algorithm that is presented in
Appendix 4.B. We preferred to use this training method because, although it is an
iterative procedure, it computes the true likelihood function. The scaled model was
trained using the closed form formulae that were developed in previous sections. The
random models, both scaled and unscaled, were initialized using the deterministic
version of the model for the first iteration of the segmental k-means algorithm.
Duration was not modeled explicitly. Therefore, all durations were assigned equal
probability.

As can be seen from Table 4.1, the scaled model usually outperforms the previ-
ously suggested non-scaled model, both for the static case and for the linear case.
These results also reassess the significant performance improvement caused by using

a linear model instead of a static one. It is noteworthy to mention that by com-
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model m-7-n | p-7-t | s-7-ae | t-7-s | k-7-t | average
static | non-scaled | 49.4 61.0 | 80.3 69.3 | 82.9 | 79.6

scaled 52.7 65.1 | 79.6 71.4 | 84.2 | 80.3
linear | non-scaled | 59.3 64.0 | 88.4 72.1 | 87.5 | 82.0
scaled 61.9 67.7 | 88.9 74.8 190.0 | 82.4

Table 4.2: Triphone classification rate results

paring the parameters of the scaled and the corresponding unscaled model, we have
found that the values of the mean parameters and the values of the intra-segmental
variances are similar.

Another task we evaluated is triphone classification. Given a triphone context
(the phones before and after the current one), the goal is to determine the label of the
current phone based on the acoustics. Context dependent classification was chosen
because, in that case there are fewer discrepancies between utterances. Hence,
in practice, this is usually the case of interest when using segment models. The
topology we have used for this task is the simplest one. Each phoneme is modeled
by a single segmental model. This is the first topology from the topologies list of
the previous experiment.

In Table 4.2 we present recognition results for some frequently occurring triphone
contexts. The first column in Table 4.2 summarizes a classification experiment given
the triphone context m-n. The segmented WSJ database was used to extract the
phones that appear between the phones m and n. The classification was done among
those phonemes that have a significant number of occurrences (at least 60) in the m-n
context. In this context these phonemes are (using ARPABET notation) : aa, ae, ah,
aw, ax, ay, eh, ey and iy. Half of the data was used to train the triphone models. The
other half was used for the actual classification task. The subsequent four columns
present results for similar classification tasks in other triphone contexts. The final
column presents the classification performance averaged over the 120 most frequently
occurring triphone contexts. As can be seen, the scaled model outperforms the

previously suggested non scaled model.
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4.7 Conclusions

In this chapter we have proposed, implemented and evaluated a new type of random
trajectory segment model where the variance of the mean trajectory is inversely
proportional to the segment duration. In this model the division of the acoustic
information in an utterance does not depend on a specific segmentation. Instead,
we extract the same amount of information about the mean trajectory from each
data frame. We have named this approach a scaled RTSM. One desirable attribute
of the scaled model is that it leads to a simple training algorithm. More precisely,
given a training set, consisting of a list of segment realizations, the ML estimation
of the scaled model can be solved analytically. On the other hand, in the non-scaled
model, an iterative algorithm, (e.g., EM) is required. Such iterative algorithm, is

not guaranteed to reach the global maximum.

Appendix 4.A

We derive an explicit expression for the PDF of the linear RTSM. Both the scaled
and the non-scaled versions are discussed. We begin by analyzing the scaled model.
The definition of the scaled linear model implies that the joint PDF of the observed

segment = of length n and the linear function coefficients a and b is :

Foa,p) = L VB otz
27r0a 2mop, \V2mo
where
F,(n)a®>  Fy(n)b* 1 t 1.,
b) = — ; ) (—— — =
g(x,a,b) 2t 22; (o +a) = (up + D) (-— — 3))
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We show that g(z, a,b) may be written as :

o? o? o o
o’ 9 9
Q(Fa(n)(02+ s(Baz — ta)” — (Fagz)®) +
o’ 9
Fb(”)(m(Eb,z — )" = (Eba)?) + Zt:fft)

The terms d, b, F,(n), Fy(n), E,, and E,, are defined in (4.20), (4.21).

9(37, a, b) — FQEJZ)G,Z N Fbgé)bz n % ;(:pt _ (Ma n a) B (;j,b I b)(% . %))2
(F,;(Qn) Ft;(?)) a2 9q— Z(Tt ) +
L Y

1 t

02 o 02+ o?
2
() )
F‘;(Qn) UngZ(Ea,r a)? Fl;(gn) Ug(:_gag (Ebo — )" +
3 (g ) (4.29)

Given the observation sequence z, g(z, a, b) is a quadratic form in a and b. Hence, we
conclude that the conditional distribution of @ and b given the segment z is Gaussian.
Furthermore, a and b are conditionally independent. Now, the first moments may

be read directly from (4.29):




Var(alz) = (Fa(f) + F‘;(f)>1
E(lz) = b= (Ug(f02> (Ebe — )
Var(ble) = (F’;I(;)+F’;I(f)>l

Fo(n)(Baw — #a)’ = (Ba)”) + Fo(n) (B — )" — (Bba)”) + 377

Substituting this relation in (4.29) yields :

g(z,a,b) = (F“(”)+F“(")>(aa)2+<F”(”)+F”(")>(bé)2+

—Q;xh;(n) (a2 ;E :,f (5.
+Fy(n) ((1 - Uz(fUQ)(Ebm )" — (Eb,w)2>)

Hence,
slovat) = (P B0 (e (B4 O e g

oo h) = (0l )y (B = )" = (o)
bR B = ) = (o))
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Using this representation we may solve the double integral :

flz) = /G/bf(:r,a, b)da db

and obtain the following explicit expression for the PDF,

@) = (F o(n) | F ﬂ“”)% (F un) Fb(">>% o (. 0)

2 2 2 2
o; o o} o
1 1
2 3 2 2 n .
o2+ 02 o} + o2 oo

The expressions we derived for f(z), g(z, a,b) and the moments of the conditional

distribution of a and b given x may be easily transformed to the non-scaled linear
case. We need only substitute F,(n)o? and Fy(n)o} for o2 and of. For example, in

the non-scaled case we have :
E . = a= = 7/ N 9 . 9 Ea x ~ Ma
(alr) = (Fa(n)agw)( )

Eblz) = b= (W) (Evo — )

