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ABSTRACTIn this thesis we present alternative statistical models of phonetically based seg-ments for use in continuous speech recognition. Segment models as opposed tohidden Markov models treat an entire phonetic segment as a single entity. Thisapproach aims to capture the local behavior and statistical dependencies, as well asthe long term variability existing in the acoustic feature sequence used to representthe speech waveform. The random trajectory segmental modeling approach tries toachieve these modeling goals by describing the mean trajectory of a phonetic unitalong time as a random process instead of a �xed parameter. The main part of thiswork analyzes the short-comings of random trajectory segmental models suggestedin the past and presents models that hopefully function better.Random segmental models that have been proposed su�er from modeling prob-lems caused by the fact that segment realizations of the same phone di�er in length.A study described here shows the bene�ts of rescaling the model parameters ac-cording to the segment length. In the rescaled model the variance of the randommean trajectory is inversely proportional to the segment length. It is shown that,unlike previously suggested models, each frame contributes the same amount of in-formation during the mean trajectory estimation process. A technical advantageof rescaling is the much simpli�ed parameter estimation procedure. In a rescaledmodel there is no need to approximate the target function or to use an iterativeprocedure in order to �nd the maximum likelihood estimate. Instead, a closed formcan be obtained. Phonetic classi�cation experiment results support this approach.It was found that rescaling the model can improve recognition rate.In order to capture the local dynamic behavior of speech, we propose a non-parametric description of the mean trajectory. This model does not impose anysmooth structure on the random mean trajectory. Instead, it represents it by speci-fying a list of sample points along time. Classi�cation experiments demonstrate theimportance of modeling the local dynamic behavior.The coarticulation e�ect approves the usage of triphone models. We concentrateon a segmental model which is based on a description of the mean trajectory alongthe feature space. We present a method for constructing a synthetic mean trajectoryfor each triphone context in order to enable model sharing across triphones.i
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Chapter 1
Introduction
1.1 Automatic Speech RecognitionToday, as the twentieth century draws to a close, it is argued that computers can per-form most data processing tasks more accurately and quickly than humans. Thereare, however, areas where the human mind still outperforms automated machines.Processing human language is still an intriguing challenge in computer science. Forexample, we have yet to develop an automatic procedure for translation from onelanguage to another which yields results comparable to that of a professional humantranslator. One explanation for the exceptional di�culties in automatic manipula-tion of human language is that language is not only a means of communicationbetween individuals but an outgrowth of human perception. This idea was formu-lated by Ludwig Wittgenstein in his book Tractatus Logico Philosophicus in thefamous phrase : \the limits of my language mean the limits of my world". In au-tomatic speech recognition there is another level of complexity. In addition to thephilosophical and linguistic problems, there is the technical problem of extractingthe linguistic information from the acoustic waveform. Most of the information con-veyed in recorded speech is irrelevant and can even be misleading for the purpose of1



automatic determination of the word transcription from a given utterance.The progress in computer architecture over the past twenty years has encouragedthe interest in a new research area which deals with developing accurate speechrecognition systems. A speech recognition system is composed of several elements.The �rst element is signal processing. The recorded speech waveform is processed inorder to extract a sequence of feature vectors that preserve the linguistic informationincorporated in the signal which is necessary for recognition. The feature vectors areassociated with phonetic units of the language via acoustic models that describe howabstract linguistic elements are represented by acoustic events. Another element ofspeech recognition is the formulation of e�cient algorithms that operate on an entiresentence. These algorithms integrate the local information obtained from acousticmodels in order to �nd the best word transcription of the recorded waveform. Otherknowledge sources can be integrated in the system. The most important source islanguage modeling. Knowledge of grammatical rules and the statistics of words inthe language can greatly reduce the uncertainty about the message conveyed in thespeech signal.Speech recognition is largely focused on acoustic modeling. The modeling di�-culty is caused by the fact that on the one hand a model is expected to exhibit aprecise and informative description of the data. On the other hand, however, theacoustic model must be relaxed enough to manage the acoustic variability exhibitedby di�erent speakers, dialects, recording equipment and adverse conditions. Severalapproaches to acoustic modeling have been proposed over the last twenty years.The template based approach was the �rst to be suggested. This approach is basedon the Dynamic Time Warping (DTW) algorithm [60]. An unknown utterance iscompared against a list of pre-recorded words in order to �nd the best match. Adrawback of template comparison is that there is no attempt to understand thestructure of the speech. Therefore, there is no possibility of generalizing the in-formation conveyed in the template to various speech situations. This approach,however, is still the best known in scenarios of user dependent, small vocabulary,2



isolated word recognition systems where there is a demand for training a word froma small number of occurrences. In recent years there has been an attempt to modelspeech acoustics using arti�cial neural networks. Neural networks are well suited foracoustic scoring, as they can accept continuous valued inputs without making anyassumption as to the parametric shape of the density function. The most successfulapproach for acoustic modeling is, however, the statistical one. The introduction ofhidden Markov models (HMM) into speech recognition in the late seventies [2] wasa revolutionary step. Today HMM is the dominant paradigm in the area and moststate-of-the-art large vocabulary systems are HMM based.The enormous success of HMM caused a reaction of critical analysis of the short-comings that still remain in this approach. The HMM presents a considerable suc-cess in automatic segmentation of speech into a sequence of phonetic-acoustic events.Mixture densities HMM is a relaxed and 
exible model that can survive speech vari-ability. The local acoustic modeling of HMM, however, su�ers from the fact that theframe serves as the basic modeling unit. A frame oriented point of view is too local.Many speech e�ects last for an entire utterance or at least along the pronunciationof a phonetic unit. The HMM theory does not provide tools for modeling e�ectsthat remain �xed over a sequence of consecutive frames.In this thesis we shall discuss in detail the shortcomings of HMM. We presentthe segmental modeling approach which intends to overcome these shortcomings bymodeling an entire acoustic event as a single entity. In this study we concentrate ona particular family of segmental models known as random segmental models. Theessence of random models is treating the mean trajectory along the feature spaceas a random process instead of a �xed parameter. It is assumed that this randomprocess is updated at a slower rate than the frame producing rate and therefore itpreserves the long term variability of the speech signal. The main part of this workanalyzes the short-comings of random models suggested in the past and suggestsrandom models that hopefully function better.
3



1.2 Thesis OutlineThe �rst two chapters of this thesis provide some essential background and a sum-mary of related work in speech recognition. Chapter 2 describes the hidden Markovmodel and explains how it is trained and used in speech recognition tasks. Chapter 3describes the segmental modeling concept and reviews segmental models which arerelated to our work. The remainder of this thesis describes our own research onrandom segmental models. Chapter 4 presents alternative algorithms for trainingthe random segmental model and introduces the concept of scaled random model-ing. Chapter 5 extends the random segmental theory to the case of non-parametricrepresentation of the mean trajectory. Chapter 6 presents a method for sharingsegmental models, which describe the mean trajectory, across triphone contexts.Chapter 7 draws overall conclusions and suggests possible future work.
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Chapter 2
Hidden Markov Models
In this chapter we shall present the concept of hidden Markov models (HMM), whichis the predominant technique employed in automatic speech recognition. We shall�rst de�ne the probabilistic model and present algorithms for decoding. Then, were-derive the Baum-Welch training algorithm which can be considered a special caseof the EM algorithm. Finally, we shall discuss how the speech recognition problemcan be handled with HMM.
2.1 The Hidden Markov ModelA Hidden Markov Model(HMM) is a parametric probabilistic model that was foundto be suitable for describing speech events. One of the reasons for the successof HMMs in speech recognition tasks is the existence of computationally e�cientalgorithms for decoding a given unknown utterance and for estimating the modelparameters. The performance of speech recognizers that employ hidden Markovmodeling has been proven superior to alternative recognition methods in a varietyof real life applications, and in particular for speaker independent large vocabularyrecognition tasks. HMM was introduced by Baum [3] in the early seventies. The5