(NI

flz) = (i ¥ F“(")>% (iz + F”@) 2 f(x, , b)

o? o2

a
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Appendix 4.B

The static RTSM can be seen as a special case of the dynamical system model [12]
such that the state space is constant over time. The EM algorithm presented by
Digalakis et al. can be applied to the static RTSM. In this appendix we derive the
EM re-estimation equations for the unscaled linear RTSM which is out of the scope
of dynamic segment systems. The re-estimation equations for static RTSM can be
easily deduced from the equations developed here. Suppose we have k segment
realizations xy, ..., xx. Denote the length of z; by n;. Denote by a; and b; the hidden
coefficients of the line which was sampled for the segment z;. Define z; = (z;, a;, b;),
z1, ..., 2, are the complete data for this EM framework. Denote the parameter set we
want to estimate by 0 = {4, iy, 02, 0f,0?}. The current estimate at the beginning

of the iteration is denoted by 0y = { a0, ts0, 02, 05y, Ta }-

2 b2
log f(2,0) = logo? + % +logop + 0—12 +n,logo? +
a b

22 S = e =) = = B = )+ €

where C' is a constant that is independent of the parameter vector §. Hence,
E(log f(z,0)|z,0y) = nilog o+

1 1
logo? + ;E(a?\mi, 0y) +logo, + PE(b?\mi, 6y)+
b

a

t 1

! 2
+o B = (ta = a0) = (1= 0) (= = )Pl o)
Denote :
1 Fu(ni)\ ~ Fa(ni)
Ea = kb [ iae =\ an'_ a
i (CL ‘-’17 U) (0'3[] O_g ) 0_3 ( 5 H U)
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1 Fa 7 -
Vo, = Var(a;|z;, b)) = + (n))

Ebi = E(bl|l‘“90):< 2 + 2‘

1 Fn)) |
Vi, = Var(bi|z,0) = | = + b(nz)>

where

1
Fa(nz’) = n; , Ea,zi - F (n) Z-’Eit
a\'li) ¢
ni(n;+1) 1
Fy(ni) = ———= , Epa, = =
() = 500 b 173

These relations are developed in Appendix 4.A. Direct algebraic manipulations re-

veal the following relation :

to1, B
P ) i 00) =

E((frzt - (Ma - Clz') - (Mb - bz)(

Fu(ni)Va, + By (na)Va, + > (wip — (pta + Ea,) — (s + Ebi)(n
t

We now define the EM auxiliary function :

Q(0,00) = E(log f(z,0)|x,0) = ZE log f(zi,0)|xi, 6)
1
= klogaz—l—;ZE(aﬂxi,HU)+§2Fa(ni)Vai +

a

1 1
[ i

1
Z"i 10g02 + ) Z(Lt — (fa + Eo;) — (pp + Eb)(n

it
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Optimization of the auxiliary function with respect to the model parameters yields

the following new estimated parameter vector, § = {fbay iy, 02, 08,6}

N _ Zz Fa(ni)(Ea,mi - Eai)
o Zz Fa(ni)
gy = i fb()(Foe, = B)

’ D Fb(nz)

1

62 = EZ(VM +E) = ZE 2|25, 0o)
R 1
6; = EZ(% +E;) = ZE (b7 |4, 0p)
R 1

2= Zz n; ;(Fa(ni)vai +Fb(ni)vbi +

> oi0 = (fa + ) = (i + )5 = )

t

Possible initialization values for the EM algorithm are :

1 1
al = S =7 Fa 7 Eaz- 2 == Eaz- - Ha 2
Hao ZFa(nz) ; (n) T ) Ta0 L Z( T % 0)

1 1
teo = ZT(TLZ) EZ: Fb(ni)Eb,zi ) OE?O = E ;(Eb,fﬂi - ubﬂ)z
1 t 1
2 o - )\ 2
00 = S, %;(xz,t Hao NbO(ni 1 2))
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Chapter 5

Continuous Mixture of Segmental

Models

In this chapter we shall present a segmental modeling approach based on a non-
parametric description of the mean trajectory during a sojourn in a phonetic unit.
First, we provide a motivation for the model from examination of segment data
realizations. Then we shall present the model itself, followed by a discussion of the
training algorithm. Finally, we shall present experimental results which examine

various aspects of the model.

5.1 Motivations

Our model was motivated by extensive examination of segment data realizations. In
Figure 5.1, several realizations of the first cepstral coefficient in the triphone ih-s-ow
are presented (The database used was the speaker independent, large vocabulary,
Wall Street Journal (WSJ) corpus [15]). Figure 5.2 presents the same data after

nonlinear time warping of the segment realizations, so as to achieve time alignment
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between the various realizations. Figure 5.3 also presents time aligned segment
realizations, but with an additional stage of global displacement removal. It can be
clearly seen, that the variance of the trajectories in Figure 5.3 is smaller than the
corresponding variance in Figure 5.2. Hence, in this case, the incorporation of the

global displacement term yields improved modeling.
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Figure 5.1: Realizations of first cepstral coefficient of the phone ‘s’ in the triphone
context ih-ow.
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Figure 5.2: Data after nonlinear time warping.

These figures reflect the fact that the speech signal is produced by a continuously
varying physical system (the vocal track). There is a smooth local dynamic along

the sojourn in the phonetic unit. We can also observe from these figures that when
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Figure 5.3: Data after nonlinear time warping and displacement elimination.

we fix a context there is not any significant variability among different realizations
of a phonetic unit. In other words, the phone does not exhibit several distinct
trajectories. The observed difference can be described as a shift from the mean
trajectory that is global to the entire segment. This phenomenon can be explained
on two levels. First, the shift reflects the speaker personal style which is dependent
upon the shape of vocal organs, gender, age, dialect etc. From a more local point of
view the size of the shift depends on the ending point of the previous phoneme and
the starting point of the next one. This is one way of describing the co-articulation
effect. The vocal articulators move from the position necessary for articulation of
the previous phone towards the position required for the next phone, via the position
needed for the current phone. During fluent speech when the context phones are not
fully articulated there will be a shift from the mean trajectory due to the continuous
nature of the speech signal. In the next section we shall formulate these intuitive

observations into a probabilistic model.

5.2 Model Formulation

In this section we present a new segmental model which is composed of two elements.

The first element is a non-parametric representation of the mean and variance tra-
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jectories, and the second is a parameterized transformation (e.g. random shift) of
the trajectory that is global to the entire segment [21], [22]. The mean trajectory
curve is represented using a non-parametric description. That is to say, instead of
using a polynomial or some other parametric description, as in [7], [8], [41], [11],
(58], [27], [28], [29] and [18], the curve is represented by specifying a list of sampled
points along it. More precisely, we assume that each segment may be represented
by a left to right HMM structure, such that each HMM state is represented by a
single Gaussian HMM. The sequence of mean values of the HMM state sequence
constitutes a template of the mean trajectory. Likewise, the sequence of variances
of the HMM state sequence constitutes a template of the variance trajectory. Time
warping of the template trajectory is made possible by controlling the state sequence
of the HMM (e.g., contracting may be realized by rapid transitions out of states).
The second element of the model is a parameterized transformation of the trajectory,
that is global to the entire segment. Let the state sequence of some given segment
realization be denoted by s = (s1, s9,...,$,), and let the corresponding observation
sequence be denoted by = = (z1, %y, ..., x,). To simplify notation, it will be assumed
during this chapter that the observations are one dimensional. Generalization to the
multi-dimensional case is straight-forward. We assume the following model for the

observation, x;, at time t :

xp = T, (11(st), 0(51), 1)

where p(s;) and o(s;) are the mean and variance at state s;, and T,(-) is some random
transformation indexed by a. a is a random variable that is chosen once for the
entire segment realization. The transformation that we focus on in this chapter, is a
random displacement of the mean trajectory. In that case, T,(u,0,t) = p+a+e/(o).
Hence,

zy = p(sy) +a+e(o(se)) (5.1)
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Here, a is a zero mean, normal random variable, sampled once per segment, that
represents the global displacement of the current segment realization. ¢,(o) is a zero

mean, Gaussian random variable.