�rst implementation of HMM for speech recognition was conducted by Baker [2]and the IBM Speech Group [36]. This chapter includes a brief survey of the HMMtheory. A detailed treatment of the hidden Markov model and its applications canbe found in [53] [55] [32].A discrete stochastic process has a Markovian distribution if the conditionalprobability of the current event, given all the past events, depends only on the mostrecent event. The probability of a sample sequence from a Markovian source can bewritten as : p(s1; :::; sn) = p(s1)p(s2js1) � � � p(snjsn�1)A stochastic process x has a hidden Markov distribution, if there exists a Markovprocess s such that the probability of x can be written as :p(x1; :::; xn) = Xs=s1;:::;sn p(s) nYt=1 p(xtjst)In other words, the process is HMM if the samples are independent given the hiddenMarkov states. We can consider the HMM as a two step experiment. In the �rststep, a state sequence is realized according to the Markov model. In the second step,an output variables sequence is realized according to the state sequence in such amanner that the output at time t is sampled according to the distribution associatedwith the state of the Markov process at time t. At the end of the experiment onlythe output is reported and the state sequence remains unobserved.The parametric representation of the hidden Markov model consists of the fol-lowing components :1. Initial state distribution : �j = p(s1 = j).2. State transition probabilities of the unobserved stationary Markov process :P (k; j) = p(st+1 = jjst = k)6



3. Output probability distribution associated with each state which determinesthe likelihood of the observations generated by this state :fj(xt) = f(xtjst = j)Several approaches exist for modeling the output distribution. One possibility isto use discrete distributions [46]. Each observed vector is quantized into a symbolfrom a �nite symbol set. A vector quantizer selects a vector closest to the observedvector from a pre-de�ned code-book. A discrete distribution of the code-book entriesis associated with each state, and the probability of the observation is de�ned tobe the probability of the chosen entry. A disadvantage of this approach is thequantization noise added to the data.Another commonly used distribution is the Gaussian and more generally a mix-ture of several Gaussian distributions [38] [54]. The term mixture stands for a convexcombination of distributions. The concept of mixture of densities �ts naturally intothe framework of HMM. The choice of a particular member of the distribution set,that composes the mixture distribution, can be considered as part of the unobservedMarkov process. Hence, output density can remain relatively simple.In real situations there are many states, and there is insu�cient training data forreliable parameter estimation of the mixture distribution associated with each state.In these cases a combination of continuous and discrete distributions can be used.This modeling approach is usually termed semi-continuous or tied mixture [31]. Atied mixture model is composed of a set of Gaussian densities which are common toall states. Each state is only characterized by its own set of mixture weights. Theconcept of tied mixtures was a key step in constructing large vocabulary systems.Many tying methods have been suggested. We shall return to this subject in chapter6. There are several e�cient algorithms which are an important part of the HMMtheory. The following algorithm enables e�cient computation of the likelihood of7



an observation sequence. The de�nition of the hidden Markov model implies thatthe likelihood of a sample sequence x1; ::; xn isp(x1; :::; xn) =Xs �(s1) nYt=2 p(stjst�1) nYt=1 f(xtjst) (2.1)where the summation extends over all possible length-n state sequences. Directcomputation of this expression involves summation over an exponential number ofterms which is not feasible. However, there exists a recursive approach which cansigni�cantly facilitate the computation.For each t de�ne the following column vector :At(j) = p(x1; :::; xt; st = j)A recursion formula can be derived for At(j) in the following way :At(j) = p(x1; :::; xt; st = j) =Xk p(x1; :::; xt; st�1 = k; st = j)= Xk p(x1; :::; xt�1; st�1 = k) � p(st = jjx1; :::; xt�1; st�1 = k) �p(xtjx1; :::; xt�1; st�1 = k; st = j)= Xk At�1(k) p(st = jjst�1 = k) f(xtjst = j) =Xk At�1(k)P (k; j) f(xtjst = j)Matrix notation can be used to express this recursion :A1 = �TM1At = At�1 P Mt t = 2; :::; nwhere � denotes the initial state distribution column vector, P denotes the transitionmatrix of the Markov process andMt is a diagonal matrix with the following diagonal8



elements : Mt(j; j) = f(xtjst = j)Note that p(x1; :::; xn) =Xj p(x1; :::; xn; sn = j) = An 1where 1 is an all ones column vector. From the recursive relation we can derive anexplicit expression for the likelihood function :p(x1; :::; xn) = �TM1 P M2 � � � P Mn 1The complexity of this matrix multiplication is linear in the length of the observa-tion sequence and quadratic in the number of states. Hence, the likelihood can bee�ciently computed. Further technical issues can be found in [53] [32].The likelihood of the observations is obtained from summing over all the statesequences. The single most likely state sequence may also be required in algorithmswhich approximate the exact likelihood. The single best state sequence can becomputed using the Viterbi algorithm [64] as follows :�(j; 1) = �j f(x1js1 = j)�(j; t) = maxk f�(k; t� 1)P (k; j)gf(xtjst = j) t = 2; :::; n (j; t) = argmaxk f�(k; t� 1)P (k; j)g t = 2; :::; nThe probabilistic interpretation of �(j; t) is :�(j; t) = maxs1;:::;st�1 p(x1; :::; xt; s1; :::; st�1; st = j)Therefore, the joint probability of the observations and the most likely state sequence9



is : maxs p(x; s) = maxj �(j; n)The best state sequence can be found in a traceback pass :ŝn = argmaxj �(j; n)ŝt =  (ŝt+1; t+ 1) t = n�1; :::; 1
2.2 Parameter EstimationTraining HMM systems involves estimating the model parameters. The most pop-ular estimation criterion is maximum likelihood (ML). There is no known closed-form solution to the problem of �nding ML estimators for the HMM parameters.There exists, however, an elegant iterative algorithm for this problem, namely theBaum-Welch algorithm. This algorithm can be considered a special case of the EMalgorithm which is described in its general form in the appendix of this chapter. Tosimplify the derivation of the training algorithm we assume that the output proba-bility function associated with each state is Gaussian. Training algorithms for otheroutput distributions can be found in [53]. Denote the Gaussian density functionassociated with state j by N(�j;�j). The model parameters are, therefore, the ini-tial distribution, the Markov transition matrix and the parameters of the Gaussiandistributions associated with each state. We shall now describe the derivation of theEM re-estimation equations. Denote the current estimate of the parameters by �0.In each iteration of the EM, the parameters are re-estimated. The general theoryof the EM algorithm ensures an increase in the likelihood in each iteration. Letx1; :::; xL be L sequences consisting the training data-base. Denote the length of xiby ni. The elements of the sequence xi are denoted by xi;1; :::; xi;ni. Denote by si;tthe underlying state at time t for the sequence xi. Using EM terminology we can10