a ~ N(0,0’Z) . €~ N(O,Uz(st))

The effect of the displacement variable may be interpreted as a continuous mixture
of parallel curves that represent the mean trajectory along the segment. The distri-
bution of a is the continuous segmental analog to the mixture coefficients in standard
HMM. That is to say, in standard HMM, a discrete mixture component is chosen
once per frame, i.e., it is a frame based approach, while in a random segmental
model, a continuous mixture component is chosen once per segment realization.
The proposed model (5.1) is similar to the models suggested in [58], [27], [28],
[29] and [18]. In these references, however, the approach is parametric, while our
approach is non-parametric and allows time warping of the mean trajectory. The
flexibility that is gained by allowing time warping could significantly improve the
modeling capability of the template trajectory. The boundaries between phones are
not well defined and there is no any consistent starting point. Non-parametric rep-
resentation allows us flexibility in the starting point of the phone. Non-parametric
description of the mean trajectory appears in [19] and [25], but we suggest a different
estimation procedure which seems to be more robust. This shall be discussed further
in the next section. The idea of non-unique mean trajectory can be originated in
the traditional mixture HMM. Kimball and Ostendorf [42], [49] described a model
that consists of discrete mixtures of trajectories. That approach assists us enrich the
model family we use, but as we can see from Figure 5.1, it does not always reflect

the actual behavior of the data.
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5.3 Recognition and Training Algorithms

We now present recognition and training algorithms for the new proposed model.
The input to the recognition algorithm is a segment realization. The output of the
algorithm is the identity of the segment. The optimal maximum likelihood (ML)
solution to this problem is to determine on the segment identity p, based on the

likelihood of the segment data x, i.e.

h— 5.2
= argmax /(1) (5.2
where P is the set of candidate segments, and f(x) is the density of x under the

assumption that the segment identity is p. f(x) is given by :

f(z) = /azs:f(:r, s, a)da

where  f(z,s,a) = f(s)f(a) [[ f(z: — alu(s:),o(s))

t

denote also  f(x,s) = /f(x, s, a)da

A shortcoming of the ML approach is that the computation of f(z) is extremely
complicated. There is no efficient algorithm to obtain the integral as a closed from.
This is in contrast with the parametric random model discussed in the previous
chapter. In the parametric model a distinct shift value is attached to each state,
and therefore there is no summation over all the state sequences inside the integral.
The model presented in this chapter can be viewed as a random parametric model
such that the shift operation is done jointly for several states.

As an alternative we propose the following segment recognition criterion :

p = arg I;lea7§< {msax f(z, s)} (5.3)
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The approximation of (5.2) by (5.3) is similar to the standard approximation of
ML word estimation by ML sequence estimation (Viterbi decoding). Even for this
simplified criterion there is no efficient algorithm to compute it. In order to solve
this maximization problem we must explicitly check all the exponential amount of
state sequences. In the next section we give an efficient algorithm, for finding the
exact solution, for a simpler version of our model. We now present an iterative

algorithm to evaluate max; f(x,s) = f(z, ) numerically.
1. Initialization : a = 0.

2. Compute § = argmax, f(z,s,a) by applying standard Viterbi segmentation

on the data after displacement elimination (i.e., 1 — a, 29 — @,...,z, — a).

3. Compute ¢ = argmax, f(z,§,a). In Appendix 5.A we obtain the following

expression for a.
Dot % (z — pu(5))

5.4
a7 + Tin w7 .

a =

4. Repeat 2 and 3 until convergence.

5. Compute :
fla,8) = /af(x,é,a)da:
<¢127r> o H?_ll () (oi i Z a(l)> e D (5.5)
where

2
S oty (@ — N(St)))
a7+ Til a7y

k(x,s) = i !

t=1

(7 — M(St))z - (

o*(st)

Eq. (5.5) is derived in Appendix 5.A.
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We have compared the performance of this scheme with the true solution ob-
tained by performing exhaustive search. These tests ensure us that this heuristic
algorithm indeed achieves the global maximum most of the time.

The proposed training algorithm is a combination of the algorithm above and
the well-known Baum-Welch training procedure. Given a sequence of k segment
data realizations x4, ..., zy, where x; = (x;1,...,%;,,), denote by a;, the segmental

mixture coefficient of x;. Training consists of the following iterative steps :

1. Initialization :

2. Apply the Baum-Welch algorithm to

il — Qiy ooy Tip, — Gy 1=1,...,k

3

in order to obtain a new set of segment template parameters (state means,
variances, and transition probabilities). We then apply the Viterbi algorithm

in order to determine the state segmentation §;.
3. Apply the previous iterative algorithm to obtain a; = arg max, f(z;, $;,a).
4. Given ay,as, ..., ax, update the variance of the random displacement :

(ai)2

1

=

2 _
O, =

(3

k

5. Repeat 2-4 until convergence.

A major decision that needs to be made concerns the number of states that
are used in our model. While trajectory descriptions with large number of states
are more accurate on the one hand, when a large number of states are used, the

training algorithm needs to estimate a large number of parameters on the other.
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Hence, in that case, it is essential to properly initialize the training algorithm that
was described above. Otherwise, the algorithm does not produce meaningful results.
This problem is avoided in Kimball et al. [42], [49], since a relatively small number
of states (typically five states per segment) is used.

The following initialization algorithm is proposed.

1. Given the segment data realizations, 1, s, . . ., ), an initial segment template
is determined. The length, M, of this template is set equal to the average
length of the given segment realizations. Then each segment realization is
linearly time warped to size M. Finally, the initial segment template is set to

the mean of these linearly time warped segment realizations.

2. A dynamic time warping (DTW) [60] routine is used to time align each segment

realization x; against the template segment.

3. The time aligned segment realizations are averaged together in order to obtain

a new template.

4. Stages 2 and 3 are repeated as many times as necessary. Typically two itera-

tions are sufficient.

5. Finally, M vectors of means and variances of the HMM states, that constitute
the initial template, are obtained by averaging the last version of time aligned

segment data realizations.