refer to the sequences s1; :::; sL as the missing data. The iterative algorithm relieson the fact that if these sequences were known, we could have obtained closed-formexpressions for the ML estimation. From equation (2.1) we obtain :log p(x1; s1:::; xL; sL; �) =LXi=1Xj Ifsi;1=jg log�j + LXi=1 niXt=2Xj;k Ifsi;t�1=k ; si;t=jg logP (k; j)�12Xi Xt Xj Ifsi;t=jg((xi;t � �j)T��1j (xi;t � �j) + log j�jj)where IA is the indicator random variable associated with the event A.IA(!) = 8>>><>>>: 1 ! 2 A0 ! 2 AcDenote : wi(j; t) = E(Ifsi;t=jgjxi; �0)ui(k; j; t) = E(Ifsi;t�1=k ; si;t=jgjxi; �0)
wi(j; t) is the aposteriori probability that while producing the sequence xi, state jwas visited at time t. The EM auxiliary function in this case is :Q(�; �0) = Xi E(log p(xi; si; �)jx; �0)= Xi Xj wi(j; 1) log�j + Xi niXt=2Xj;k ui(k; j; t) logP (k; j)�12Xi Xt Xj wi(j; t)((xi;t � �j)T��1j (xi;t � �j) + log j�jj)11



Maximization of Q(�; �0) yields the following re-estimation equations :�̂j = Piwi(j; 1)L�̂j = PiPtwi(j; t)xi;tPiPt wi(j; t)�̂j = PiPtwi(j; t)(xi;t � �j)(xi;t � �j)TPiPtwi(j; t)P̂ (k; j) = PiPt ui(k; j; t)PiPtwi(j; t)E�cient computation of the terms wi(j; t) and ui(k; j; t) which appear in the re-estimation equations can be done using the forward-backward algorithm that willnow be presented. Applying the Bayese rule yields :wi(j; t) = E(Ifsi;t=jgjxi; �0) = p(si;t = jjxi; �0) = p(xi ; si;t = jj�0)p(xij�0)ui(k; j; t) = E(Ifsi;t�1=k ; si;t=jgjxi; �0) = p(xi ; si;t�1 = k ; si;t = jj�0)p(xij�0)De�ne the following diagonal matrices :Mi;t(j; j) = f(xi;tjsi;t = j; �0) t = 1; :::; nDenote the current estimate of the initial state distribution by �0 and the currentestimate of the transition Markov matrix by P0. From the likelihood equation (2.1)we obtain : p(xij�0) = �T0 Mi;1 P0 � � � P0Mi;t�1 P0Mi;t � � � Mi;ni 1
12



De�ne the following forward-backward equations :Ai;1 = �T0 Mi;1Ai;t = Ai;t�1 P0Mi;t t = 2; :::; niBi;ni = 1Bi;t = P0Mi;t+1Bi;t+1 t = ni � 1; :::; 1
Note that Ai;t is a row vector and Bi;t is a column vector, both having the followingprobabilistic interpretation :Ai;t(j) = p(xi;1; :::; xi;t; st = jj�0)Bi;t(j) = p(xi;t+1; :::; xi;n; st = jj�0)Using the above de�nitions it can be seen that :p(xij�0) = Ai;ni 1p(xi ; si;t = jj�0) = Ai;t(j)Bi;t(j)p(xi ; si;t�1 = k ; si;t = jj�0) = Ai;t�1(k)P0(k; j)Mi;t(j; j)Bi;t(j)Therefore using the results of the forward-backward algorithm we can derive thefollowing e�ciently computed expressions :wi(j; t) = (Ai;t(j)Bi;t(j)) = (Ai;ni 1)ui(k; j; t) = (Ai;t�1(k)P0(k; j)Mi;t(j; j)Bi;t(j)) = (Ai;ni 1)An alternative training method is the segmental k-means algorithm [37], which13



approximates the E-step of the Baum-Welch. The maximization step remains thesame. The E-step consists of the computation of the aposteriory distribution of thestate variables given the observation sequences. The segmental k-means uses theViterbi algorithm in order to determine the most likely state sequence. Denote byŝit the best suited state value at time t in the i-th sequence. The segmental k-meansuses the following approximation :p(si;t = jjxi; �0) � Ifŝi;t=jgExperiments have shown that using this approximation does not cause any signi�-cant degradation in the performance of HMM based recognition systems.
2.3 Using HMM for Speech RecognitionA speech signal is built of a sequence of linguistic units that are transformed intoacoustic events. Speech is a product of the vocal tract, a continuously varyingsystem. There is always continuous movement from one phonetic unit to the next.It is, therefore, not easy to �nd the boundaries between acoustic realizations ofphonetic units. Moreover, in continuous speech an exact transition point betweenphonetic units can not be determined even manually and actually does not exist atall.When speech is modeled using HMM, each state is associated with a phoneticunit. The model assumes that within a state's boundaries, each observation isdependent only upon that state. In other words, the output distribution associatedwith the state describes the feature sequence as an IID (independent, identicallydistributed) process. Although this assumption is far from reality, it can functionas a satisfactory approximation. The unobserved state sequence implies a speci�csegmentation of the utterance into phonetic units. The algorithm, that computesthe likelihood, automatically checks all possible state segmentations and chooses the14



best phonetic unit sequence and the best locations for the transition points betweenthose units.HMM was successfully implemented for small-vocabulary word base tasks [54].For each word in the vocabulary, a hidden Markov model is trained. The Markovtopology which is commonly used is a left to right one, such that each state isconnected to itself and its successor. The states of the model are supposed todescribe the acoustic events during the word pronunciation.A word is the basic linguistic unit, and therefore words are the most natural unitsfor acoustic modeling. In large vocabulary systems, however, word modeling is notpossible. Training data can not be shared between words, and therefore, each wordmust be individually trained. Many examples of each word are needed necessitatingan enormous quantity of training data. Other problems are the memory storageneeded and the high complexity of the recognition procedure. A possible solution isto use small acoustic-phonetic units in order to allow sharing across words. Acousticrealizations of words are composed from a small set of basic acoustic sounds namedphones. In English there are approximately 50 phones. A phone is an acousticrealization of a phoneme which is an abstract basic linguistic unit. Each wordcan be presented in phonetic transcription as a concatenation of phonemes. Phonemodels can be easily trained. They can be su�ciently trained with only few hundredsentences.A phone is a simple acoustic event compared to a full word. Therefore, thetopology of the HMM representing a phone can be simple as well. A typical structureof hidden Markov modeling of a phone is composed of three states. The �rst statemodels the transition into the phone; the second models the steady state part of thephone and the third state models the transition to the next phone. Other topologiesfor phone based HMM have been proposed [46]. The concept of phone based HMMmade it possible to build large vocabulary continuous speech recognition systemswith satisfactory results.In order to illustrate phone modeling we present a concrete example. The data15



we used was a set of realizations of the phone `p' in the triphone context ow-eh takenfrom the Wall Street Journal corpus. In Figure 2.1 we show the mean trajectory ofthe �rst cepstral coe�cient and the approximation of this trajectory with a threestate HMM. In Figure 2.2 we show how the approximation is improved by usingthree mixtures.
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Figure 2.1: Modeling the mean trajectory of the phone `p' using 3 states HMM.
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Figure 2.2: Modeling the mean trajectory of the phone `p' using 3 states 3 mixtureHMM.
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Appendix 2.AThe EM algorithm is a major component in the theory of acoustic modeling. It isan iterative numerical procedure for �nding a maximum likelihood estimation for agiven model. The EM was �rst formulated by Laird, Dempster and Rubin in 1977[5]. The Baum-Welch algorithm used for training hidden Markov models is a specialcase of the EM algorithm . In this appendix we give a brief presentation of the EMalgorithm.Let X and Y be two sample spaces such that X is mapped into Y by a non-invertible function F . We call x 2 X the complete data and y = F (x) 2 Y theincomplete data. The information needed to reconstruct x from y is called themissing data. In each experiment we sample x 2 X and report F (x) 2 Y . Assumethat fX(x; �) is a family of densities on X depending on a parameter � 2 �. Adensities family on Y is de�ned by fY (y; �) = RF�1(y) fX(x; �)dx. Given a randomsample y1; :::; yn, the EM algorithm �nds �̂ = argmax fY (y1; :::; yn; �) using the factthat in some cases it is much more convenient to deal with fX(x; �) than withfY (y; �). From the de�nition stated above we obtain :fX(x; �) = fY (y; �)fXjY=y(x)(x; �)Hence, log fY (y; �) = log fX(x; �)� log fXjY=y(x)(x; �)By taking the conditional expectation given Y = y according to parameter value �0we obtain :log fY (y; �) = E(log fX(x; �)jY = y; �0)� E(log fXjY=y(x)(x; �)jY = y; �0)= Q(�; �0)�H(�; �0)
17



Q is refereed as the auxiliary function of the EM algorithm. Applying Jensen'sinequality we obtain that H(�; �0), considered as a function of �, has a maximumpoint at � = �0. Therefore Q(�; �0) > Q(�0; �0) implies fY (y; �) > fY (y; �0). Thisenables us to de�ne an iterative algorithm for computing a maximum likelihoodestimation. Each iteration is composed of the following two steps :Expectation : Q(�; �n) = E(log fX(x; �)jY = y; �n)Maximization : �n+1 = argmax� Q(�; �n)
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Chapter 3
Segmental Models
In this chapter we shall discuss some of the shortcomings of the HMM paradigm.We present the segmental modeling concept and explain how some of the di�cultiesin HMM modeling can be solved. In the remainder of the chapter we review themain segmental models related to our work.
3.1 Limitations of the HMM ParadigmThe standard left to right HMM provides a technique for modeling the acoustic fea-ture vector sequence, that represents some speech utterance, by a piecewise station-ary process. The model assumes the existence of states, in which the observationsare locally independent and identically distributed (IID) within each one. SeveralHMM variants exist. The simplest variant employs a discrete output probabilitydistribution function (PDF) to describe the acoustic feature vector at each HMMstate. A re�nement of the above is obtained by replacing the discrete PDF with acontinuous PDF, which is usually a mixture of Gaussians with a diagonal covariancematrix. All these variants share the common assumption that the probability of anacoustic vector in a particular state is not dependent on the other vectors in that19



state. This simplifying assumption assures computationally e�cient algorithms forsystem training and recognition.The IID assumption is reasonable for some of the HMM states (e.g., states thatcorrespond to a steady state vowel in a user dependent system). Most states, how-ever, clearly violate this assumption (e.g., states corresponding to vowel-consonanttransition, diphthongs, etc.) and are in fact characterized by a highly correlatedand non-stationary speech signal. The consequence is a reduced accuracy of speechacoustic modeling which in practical terms corresponds to a reduction in the recog-nition rate.The traditional formulation of a single Gaussian HMM has been based on apiecewise constant �tting of the acoustic feature vector data sequence [53], [55]. Thismodel assumes that the sequence of observation vectors within a state x = x1; :::; xnis generated according to : xt = �+ �t t = 1; :::; nwhere � is a state dependent parameter that represents the mean vector and �t is anadditive, zero mean, white noise vector (i.e., its covariance matrix is diagonal) withstate dependent variances. In Figure 3.1 we present the sixth cepstral coe�cientof the acoustic vector sequence of the word `seven'. The smooth curve is obtainedfrom empirical averaging of utterances of the word `seven' taken from the databaseTIDIGITS. A nonlinear warping is applied to these utterances to synchronize them.The piecewise constant function is a �ve state HMM approximation.The most common method of encoding the dependency between consecutiveframes is to extend the feature vector to include the �rst and at times the secondderivative of the static features. In Figure 3.2 we present the same data that waspresented in Figure 3.1, for the �rst derivative of the sixth cepstral coe�cient.In a standard stationary-state HMM, the trajectories of the feature vectors areapproximated by a piecewise constant function. Each region of constant value cor-20
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Figure 3.1: Sixth cepstral coe�cient of the acoustic vector and its HMM approxi-mation.
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Figure 3.2: Time derivative of the sixth cepstral coe�cient of the acoustic vectorand its HMM approximation.responds to an HMM state. As can be seen from Figure 3.1 and Figure 3.2, apiecewise constant function is usually a poor approximation to the mean trajectory.Another problem of this model arises from the fact that we try to model simulta-neously a static feature vector (e.g. the cepstrum function) and its time derivative.To observe the disadvantage associated with this model, consider Figure 3.3, thatpresents a feature vector that consists of two components. The �rst component is asine wave; the second is the time derivative of the �rst, hence a �=2 phase shiftedsine wave. Figure 3.3 also presents the optimal partitioning into states of these com-ponents, and the resulting piecewise constant approximation. As can be seen, thestate partitioning that is required for optimally approximating the trajectory of the�rst component is di�erent from the one required for approximating the trajectoryof the second. However, since the same state partitioning should be used for bothcomponents, this results in an approximation of reduced quality.21
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Figure 3.3: Piecewise constant approximation of sin and its derivative cos.To gain further insight, consider a speaker independent, mixture of Gaussians,HMM system. The improved performance of this system, compared to a singleGaussian HMM is usually attributed to the fact that mixtures help to improve themodeling of the true state distribution which is clearly non-Gaussian, and in thisway to improve the modeling of the variation between di�erent speech styles.We now suggest an alternative explanation for this phenomenon. Essentially,we assert that mixtures help to describe the non-stationary behavior of the featurevectors within a state. Assume that the trajectory of the mean in a state changesfrom a0 at the beginning of the state to a1 at the end. By setting the mean valuesof three mixture components to a0, (a0 + a1)=2 and a1 we may obtain improvedmodeling of the mean trajectory by segmenting the state into three parts. Thesemixture values can now be associated with the beginning, middle and �nal periodsof this state respectively.In Figure 3.4 we present the sixth cepstral coe�cient of the acoustic feature vec-tor, and its HMM parameters, for a word-based HMM with 5 states and 3 mixtures(the word shown is `seven'). In Figure 3.5 we present the same data for the timederivative of the sixth cepstral coe�cient. These �gures demonstrate how the modelemploys these mixtures to track the trajectory of the mean. For example, considerthe second state in Figure 3.4. The three mixture components re�ne the HMMapproximation of the dynamic behavior of the mean trajectory.To assess further the validity of the proposed explanation, we recorded the statis-tics of the transition between mixtures, using the sequence of most likely mixture22