Note that the initialization routine does not employ random displacement model-
ing. The DTW routine that we used specifies the local constraint that no more
than two adjacent template frames can be mapped to the same segment realization
frame, and vice versa (no more than two adjacent segment realization frames can
be mapped to the same template frame). In addition, the DTW routine specifies
the standard global constraint that the grid region of matching frames is limited
to a band diagonal region. These constraints limit the amount of permitted time

contracting and expanding. Standard Viterbi decoding does not incorporate such
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constraints, and thus does not produce reliable initialization. The method presented
here ensures that we will get a relatively smooth and continuous curve for the tra-
jectory. Other methods to estimate the mean trajectory appear in the literature.
Ghitza [19] suggested choosing one of the realizations, which is the centroid of the
segments ensemble, as the mean trajectory. Goldenthal [25] used the first step of
our initialization i.e. averaging the segments without warping in order to find a
trajectory model.

The recognition and training algorithms that were described above are useful
for re-scoring an N-best list. We assume the phone boundaries are known. Note
that due to the fact that mean trajectory time warping is allowed, segmentation
inaccuracies at the previous stage can be tolerated.

Figure 5.4 presents the mean trajectory of the first cepstral coefficient of the
triphone ih-s-ow produced by the training algorithm. The figure also shows the
variance trajectory (we draw a line that is one standard deviation away from the

mean trajectory).
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Figure 5.4: Non-parametric model of the mean trajectory.
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5.4 A Simplified Version of the Model

In the previous section we have presented the segmental model :

xy = p(se) +a+e(o(se))

During the recognition stage we already know the model parameters and want to
classify a given segment realization. Given a frame sequence =z = (xq,...,z,) we

want to compute the following Viterbi-like approximation for the likelihood score :

f(z,8) = max flx,s) = mgx/ f(x,s,a)da

f(z,8) is the joint density of the data = and the best suited state sequence 5. We
have suggested a heuristic iterative procedure to find f(z,$). A natural question
in this situation is the following. Is this procedure the best available? As a partial
answer we shall discuss a very restricted version of the model. We will show that in
this case we do have an exact algorithm to compute f(x, §) which is neither heuristic
nor iterative. In spite of this fact, even for this simplified model the solution is not
straightforward.

We add the following assumptions to our framework :

1. The data frames are one-dimensional. In other words, we model each feature
separately. The states are chosen independently for each feature. In the gen-
eral case discussed at the previous sections we have enabled a common state

segmentation for all the features.

2. There is no Markovian structure imposed on the state sequence. We assume
instead IID behavior. In other words, the model is reduced to the standard

mixture model.

3. The normal distributions attached to each of the states share a common vari-
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ance denoted by o2.

The density function of a frame sequence according to this model is :

! = 12 (xp — p(sy) — a)z) da

J(x) = /a 2mo, exp(;—(;) 21:[ V2ro exp <§

As before, we want to find max, f(x,s). The joint density of x, s and a can be

written as :
1 1 1

f(.’E, S CL) = (\/ﬁ(j)n\/ﬁaa eXp(_ig(‘ra S CL))

1

2
a
where g(z,s,a) = 2 + p) (ze — p(se) — a)2
a t

It can be verified from Appendix 5.A that :

1 n
ol 5,a) = (? ﬁ) (a—a,)" +g(z,s,a,)
€ _
where d, = max flx,s,0) = & Ztgx:L nu(st))
oz T o2

From this we can conclude that :

f(z,s) :/Gf(x,s,a)da: (%-I—%)E V2rf(x, s, is)

This implies :

arg max f(z,s) = arg max f(z,s,as) = arg Hsliang(x, s, a)
. (a? 1 9
= argmin | — + — > (# — p(s) — a)

s,a O’a O’ 1

In other words, in order to find the best state sequence §, we do not have to perform

the integral over the shift variable a. Instead, we can take for each s the best
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associated shift :
argmax f (¢, 5) = arg max(max f(z, 5, a))

We can now reduce our problem to the following abstract formulation. Let
Ty eey Ty [0, -y fg, W be known real numbers. For each “state sequence” s € {1, ..., J}"

and each “shift” a € R define :

g(s,0) = wa + 3w, — ulse) — a)?

t=1

We want to solve efficiently the minimization problem min,, g(s,a). We can give
a probabilistic interpretation for this situation. Define a discrete random vari-

able Y, that accepts the n+1 values 0,y — u(s1), ..., x, — p(s,) with probabilities

w 1 1
w+n? w+n " w+

—. Using this terminology one can easily observe that :
g(s,a) = (w+n)E(Y; — a)*

Denote :
B 1

a, = E(Y,) = > (@ — p(sh))

w—+n

The variance is the smallest second moment. It satisfies the following inequality for

each real number a :

Var(y,) = E(Y, - E(Y.))? < B(Y, - o)’

Therefore we obtain :

g(s) = g(s.0.) = ming(s,a)
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= (w+n)Var(Ys) = (w+n)(E(Y?) — E*Y,)

= - ) - — (ixt—u<8t>)2

Thus far we have shown that for each state sequence s we can easily find the optimal
shift associated with it. We shall now explain how we can find the best state

sequence.

Define :

Atyi) = (= p(@)* . B(t,4) = 2 — p(i) (5.6)

Using this notation we can write :

1

w—+n

BZ

g(s) = As —

We can project each state sequence s onto a point (A,, B,) € R?. Let S be the
convex hull of {(A,, B,)}. A — w+rnBQ is a concave function of A and B, therefore
it obtains its minimum over the region S at the extreme points (which are a subset
of {(As, Bs)}. From here we can conclude that if we want to find min, g(s) there is
no need to check all the state sequences. We need only check those state sequences
which are projected to extreme points of S.

It will be explained now how we can efficiently check all the extreme points of
S. We use a standard technique from computational geometry. An extreme point

(A, B) is characterized by some real A, such that :

A+ AB =max(A; + AB;) or — A+ AB =max(—A,+ ABy)
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From definition (5.6) we obtain
max (A, + AB,) = max > (A(t, s¢) + AB(t, s1))
t

We can solve this maximization problem component wise due to the fact that we
assume no Markovian structure on the state sequences s, i.e there are no prior re-
strictions on the state sequence. We need only solve a trivial maximization problem.

The solution is :

max(A, + AB,) = > max(A(t,j) + AB(t, j))
S P 7
In this manner, for each A € R we find a point s, which is an extreme point of S
and it is, therefore, a potential candidate for optimality. We cannot check each real
number A, but there is no need to do so. We can concentrate only on critical points
A where s changes, and search for the minimum point among them. The critical

points are the solutions to the equations :
+A(t,3) + AB(t,i) = +A(t,j) + A\B(t,7) 1<t<n , 1<i<j<k (5.7)

Solving equation (5.7) we get the following A values :

(ze — p(i)* + (20 — p(4))?
p(i) — p(j)

(20 — p() —p(g) =+ (5.8)

This step concludes the presentation of the algorithm to compute min, , g(s, a).

We summarize the algorithm to find min, , g(s, a) :
1. Compute the set of critical points using expression (5.8).