at each frame. Such a sequence is obtained using supervised Viterbi segmentation.The transition matrix for three mixtures at the second state of the word `seven' isshown in Table 3.1. As can be seen, the IID within a state assumption is not validin practice. In fact, there is a clear trend to choose the mixtures in a �xed order(3! 2! 1). Similar data is shown in Table 3.2 except that a consecutive self tran-sition is counted only once. This observation validates the explanation that we setabove. Mixtures of Gaussians may thus be considered a tool for re�ning the HMMapproximation but still there is no direct reference in this model to the continuousnature of the local dynamics within a state.
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Figure 3.4: HMM with 5 states and 3 mixtures that models the sixth cepstralcoe�cient.
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Figure 3.5: HMM with 5 states and 3 mixtures that models the derivative of thesixth cepstral coe�cient.
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3.2 The Concept of Segmental ModelingThe local IID assumption of standard HMM implies that once we have decided on thestate boundaries, we model the data on a frame base level and ignore the continuousdynamic nature of the speech signal within the state. An alternative approach issegmental modeling, where the basic modeled unit is not a frame, but a segment.A segment is a variable duration part of the speech waveform that corresponds to aphonetic unit. A segment is commonly taken to correspond to a phone, but it may,however, correspond to a sub-phonetic event (one phone may be represented as asequence of several segments). In the segmental approach the basic observation isnot just a single frame from the sequence comprising the utterance, but rather acomplete acoustic event. This enables us to model explicitly the correlation betweensuccessive frames, the dynamics along the segment and the statistical behavior ofthe segment duration. We can, therefore, reduce the portion of the data which isleft unexplained in the standard HMM and considered as white noise.Apart from the advantage of segmental modeling there are also some di�culties.The dimension of an acoustic unit is much larger than the dimension of a singleframe. Therefore, the problems in parameter estimation become more serious. An-other di�culty is that the length of a segment varies from phone to phone and amongdi�erent realizations of the same phone. This is in contrast to HMM where we modeleach frame separately, and the feature vector is of a constant length. Another prob-lem with a segmental model is the high complexity involved with computing thedensity of a given utterance. In HMM during the dynamic programming we have tomix1 mix2 mix3mix1 394 0 0mix2 202 582 6mix3 2 216 1540Table 3.1: Transition matrix of the three mixtures of the second state presented in�gure 3.4. 24



mix1 mix2 mix3mix1 196 0 0mix2 202 212 6mix3 2 216 212Table 3.2: Same as Table 3.1, consecutive self transitions is counted only once.remember for each frame just the possible states associated with it. In a segmentalmodel, however, every possible beginning and ending time should be considered foreach segment model in the dynamic programming procedure. Therefore, with eachpossible beginning and ending time pair we must compute the segmental score. Norecursion formula could be used even if there is only one frame di�erence.The complexity problem is caused by the need to check all possible segmenta-tions of a given utterance. A possible solution is to use an HMM system or anyother simpler model to provide a set of sentence hypotheses that will be re-scoredby the segmental model in a post-processing step. The sentence hypotheses can bedescribed as a N-best list or a word lattice. In both cases the segmental model is notinvolved with the segmentation process. In updated large vocabulary recognitionsystems [51] [56], rescoring serves as a useful mechanism for combining additionalknowledge sources (e.g. detailed linguistic model) to the acoustic model. The seg-mental model can be integrated into a speech recognition system as one of theseknowledge sources. The scores from di�erent sources are linearly combined, and us-ing optimization procedure [39], we can �nd the optimized weight of the segmentalmodel contribution.
3.3 Previous Segmental ModelsRecently there have been a number of segment based approaches to the phoneticrecognition problem. A comprehensive survey on segment models can be found in[49]. In this section we describe in some detail those segmental models that are25



closely related to our work.
Stochastic Segment ModelOstendorf and Roucos [50] suggested a general framework for segment modelstermed Stochastic Segment Model (SSM). They handled the variable length of anobserved segment by assuming that the observation is a partially observed samplesof a �xed length trajectory [57]. Another way to solve the variable length problemis by re-sampling the observation into a �xed length sequence using linear interpola-tion [49]. The grand vector which is the concatenation of the re-sampled frames, ismodeled by a multivariate Gaussian distribution. The full covariance matrix allowsexplicit modeling of the time correlation. The general formulation of the SSM suf-fers from the estimation problem caused by the large number of parameters in thecovariance matrix. To avoid this problem, a Gauss-Markov (GM) structure can beimposed on the covariance matrix of the SSM [4] [65] [41]. A Discrete observationMarkov assumption was explored by Paliwal [52]. The GM model did not achievesigni�cant improvement over the standard HMM [41]. A possible explanation forthis is that in real situations of speech recognition there are large di�erences be-tween speakers, dialects and recording equipment. This di�erence can be modeledas a noise signal added to the outputs of the Gauss-Markov process. Digalakis etal. [12] formulated this idea in the introduction of linear Dynamical System(DS)method into speech recognition. A �xed length observation sequence y associatedwith a phonetic state-segment s is generated according to the DS model as follows :xt+1 = Ft(s)xt + wt (3.1)yt+1 = xt + vtThe sequences w and v are realizations of uncorrelated Gaussian white noises with26



model dependent variances. The hidden Gauss-Markov process is denoted by x.It is assumed that the initial state x0 is Gaussian with model dependent mean andvariance. Ft(s) is a �rst order Markovian factor which depends on the segment s andthe time index within the state t. The observation sequence y is obtained as a resultof adding white noise to x. In order to reduce the number of free parameters thesegment is divided into regions of equal length. It is assumed that the GM process islocally stationary within the region. This can be considered as a kind of parametertying. The recognition is performed using a version of the Kalman predictor tocompute the probability of the segment. Phoneme classi�cation rate reported usinga DS model was signi�cantly better than the one obtained using independent frameHMM. A disadvantage of this model, however, is its high computational cost in bothrecognition and training. Some e�cient yet suboptimal algorithms that reduce thenumber of segment evaluations during sentence recognition are described in [13].
Polynomial approximationsDeng et al. [7] dealt with the non-stationarity of the speech signal within a stateby using a parametric function of time to model the mean trajectory in each state.Deng gave the name Trend HMM to this approach. In this model the observationsequence within a state x = x1; :::; xn is generated according to :xt =Xk �ktk + �t t = 1; :::; n (3.2)where the �rst term is a state dependent polynomial function of t and the secondterm is the residual noise assumed to be the output of an IID zero-mean Gaussiansource with state dependent covariance matrix. The time origin of the polynomialfunction in each state begins from the time the state is �rst entered. When thedegree of the polynomial is zero, the model is reduced to the standard Gaussian27



HMM.In order to illustrate the strength of Deng's model, we compare the data �ttingperformance between the use of the trend HMM and the standard one. The datawe used was a set of realizations of the phone `l' in the triphone context aa-ih takenfrom the Wall Street Journal corpus. In Figure 3.6 we show the mean trajectory ofthe �rst cepstral coe�cient and the relatively poor approximation of this trajectorywith a 3 state HMM. In Figure 3.7 the same curve is approximated with a three statetrended HMM, such that the regression polynomial is linear. From these �gures itis evident that the trended HMM �ts the data better than the standard HMM.Experimental results also show the superiority over standard HMM in recognitionaccuracy.
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Figure 3.6: Modeling the mean trajectory of the phone `l' with 3 states HMM.
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Figure 3.7: Modeling the mean trajectory of the phone `l' with 3 states linear trendedHMM. 28