2. The critical points divide the real line into disjoint intervals. At each interval
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choose a number A. Find the state sequence s characterized by A :

s = argmax(A(t, j) + AB(t.j))  t=1,..,n
J

3. For each state sequence s that was found at the previous step compute explic-

itly

and choose the state sequence s where ¢ accepts its minimum.

When the length of the data sequence is over 10, this algorithm is much more
efficient than the exhaustive search over all the state sequences. A detailed analysis
of an algorithm similar to the one presented in this section can be found in [26].

We can relax the first assumption mentioned at the beginning of the section.
Suppose that the data frames are K-dimensional and the covariance matrices are

diagonal. In a way similar to definition (5.6), we can define :

Ap(t, i) = (zor — me(0)? 5 Bl 1) = zp — p(i)

K
As - Z ZAk(ta st) ) Bs,k - ZBk(ta St)
t t

o(s) = Z(Z v — prl50))? — — (ZM)))

t=1

This is a function of more than two variables and therefore it is much more compli-
cated to find its maximum.

The third assumption can be relaxed too. In case where each state has a different
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variance associated with it, the resulting function is of the form A— %2. Although this
function is not concave, it is quasi-concave. Therefore, it still obtains its minimum at
the extreme points of a convex set. This convex set is now a subset of a 3-dimensional

space.

5.5 Experimental Results

We evaluated the model presented in the previous section using the (WSJ) cor-
pus [15]. Experiments were conducted with the DECIPHER [14]. A detailed descrip-
tion of the WSJ data-base and the signal processing performed in the DECIPHER
system can be found in Appendix A.

Our model was implemented using the N-best re-scoring paradigm, by re-scoring
the list of the N-best sentence hypotheses generated by the DECIPHER. Context
dependent phonetic models were used. A segmental model was constructed for
each triphone that appears in the training data set. The test set consisted of 200
sentences. In Table 5.1 we present the word error rate of standard HMM, as imple-
mented in the DECIPHER, and the word error rate after re-scoring the N-best list
using the segmental model. In that case, language modeling was not incorporated.
In Table 5.2 we show the decrease in the word error when we add the segmental
model to the HMM as another knowledge source, and linearly combine the two
scores. In that case, language modeling was incorporated.

Tables 5.1 and 5.2 show that the new model is comparable to state of the art
HMM system, with sophisticated tying of parameters. To probe the new model
further and to compare it to alternative models, we carried out several triphone
recognition experiments. Context dependent phonetic units were chosen since in
that case there is less variability between utterances. Hence, in practice, this is
usually the case of interest.

In Table 5.3 we present recognition results for some frequently occurring triphone

contexts. The first data row indicates the number of triphone occurrences for each
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model word error
HMM acoustics 22.1
segmental acoustics | 21.4

Table 5.1: Word error rate results without language model.

model word error
HMM acoustics + linguistics 8.1
HMM acoustics + segmental acoustics + linguistics | 7.8

Table 5.2: Word error rate results with language model.

context. Half of the occurrences were used to train each model.
were used to test the models. There were six triphones in the first context (s[k]ih,
s[l]ih, s[m|ih, s[p]ih, s[t]ih and s|w]ih), five triphones in the second context (n[ay]t,
nleh]t, nfey]t, n[ih]t and nfow]t), five triphones in the third context (aa[k]t, aa[n]t,
aa[plt, aa[r|t and aa[s]t), ten triphones in the forth context (ih[b]eh, ih[d]eh, ih[f]eh,
ih[jhleh, ih[l]eh, ih[m]eh, ih[p]eh, ih[r]eh, ih[s|eh and ih[v]eh), and seven triphones in

the fifth context (glaalt, glae]t, glah]t, glax]t, gleh]t, gley]t and g[ih]t).

The models examined were :

1. Mixture of Gaussians HMM. Such model, with s states and m mixtures is

denoted by HMM(s,m).

2. A segmental polynomial model (3.2) with deterministic p; parameters. Such

model with s states and a polynomial of order K describing the mean trajec-

tory of each state is denoted by POLY (s,K).

3. A segmental polynomial model (3.2) with multi-normal y;, parameters. Such

model with s states and a polynomial of order K describing the mean trajec-

tory of each state is denoted by POLYRND(s,K).

4. The new proposed model with random displacement modeling. Such model

with s states is denoted by NPRMDISP(s).
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5. The new proposed model without random displacement modeling, i.e. a stan-

dard non-parametric model. Such model with s states is denoted by NPRM(s).

To implement model (3.2) (both for the case where p;, are deterministic parameters,
and for the case where they are random variables), all possible state partitions were

considered for each utterance that needs to be recognized.

s[-]ih | n[-]t | aal-]t | ih[-]eh | g[-]t
# 1088 | 740 | 2263 | 1619 | 662
HMM(3,3) 90.7 | 85.2 | 96.6 | 89.3 64.1
POLY(3,2) 89.0 | 82.7195.9 |87.5 66.8
POLYRND(3,1) | 89.6 | 79.2 | 96.3 | 87.4 | 64.4
NPRM(9) 00.7 | 78.7 | 945 |89.9 |58.7
NPRMDISP(9) | 91.6 | 85.4 | 96.5 | 87.9 67.1

Table 5.3: Triphone recognition rate results.

As can be seen, in four out of the five contexts presented, global random dis-
placement, non-parametric modeling (NPRMDISP) is preferable to standard non-
parametric segmental modeling (NPRM). The new model also compares favorably
with the other models that were examined.

The experiments summarized in Table 5.3 were repeated for many other fre-
quently occurring triphone contexts. For most triphone contexts examined, random
displacement modeling improved the standard non-parametric model. Nevertheless,
in many other cases, random displacement modeling decreased the recognition rate.
Hence, for some of the triphones, a standard non-parametric model (i.e., a degen-
erated displacement model that employs fixed zero displacement) is expected to be
preferable. On the other hand, we observed that a random displacement model
always assigns higher likelihood values to previously unseen data, and hence has an
improved prediction capability. The maximum likelihood criterion can not , there-
fore, be used in order to determine when the random displacement model should be

degenerated.
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5.6 Conclusions

We presented a new model, that is a continuous mixture of segment trajectories.
This model is composed of two elements. The first element is a non-parametric
representation of the mean and variance trajectories, and the second is some pa-
rameterized transformation of the trajectory that is global to the entire segment.
This transformation adapts the general model to a specific segment realization, and
may for example account for different speech styles. We then focused on a par-
ticular transformation that applies a random displacement to the mean trajectory.
The model was compared to alternative segment models on a triphone recognition
task. The model improves segment modeling, in the sense that it improves the
prediction of previously unseen data. Our triphone recognition experiments show
benefit to the new model for most of the contexts examined, compared to a standard
non-parametric model without global displacement modeling.

Several avenues of future research seem appropriate. First, other global trajec-
tory transformations need to be examined. Omne possibility is to consider trans-
formations that control the sharpness of peaks and valleys of the mean trajectory.
In that case, the model accounts for segment utterances with varying degrees of
smoothness.

Second, we have seen that a global, random displacement transformation always
improves the ability of a non-parametric model to predict previously unseen data.
However, the new model was not always superior in the triphone recognition exper-
iments. The maximum likelihood criterion cannot be used in order to determine for
which triphones random displacement modeling should degenerate to a fixed zero
displacement. Other criteria need to be investigated in order to successfully imple-
ment, a combined model, for which some of the triphones employ such degenerated

transformation.
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Appendix 5.A

We derive Egs. (5.4) and (5.5). Denote by f(z, s, a) the joint density function of the
data z, the states sequence s, and the shift a. Similarly f(z,s) is the joint density
of z and s. We first derive the optimal shift, denoted by a, given z and s.

f@”&a)::vﬁgmfmp{ 2 Z}II 2w0@06xp{_(%2i%;§&n2}

dlog f(x,s,a) a "1
g8 I%%e _ 8 T —a— ~ 0
B p + 2 360 (20— a — p(sy))

Therefore the maximum likelihood shift, given x and s, is :

P % (zt — p(s1))
7 T i e

(s, = argmax f(z, s,a) =

Next, we derive a closed form expression for f(z,s).

flz,s) = '/af(x,s,a)da

(n+1)
1 1 1
= (E) o T oo T (o) /Gexp {Qg(x, s, a)} da

n

where g(z,s,a) = % +>

t=1

1 2
itay (e =0 u(s)

g(z,s,a) can be written as :

o(z,5,0) = f(%%—n ! )‘mn'ﬁéﬂ“_“@»+

) <i+i 2 )(“Zy‘iﬁixtlu(st))):

77 T2 )



Sy = (00— (1)

) e
é + X UQ(ISt)

_ <i+j . )(a—as)2+.q(x,s,&s>

(20 — p(s))* — (

where

Hence,
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Chapter 6

Synthetic Segmental Triphone

Models

Acoustic models which are context dependent can improve the performance of large
vocabulary speech recognition systems. Due to insufficient examples, however, it
is not possible to train a distinct model for each triphone context. In this chapter
we suggest a method of segmental model sharing based on phonetic knowledge of
possible similar triphones. A synthetic description of the triphone mean trajectory
is constructed from simpler elements that are related to the phones composing the
triphone. Experimental results on phone classification task show that the suggested

synthetic modeling significantly outperforms context independent models.

6.1 Introduction

Small vocabulary speech recognition systems are based on modeling of words which
are the basic units of language. Many examples of each word are needed for robust

modeling. This demand is not feasible when the size of the vocabulary is large.
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In this case there is a need to use smaller phonetic units in order to allow data
sharing across words. Most attempts of sub-word modeling are based on phones.
A phone is the acoustic realization of a phoneme, and each word can be presented
as a concatenated sequence of phonemes. The drawback of phone modeling is that
the acoustic realization of a word is far from being simply a concatenated sequence
of phones. Speech is a product of the vocal tract which is a continuous physical
system. There is no sudden transition of the vocal articulator from one phone to
the next one. Instead, there is a smooth and moderate flow between consecutive
phones. This effect, known by the name co-articulation, implies that phone models
that take the context of the phone realization into consideration, are more consistent.
The coarticulation effect is demonstrated in Figure 6.1. Each curve was produced by
averaging trajectories of the first cepstral coefficient of the phoneme ‘1" in a particular
triphone context. The averaging was done along with non-linear warping. The
length of the curve is the average length of the phone ‘I’ in that context. The data
was extracted from the WSJ data-base that was segmented by SRI’'s DECIPHER
system into phone boundaries. A detailed description of the procedure that was
employed to produce the figure can be found in chapter 5. From Figure 6.1 it can be
seen that the phones before and after the current phone have a remarked influence
on both the duration and the shape of the trajectory of the current phone. Figure
6.1 demonstrates the loss of information occurring when the context is not taken

into consideration.
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Figure 6.1: Mean trajectories of the phone ‘I’ for different triphone contexts.
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The most commonly used context in acoustic modeling is a triphone which is a
phone with its left and right phone contexts. Denote the phone b appearing after
the phone a and before the phone ¢ by a—b—c. Triphones suffer from the same
modeling problem as do words. There are thousands of triphones in English and,
therefore, there is a training problem caused by insufficient data. One solution is to
back-off to biphone or monophone models in a rarely used triphone. However, the
most popular way to increase the trainability of a triphone system is to share models
or part of models between different triphones. Lee [46] proposed a sharing method
based on merging triphone contexts that show acoustic similarity into a generalized
triphone. The acoustic models are associated with the these generalized triphones.
Hwang and Huang [33] [34] refined this method by introducing the term senone
to denote a state in phonetic HMM considered as a basic subphonetic unit. They
suggested a sharing between triphones in the senonic level. Digalakis et al. [11]
suggested a sharing method for mixture of Gaussians HMM. They proposed that
triphone HMM states that show acoustic similarity will share the same codebook
of mixture components. In the studies reviewed here, the acoustic data related to
each triphone was used to find triphone models (or part of models) which show a
similar acoustic behavior in order to share some of the model parameters across the
triphones. In this approach there is a modeling problem in triphones that appear
only a few times in the training set or do not appear at all. In these cases acoustic
information, if it exists, is misleading. The same problem of sharing triphone models
exists in segmental models. In this chapter we concentrate on a segment model that
describes in a non-parametric manner the triphone mean trajectory along the feature
space. We shall show how phonetic information can be used to build a synthetic

description of the triphone mean trajectory.
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6.2 Synthetic Modeling of the Mean Trajectory

Relying on phonetic knowledge to determine similarity between triphones is usually
preferable to acoustic knowledge gained from the training data. For example, there
is no need to refer to the acoustic data to conclude that the last parts of the triphones
a—b—c and d—b—c have the same acoustic structure. The phonetic approach was
successfully applied to the triphone sharing problem by Young and Odell [48]. They
used phonetic decision trees to check possible triphone state tyings. The decision
itself on the preferred clustering was made according to information conveyed in
the acoustic data. A phonetic decision tree for predicting unseen triphones was
implemented in CMU’s SPHINX system [35].

Here we take the phonetic approach one step further. Instead of phonetic analysis
of the similarity between triphone models, we try to obtain a phonetic synthesis of
a triphone. This is done by using the phonetic elements composing the triphone in
order to build a synthetic triphone model. Goldenthal [25] proposed merging biphone
tracks to create a triphone based synthetic model. Our method is motivated by the
physical explanation for the coarticulation effect. After the vocal articulators have
reached their target position for the current phone, there is a movement towards the
position needed to articulate the next phone. This phenomenon is demonstrated in
Figure 6.2. In this figure we present mean trajectories of the first cepstral coefficient
of several triphone contexts of the phone ‘ao’ (the phone appears in ‘bought’). The
trajectory of each triphone was computed from averaging triphone realizations taken
from the WSJ corpus. The length of each curve is the average length of the related
triphone. In four of the triphones the next phone is ‘s’ and in the rest of them the
next phone is ‘r’. It can be clearly seen how the next phone pulls the last part of
the mean trajectory towards its starting articulation position.