When this model is implemented in the recognition step we can use Viterbidecoding to determine the division of the utterance into states according to theML state sequence. This approach is computationally expensive. This is becauseduring the dynamic programming we must remember not only the state associatedwith each frame, as we do in standard HMM, but also the time index of this frame.Another method is to implement this model as a post-processor. We can use thismodel to rescore the result obtained by a standard HMM system. Training of themodel can be performed using an extension of the segmental k-means algorithm [37].The algorithm is composed of two iterative steps. The �rst one is a segmentationstep where we use Viterbi decoding in a way similar to the decoding algorithm weuse during the recognition. After applying the Viterbi decoding we can split eachutterance into separate segments. The next step of the segmental k-means algorithmis the maximization step. Given a list of segment realizations the problem of �ndingthe polynomial coe�cients is a linear one and can be solved using the least-squaresmethod [8].Deng and Rathinavelu [8] combined the models presented in the two last sections.They extended the polynomial model to the Gauss-Markov case. The model can bewritten as : xt = Xk=1 akxt�k +Xl=0 bltl + �tThey reported that this model produces higher recognition accuracy than the simplermodels from which it is built.A model similar to Deng's was suggested by Gish and Ng [20] for keywordsspotting task. They also consider a generalization where we allow a mixture ofparametric trajectories to describe the variation among di�erent realization of themodeled segment. The training of this model is slightly more complicated. We stilluse the Viterbi decoding to �nd the states alignment of the training data. Given thestates alignments, the ML estimate of the model parameters can not be computeddirectly as was done in Deng model. Instead, we must use the EM algorithm asit happens in other mixture situations. A Parametric model that describes the29



mean trajectory using an exponential function rather than a polynomial one, wassuggested by Deng [10]. This model has the advantage of smooth movement betweenconsecutive phoneme trajectories.
Non-Parametric ModelsAnother attempt to model explicitly the observations dependence on the timeindex was made by Ghitza and Sondhi [19]. They suggested that instead of imposingan a-priori constraint of parametric structure on the mean trajectory, we may choosea typical segment realization to capture the nonlinear nature of the dynamics withinthe segment. In this framework a phonetic unit is modeled as one HMM non-stationary state to which a template is associated. Non-parametric representationenables us to perform a non-linear warping for optimized matching between themodel and the observation sequence. This can not be done if we use a polynomialregression function to represent the mean trajectory. The typical template is chosenfrom the ensemble of segments found in the training data-base for a selected phoneticunit. Ghitza and Sondhi de�ned a distance between sequences as the one used in theDTW method [60] in word recognition (the frame level distance is a Euclidean one,such that the vectors components are normalized to have an equal variance). Theselected template is de�ned as the observation sequence whose cumulative distancefrom all other sequences in the ensemble is minimal. Once the template has beenderived, each segment in the training set can be warped against it and the covariancematrix is estimated from the aligned segments. Computation of the probability ofan unknown test segment is performed by dynamic programming. In this procedure,the test segment is non-linearly warped to the length of the template and then aGaussian likelihood score is computed.Another non-parametric approach was suggested by Goldenthal and Glass [24].They de�ned the notion of a \track" which is a synthetic template prototype. The30



tracks are computed from the training data by mapping the training segments ofeach phone to a sequence of �xed length. The mapping is done by linear interpo-lation. The track is obtained by averaging the �xed length segments. Once thetracks have been created they serve as the initial stage in evaluating hypothesizedspeech segments. To evaluate an unknown segment of length n, a synthetic segmentof length n is generated from the track using a deterministic linear interpolation.Goldenthal and Glass proposed the following method to overcome the problem ofhigh dimensionality of the full covariance matrix. The likelihood score is computedfor the error vector obtained from the observations and the synthetic template. Theirsolution involved dividing the error sequence into sub-segments of equal durationand averaging the vectors within each sub-segment. The small sized averaged vectoris modeled with a Gaussian distribution having a full covariance matrix.
Segmental Mixture ModelOne of the main reasons for the undoubtable success of HMM in user inde-pendent large vocabulary recognition tasks is the use of mixtures of Gaussians todescribe the distribution of a frame within a segment. The addition of the mixturecomponent to the HMM formulation made it possible to present alternative acousticmodels in parallel for the same phonetic unit. In this manner we can overcome themodeling problem caused by di�erent realization of the same linguistic part. Muchof recent progress in HMM research is related to questions of better estimation ofthe parameters of the mixture HMM. Given an observation sequence x = x1; :::; xnand a mixture distribution consisting of k Gaussian models m1; :::; mk, the mixturemodel can be written as : f(x) = nYt=1 kXi=1 cif(xtjmi)

31



where ci are the mixture coe�cients.The segmental analogue of the mixture concept is the assumption that the stepof choosing one of the models is not taken independently for each frame, but onlyonce in a state transition. The segmental mixture model can be written as :f(x) = kXi=1 cif(xjmi) = kXi=1 ci nYt=1 f(xtjmi)where ci are the segmental mixture coe�cients. The speech waveform is producedby a continuous physical system, hence there is no physical justi�cation to selecta di�erent model for each new coming frame, as is done in frame level models. Incontrast, frame level mixture can serve as a mathematical tool to approximate thereal frame distribution which is certainly not Gaussian and not stationary. Kimball[42] showed that training and recognition algorithms of frame level mixture HMMcan be generalized to the segment case. Especially the EM algorithm can be usedfor training the segmental mixture model. Kimball also reported that the segmentalmixture model achieves a better recognition rate than the frame level mixture modelin context-independent phone classi�cation tasks.The concept of mixture of distributions can be used as an extension of any seg-mental model. Instead of having only one segmental model to describe the acousticbehavior in a phonetic unit, we can have an ensemble of such distributions whichare combined with mixtures weights. In this manner, the high variability in thespeech waveforms can be handled by using a number of acoustic models for thesame phonetic unit. For example, trended HMM, which consists of polynomial re-gression function to describe the mean trajectory, is generalized by Gish and Ng [20]as model which has a mixture of these functions. Given a training procedure for asegmental model, there is a general method for training the mixture version of thismodel. The training can be done using the EM algorithm. In the E-step, for eachsegment realization in the training set we compute the a-posteriori probability ofeach of the models in the mixture distribution. In the M-step we can use the training32



procedure of the original segmental model to solve the optimization problem.Another approach to segmental mixture modeling is to assume a prior distribu-tion on the model parameters. For example, consider a Gaussian HMM such thatthe mean is not a �xed parameter. Instead, it is a Gaussian random variable whichis sampled once in a state transition. This model was suggested by Russell [58] andit belongs to the family of random segmental models. Random segmental modelswill be discussed in detail in the next chapter. It should be noted that on the framelevel there is no meaning for random Gaussian HMM. If we would be allowed tosample the mean independently for each frame, as we are in discrete mixture HMM,we would obtain a model consisting of a sum of independent Gaussian random vari-ables which is still Gaussian. Therefore, the random Gaussian HMM is equivalentto the deterministic one.
Segmental Neural NetworkWe conclude this review on segmental models with a short exposition of howsegmental ideas are combined with neural networks. In recent years, Neural Net-works (NN) have been used for tasks of speech recognition. Several attempts havebeen made to build a hybrid HMM/NN system that would take advantage of bothHMM and NN abilities. HMM systems are better in e�ciently handling the globaldynamic programming to �nd the best sentence transcription. In contrast, neuralnetworks are well suited for local acoustic scoring, as they can accept continuousvalued inputs without making any assumption as to the parametric shape of thedensity function.A Segmental Neural Net (SNN) is a neural network that attempts to recognize acomplete phonetic unit rather than a sequence of conditionally independent frames.This allows the network to take advantage of the global acoustic structure of thephone and also makes it easier to incorporate segmental information such as dura-33



tion. There are two main problems with implementing segmental neural nets. First,the speech must be segmented before the neural net can evaluate the segment. Thesecond problem is that the segment length varies with di�erent segment realiza-tions. However, the topology of the NN forces the input to have a �xed lengthrepresentation.Zavaliagkos et al. [66] [1] implemented SNN for continuous speech recognition.They developed a hybrid HMM/NN system that uses the HMM to �nd the N-bestlist of sentence hypotheses. The SNN is used to rescore the hypotheses and the scoresof the systems are combined. In order to overcome the variable length problem,they converted each segment to a �xed number of frames using time re-sampling ina manner similar to how it is done in stochastic segmental models [50].Another segmental approach was suggested by Konig and Morgan [43] [44]. Theyproposed a segmental phone classi�cation where the input to the NN include atime index that describes the relative location of the frame in the phonetic unitin addition to the acoustic vector. In this manner the NN incorporates a non-parametric representation for the trajectory of the acoustic signal associated withthe phonetic unit.
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Chapter 4
Scaled Random TrajectorySegmental Models
In this chapter we present the concept of random trajectory segmental modeling.We review speci�c random models that were proposed in the past and suggest analternative training algorithm for those models. We discuss the modeling problemcreated by the fact that segment realizations of the same phone di�er in lengthand suggest an improved random segmental model that solves this problem. Weconclude with experimental results that demonstrate the di�erence in performanceamong the models that are presented in this chapter.
4.1 IntroductionOver the past decade a number of studies have proposed a framework of stochasticdescription of the mean trajectory, as an alternative to the multi description of themean trajectory, that is provided by an HMM whose state distributions are mixturesof Gaussians. 35



This concept of random trajectory segmental modeling (RTSM) was �rst sug-gested by Russell [58] who named this approach `segmental HMM'. We prefer to usethe more speci�c term RTSM because it better re
ects the particular characteristicsof the model that distinguish it from other segmental models. Random segmentalmodeling can be thought of a generalization of the Gaussian HMM formalism. Themain di�erence is that the mean trajectory of the acoustic feature vector in a stateis not a �xed parameter. Instead, it is a random variable sampled once for eachstate transition. The acoustic motivation for this framework is that we wish to sep-arately model two distinct types of variability: long term variations, such as speakeridentity, and short term variations which occur within a given state as a result ofrandom 
uctuations. The long term variability is modeled by a probability densityfunction (PDF) used to select the sampled mean. The short term variability withina state is modeled by the deviation of the feature vectors from the sampled mean.In standard HMM these two e�ects are modeled implicitly by a single PDF.We �rst provide a formal description of the random trajectory segmental mod-eling approach. Let fs(
) be a PDF de�ned on some family of valid trajectories,
, at a given state, s. On arrival at state s, a trajectory is chosen according tothis PDF. Once 
 is determined, we can model the within-segment variation at eachframe independently. Denote by fs(xtj
; t) the PDF of the frame xt given the chosenmean trajectory and the time index t. The PDF of the segment data realizationx = (x0; :::; xn�1) is given byPs(x) = Z
 fs(
)Yt fs(xtj
; t)d
According to Russell's terminology [58], fs(
) accounts for extra-segmental variationwhich would lead to di�erent trajectories for the same phonetic unit, while f(xtj
; t)hopefully accounts for much smaller intra-segmental variations in the realization ofa particular trajectory.
36



4.2 Static Random Segmental ModelIn this section we concentrate on the case where the trajectories PDF is Gaussian andthe mean trajectory is constant over time. This static RTSM was originally presentedby Russell [58]. More precisely, a static RTSM assumes that the observations withina state x = (x0; :::; xn�1) are generated according toxt = �+ a+ �t t = 0; :::; n�1 (4.1)where � is a �xed parameter, associated with the state, that describes the grandmean trajectory. The random variable a is a shift of the mean trajectory that isglobal to the entire segment realization. It is assumed that a � N(0; �2a) (i.e., a is aGaussian random variable with mean 0 and variance �2a). The short term variabilityis represented by �t, which is a zero mean Gaussian random variable with statedependent variance, �t � N(0; �2). To simplify notation, it will be assumed thatthe observations are one dimensional. Generalization to the multi-dimensional caseis straight-forward. The PDF of the segment data realization, x, is given byf(x) = Za f(x; a)da (4.2)f(x; a) = f(a)Yt f(xtja) (4.3)where f(a) = 1p2��a e� a22�2a f(xtja) = 1p2��e� 12�2 (xt���a)2 (4.4)In this presentation of the static RTSM, the probability expressions are formulatedin terms of the shift of the trajectory from the model mean, rather than the locationof the trajectory itself as in Russell [58], and Gales and Young [17]. We are adopt-ing this convention because it explicitly re
ects the linear behavior of the model37



(equation 4.1).Two methods for computing the likelihood score have been proposed. The �rstone [58] is a maximum a posteriori (MAP) approach. The MAP method uses f(x; â)instead of f(x) as the target function, where â is the shift which maximizes the jointPDF f(x; a). That is to say, segment identi�cation is made based on the segmenthypothesis for which f(x; â) is maximized. A closed form for â is obtained by settingthe derivative, @ log f(x; a)=@a equal to zero, thus yielding,� a�2a + 1�2 n�1Xt=0(xt � �� a) = 0Hence, â = argmaxa f(x; a) = 1�2 Pn�1t=0 (xt � �)1�2a + n�2 (4.5)We use the following notationEx = 1n n�1Xt=0 xt ; Vx = 1n n�1Xt=0 x2t � E2x ; Vn =  1�2a + n�2! (4.6)Using this notation, we have, â = n�2Vn (Ex � �) (4.7)The last expression will be used to help evaluate f(x).Following Gales and Young [17], we now derive a closed form expression for f(x).By (4.3) and (4.4), f(x; a) = 1p2��a  1p2��!n e� 12 g(x;a) (4.8)
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where g(x; a) = a2�2a + 1�2 Xt (xt � �� a)2=  1�2a + n�2! a2 � 2a 1�2 X(xt � �) + 1�2 X(xt � �)2= Vna2 � 2a n�2 (Ex � �) + 1�2 Xt (xt � �)2= Vn(a� n�2Vn (Ex � �))2 + 1�2 Xt (xt � �)2 � n2�4Vn (Ex � �)2= Vn(a� â)2 + n�2  Vx + 1�2aVn (Ex � �)2!Hence, g(x; a) =  1�2a + n�2! (a� â)2 + g(x; â) (4.9)g(x; â) = n�2  Vx + �2�2+n�2a (Ex � �)2! (4.10)The conditional distribution of the shift a given the segment data x, is thereforeGaussian with mean and variance values given by,E(ajx) = â ; V ar(ajx) = V �1n (4.11)Substituting (4.8) and (4.9), (4.10) in (4.2) and carrying out the integration opera-tion results in f(x) =  �2�2 + n�2a! 12  1p2��!n e� 12g(x;â) (4.12)Comparison of (4.8) and (4.12) reveals the following relationshipf(x) =  1�2a + n�2!� 12 p2� f(x; â) (4.13)39