We choose a modeling method that can easily incorporate the phonetic synthesis.
The model associated with each phone is a non-parametric description of the mean
trajectory. Each phone was modeled by a Gaussian HMM with n states. The HMM

topology is a left to right, such that skipping over states is allowed. For simplicity
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Figure 6.2: Mean trajectories of the phone ‘ao’ in various triphone contexts.

it is assumed that the acoustic data are scalars. Denote the Gaussian distributions

associated with the HMM states by

N (i, a7?) 1=1,...,n
The sequence iy, pi9... can be considered as the mean trajectory of the phone along
the feature space. The curves in Figure 6.2 are examples of modeling the mean
trajectory. The model can be trained by using the well known Baum-Welch re-
estimation procedure. The model claims to be a description of the mean trajectory
and, therefore, a reasonable decision for the number of states is the average length
of the phonetic unit. The assumption that the number of the HMM states is in the
order of the number of frames can cause problems in initialization of the training
algorithm. An initialization method for a phonetic model that describes the mean
trajectory along the feature space is described in chapter 5.

Our target is to adapt this general phone model to a specific triphone context.
In order to quantify the intuition presented above, regarding the influence of the
context, we estimate the feature value at the transition point for each pair of con-
secutive phones. Denote the value at the transition point from phone a to phone b

by G(a,b). The synthetic triphone model for a—b—c will be composed from G(a, b) ,
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G(b, ¢) and the mean trajectory model for the phone b denoted by pu;(b),i =1, ..., n.
The context independent mean trajectory of the phone is adapted to the context in

the following way :

"2 G(a, b) + Zp(b) i <

N3

pila—b—c) =

G (b, ) + 22 (b) i >

n

N3

The synthetic model, therefore, is based on the monophone model. This model
is linearly warped along the feature axis such that the mean trajectory will begin at
the transition point from the previous phone and end at the transition point to the
next phone. This construction is demonstrated in Figures 6.3 and 6.4. Figure 6.3
shows the mean trajectory of the first cepstral coefficient of the triphone s—ao—r.
Figure 6.4 shows the mean trajectory of the first cepstral coefficient of the phone
‘ao’ averaged over all contexts. The two short horizontal lines in Figure 6.4 are the
average values of the first cepstrum at the transition from ‘s’ to ‘ao’ and from ‘so’
to ‘r’. The sloped curve in Figure 6.4 is the synthetic triphone trajectory. It can be
seen from Figures 6.3 and 6.4 that the synthetic triphone model better approximates

the exact triphone model than does the context independent phone model.

6.3 Experimental Results

We evaluated our model using the WSJ corpus. Experiments were conducted with
DECIPHER system which was used for segmenting the data into phone boundaries
(see Appendix A). The recognition task we performed is phone classification. For
each phone, we have trained a Gaussian HMM with eight states. The training data

includes 400 examples from each phone. In order to obtain the values of the function
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Figure 6.3: Mean trajectory of the triphone s—ao—r.
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Figure 6.4: Synthetic construction of the mean trajectory of the triphone s—ao—r
from simpler elements.

G(a,b), we estimated from the segmented data base the values of the features at the
transition point from one phone to the next. The test set included an additional 400
examples in various contexts for each phone. Table 6.1 shows phone classification
results of context independent models and synthetic triphone models built according

to the method presented in the previous section.

model recognition rate
phone models 56.1
synthetic triphone models | 66.2

Table 6.1: Phone classification results.

Another experiment was performed to evaluate the quality of the approximated
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triphone model as opposed to an exact triphone model that was trained from ex-
amples of a specific triphone. For each phone we have chosen one frequently used
triphone context. We have trained a triphone model which consists of Gaussian
HMM with eight states. The training set was composed of 400 examples of the
triphone. The test set included another 400 examples of the triphone. The perfor-
mance of the triphone models was compared to the performance of the two models

trained in the previous experiment. Table 6.2 summarizes the results.

model recognition rate
phone models 56.8
synthetic triphone models | 67.3
triphone models 92.2

Table 6.2: Triphone classification results.

6.4 Conclusions

In this chapter we have presented a general framework for parameter sharing between
triphone models. The method is based on constructing synthetic triphone models
from simpler model elements related to the three phones composing the triphone.
This method does not rely heavily on the acoustic realization of a given triphone.
It can suggest models even for triphones that do not appear at all in the training
set. This approach can, therefore, be applied in cases of small sized training sets.
The results presented in Table 6.1 indicate the potential of the synthetic ap-
proach. Table 6.2, however, indicates that there is still a room for improving the
synthesis. Other decomposition of the triphone model into simpler elements can be
considered. The acoustic behavior of triphones is much more consistent than phones,
and, therefore, a triphone model is tighter. The context adaption may also include
adaption of the variance of the Gaussian distributions. We have demonstrated the

triphone synthesis approach using a simple segmental modeling method. There is
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still a need to generalize the synthesis method in a manner that it can be applied
to other models discussed in this thesis.

The importance of the method proposed in this chapter lies in the reasoning that
a better performing synthesis will apply a better understanding of the mechanism

that governs the acoustic implication of the coarticulation effect.
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Chapter 7

Conclusions

This thesis has addressed a number of issues in segmental modeling. In particular
it has investigated the question of incorporating into the acoustic model the tem-
poral behavior of the speech signal along with effects that are global to the entire
utterance. In this chapter we summarize the contribution of the thesis and suggest

some directions for future work.

7.1 Thesis Contribution

In this thesis we first analyzed the gap existing between the actual behavior of the
speech waveform and the assumptions of the HMM paradigm. The trajectory of the
speech along the feature space is continuous, and there is most of the time smooth
and moderate movement from one acoustic-phonetic event to the other. The HMM,
however, assumes that there is no progress along time within the state boundaries.
Instead, there is a sudden transition at the end of the state into the next one. It
should be noted that the speech signal can be non-continuous. For example, in the
release of a stop consonant such as ‘t’, the movement of the tongue tip is continuous

but the resulting acoustic pattern is not smooth and arguably not continuous.
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The segmental modeling approach, which has been reviewed in chapter 3, tries to
fill the aforementioned gap. In this study we have concentrated on random segmental
models. In this approach the speech variability is due to two effects. First, the
mean trajectory is considered a random process. This enables us to incorporate
random effects, that are common to (at least) all the frames in the segment, into the
acoustic model. The second random element models the local fluctuation from the
mean trajectory as a white noise. It was reported by Holmes and Russell [30] that a
parametric description of the random mean trajectory outperforms the deterministic
model which, in the case of a static mean trajectory, coincides with the standard
Gaussian HMM. In chapter 4 we analyzed the problems that exist in the random
segmental model caused by the fact that different segment realizations of the same
phone differ in length. This implies that the balance between the two random
elements of the model changes as a function of the segment length. In recognition
tasks where the phone boundaries are not known, it is important that the local
score of the segment will be weighted according to segment length in order to avoid a
tendency toward longer or shorter segments. We have shown the benefits of rescaling
the model parameters according to segment length. On the rescaled model the
variance of the random mean trajectory is inversely proportional to segment length.
It is shown that, unlike previously suggested models, each frame contributes the same
amount of information during the mean trajectory estimation process. A technical
advantage of rescaling is the much simplified parameter estimation procedure. In
a rescaled model there is no need to approximate the target function or to use an
iterative procedure in order to find the ML estimate. Instead, a closed form can be
obtained. Phonetic classification results support this approach. It was found that
rescaling the model can improve recognition rate.

The parametric representation we have used in this thesis is actually a polyno-
mial description of the mean trajectory. We have analyzed in detail the static and
the linear cases. The acoustic trajectory during the articulation of a phonetic unit

cannot always be well described by a linear function. The use of static or linear
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functions results in a need for dividing the signal into small segments. This contra-
dicts our attempt to find an acoustic model which refers to the complete phonetic
event. To solve this problem, we have generalized in chapter 5 the concept of ran-
dom segmental modeling to the case of non-deterministic representation of the mean
trajectory. In this model there is no apriori assumption about the structure of the
mean trajectory. Instead, it is represented by a synthetic template that describes
the local dynamic within the segment. The random element associated with the
model enables us to shift the template along the feature axis in order to achieve a
better match with the data. The random non-parametric model can also be con-
sidered a random parametric model such that the same random shift is shared by a
number of consecutive segments. We have proposed a heuristic procedure for eval-
uating the model parameters. We demonstrated the difficulty that exists with the
parameter estimation by giving an exact solution for a very special case. It has been
shown that even in that special case the exact solution for the problem of param-
eter estimation is not trivial. This difficulty however is theoretical. The proposed
iterative procedure is a good solution for practical goals. The presentation of the
random non-parametric approach is concluded with classification experiments that
demonstrate the importance of modeling the local dynamical behavior.

The coarticulation effect approves the usage of triphone models. This can be
accomplished by using model sharing across different contexts. Many sharing meth-
ods have been suggested for the standard HMM modeling. In order to achieve high
recognition rate when using a segmental model, we must also construct in this case a
model for each triphone context. We have concentrated on a segmental model which
is based on a description of the mean trajectory along the feature space. We have
presented a method for constructing a synthetic mean trajectory for each triphone
context in order to enable model sharing across triphones. The results presented in
Table 6.1 indicate the potential of the synthetic approach. The importance of the
method proposed in this thesis lies in the reasoning that a better performing syn-

thesis will apply a better understanding of the mechanism that governs the acoustic
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implication of the coarticulation effect.

7.2 Future Work

The idea behind random segmental modeling is to distinguish between random ef-
fects which change every frame and other effects that last for a longer period which
is at least the articulation of a basic phonetic unit. There are, however, effects such
as speaker identity or recording equipment that are global to the entire sentence. In
HMM and even in segmental models there is no mechanism to force joint acoustic
decisions among consecutive segments. In order to solve this problem the segmental
approach should be generalized beyond the segment level. The acoustic model may
include a number of levels of random effects, such that higher levels will correspond
to random effects that remain steady for a longer period.

We have considered in this thesis the issue of a smooth description of the mean
trajectory which is implemented via a non-parametric representation. In the current
model there is still a discontinuity at the transition point from one segment to the
other. This transition point is artificial. In reality there is no distinct boundary
between phonetic units. Hence, it is desired to extend the concept of a continuous
description of the mean trajectory beyond the segment boundaries.

Many segmental models have been suggested in the past and in this thesis we
have proposed several new ones. There are models that are adequate for vowels,
other describe better transitions between phonemes etc. The information obtained
from different models can be used to achieve a more accurate classification decision.
This can be done either by using a simple linear combination of the contributions of
each model or by a more complicated expert system that can automatically choose,
according to the acoustic situation, a specific way for combining the models.

Today the HMM is still the most popular technique in speech recognition. In
order to enable fair competition between HMM and segmental models there is still a

need for further development in the segmental modeling area. For example, in order
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to use triphone models, a segmental approach should include a method for parameter
sharing across different contexts. Another drawback of segmental modeling is the
high complexity needed for computing the likelihood score. A major advantage of
HMM is its relative simplicity which has resulted in the development of fast decoding
algorithms. Segment models can be used in real tasks only by rescoring the HMM
decisions. Therefore there is a need for further research in order to find efficient
algorithms to compute a satisfactory approximation of the segmental score.
Acoustic speech modeling can be implemented in two different ways. One option
is a modeling approach that attempts to give a realistic description of how the speech
waveform is actually generated. Another approach is to consider the model only as a
probabilistic flexible mechanism that can adapt itself to different speech conditions.
While HMM takes the second approach, segmental models pretend to approximate
the mechanism of creating the acoustic sound. A target for further research is to
try to develop models that attempt to describe the acoustic process and still have

the flexibility of the HMM.
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Appendix A

Corpus and Signal Processing

Our experiments on various types of segment models were conducted using the
ARPA, large vocabulary, speaker independent, continuous speech, Wall Street Jour-
nal (WSJ) corpus [15]. The texts were drawn from articles appearing in the daily
American financial newspaper. The database we used includes 18000 sentences from
the 1994 version.

SRI's DECIPHER speech recognition system was used to produce the phone
alignment of the speech waveform i.e. to determine the boundaries between the
phones. The recognizer was configured with a front end that outputs a 39-dimensional
vector. The first components of the vector consist of 12 cepstral coefficients and an
energy term. The other components of the feature vector are the first and second
time derivatives of the first 13 components. The cepstral coefficients were computed
from an FFT filterbank. The acoustic modeling of the DECIPHER is based on con-
tinuous distribution, consisting of a mixture of Gaussian distributions, which models
a triphone context. Parameter sharing is performed by using the same code-book
(genone) of Gaussian distributions for similar triphones. A detailed description of
the acoustical modeling component of the DECIPHER system can be found in [14].

Table A.1 presents the phone set we have used. The phones are written in
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ARPABET notation.

phone | example || phone | example | phone | example
aa father em bottom ow boat
ae bat en button oy boy
ah but er bird pen
ao bought ey bait r rose
aw about f fun S sun
ax about g green sh shine
axr butter hh _hat t ten
ay bite ih bit th thick
b bet iy beat uh book
br bridge jh judge uw boot
ch cheap k cat v very
d dog 1 list w wet
dh that m moon y yes
eh bet n nut Z Z_OO
el bottle ng song zh measure

Table A.1: List of phone symbols and examples.
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