As can be seen from (4.13), the likelihood score provided by the approximated MAPmethod is identical to the true likelihood, except for a term which depends on thelength of the segment and not on the segment data.When n�2a � �2, we have �2aVn � 1, so that f(x) is reduced tof(x) �  1p2��!n exp(� 12�2 Xt (xt � �)2)Hence, in that case, the RTSM degenerates to the deterministic model xt � N(�; �2).In the deterministic model, the PDF assigns equal weight to the empirical varianceof the samples and to the distance of the samples empirical average from the grandmean. On the other hand, from (4.10) it can be seen that the RTSM assigns largerweight to the empirical variance.We now discuss the problem of parameter estimation for the static RTSM. Wediscuss two general estimation schemes. The �rst is a generalized Baum-Welchscheme which is a special case of the expectation - maximization (EM) algorithm[5]. Each iteration is composed of two steps. In the �rst step (E-step), the condi-tional expectation of the likelihood of some `complete data', given the observed datais evaluated. In the second step (M-step), an updated parameters set is obtained,such that the conditional expectation at the new set attains its maximal value.The resulting Baum-Welch algorithm consists of an objective function, in whicheach state sequence realization, that is consistent with the given measurements, isweighted by its probability of occurrence. At each iteration, the algorithm attemptsto bring the objective function to a maximum. The other estimation scheme is anapproximation of the Baum-Welch method, based on an extension of the segmentalk-means algorithm [37]. Each iteration is composed of two steps. In the �rst stage, aViterbi decoding algorithm is applied to obtain the most likely state sequence (usingthe current values of the estimated parameters). Once the segments boundaries aredetermined, in the second step of the iterative algorithm, the segmental model pa-rameters are re-estimated. Following Ostendorf, Digalakis and Kimball [49], we have40



chosen to adopt segmental k-means notation in order to simplify the presentation.We note however, that all the algorithms that will be presented in the sequel canbe plugged into the re-estimation step of the Baum-Welch scheme. Note also thatthe various segmental k-means algorithms that will be presented, iteratively deriveoptimal unit segmentation as a by-product of the algorithm. Since the Viterbi stageof the segmental k-means algorithm is standard, we only discuss the re-estimationstage (the second phase of each iteration).Let x = (x1; :::; xk) be k segment realizations associated with the state s. Denotethe length of the sequence xi by ni. The frames of the segment xi are denotedby xi;0; : : : ; xi;ni�1. We wish to obtain the ML estimates of the model parameters�; �2a; �2. Setting the derivative of log f(x) in (4.12), with respect to � to zero, wehave, @ log f(x)@� = kXi=1� ni2�2�2aVni @@�(Exi � �)2 = kXi=1 ni�2 + ni�2a (Exi � �) = 0Hence, �̂ = Pki=1 1�2+ni�2a Pni�1t=0 xi;tPki=1 ni�2+ni�2aWhen all segments have the same length, denoted by n, the expression above isreduced to �̂ = 1nk kXi=1 n�1Xt=0 xi;t (4.14)In this case we can also obtain the following closed form expressions for �̂2 and �̂2a:�̂2 = n(n� 1)k kXi=1 Vxi (4.15)�̂2a = 1k kXi=1(Exi � �̂)2 � �̂2n (4.16)However, in the general case, where the segment realizations di�er in length, we41



cannot obtain a closed form expression for the ML estimators of �2a and �2, unlesssome approximation, such as ni�2a � �2 is used [17].Russell [58] used the joint probability of the observations and the optimal trajec-tory as the target function for the maximization problem. Setting the �rst partialderivatives of f(x; â) with respect to the estimated parameters to zero yields,�̂ = Pi 1�2+ni�2a Pt xi;tPi ni�2+ni�2a�̂2a = 1kXi (âi)2�̂2 = 1Pi ni Xi;t (xi;t � âi � �)2Note that â, which was obtained in (4.5), is a function of the unknown parameters.Hence, the unknown parameters appear on both sides of each equation. Russell sug-gested a heuristic iterative solution, where the parameters estimated in the previousiteration of the segmental k-means algorithm are substituted back in the right-handsides of the equations.Digalakis, Rohlicek and Ostendorf [12] considered the static RTSM (which theyreferred to as a `target state' segment model) as a special case of the dynamicalsystem model. They suggested to utilize the EM algorithm as an iterative procedurefor solving the maximization problem required in the second stage of the segmentalk-means algorithm. The hidden values of the random shifts, which are sampled foreach segment realization, are the missing data of the EM. A detailed derivation ofthe EM algorithm for a more general RTSM can be found in Appendix 4.B. Notethat if a Baum-Welch algorithm is used, instead of segmental k-means, then theresulting algorithm would involve two levels of EM. In that case, the algorithm inAppendix 4.B, would be in the inner level of the iterations.
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4.3 Scaled Random Trajectory Segment ModelsHolmes and Russell [29] have pointed out that there is a balancing problem betweenthe extra- and the intra-segmental components of the RTSM. Di�erent explanationsof an utterance using di�erent number of segments will use di�erent number ofextra-segmental probabilities. Therefore, interpretations of the data which involvea large number of short segments require more probability terms than ones whichuse a small number of long segments. This phenomenon, which does not exist inthe standard HMM formalism, is caused by the random segmental element of theRTSM. Holmes and Russell [29] observed that including self loop transitions inthe segment model improves recognition performance. Self loops allow freedom inrepresenting each occurrence of a basic phonetic unit using an optimal number ofsegments. In this manner the two model components can be automatically balanced.Their preferred solution is, however, to model the intra-segmental variability moreaccurately. They have found that using a Richter instead of a Gaussian distributioncan greatly improve the performance. In this section we present yet another solutionto this balancing problem.The RTSM can be analyzed from another point of view. As was noted in theprevious section, unlike standard HMM, RTSMs assign di�erent weights in the PDFto the empirical variance of the samples and to the distance of the empirical meanof the samples from the grand mean. Recalling (4.12) and (4.10), this weightingratio is given by 1 + �2a�2nThis ratio re
ects the relative contribution of the extra- and the intra-segmentalcomponents in the likelihood function. Note that this ratio depends on the segmentduration, n. Therefore, balancing problems can exist even in cases of interpretationsof the data which involve the same number of segments but with di�erent segmentlengths.We now suggest a modi�cation of the static RTSM which aims to solve this43



balancing problem. In this model the ratio between the empirical variance of thesamples and the distance of the empirical mean of the samples from the grand meanis independent of the segment duration. This model, which we have termed scaledRTSM [23], is similar to Russell's model [58] that was presented in the previoussection, except that a � N  0; �2an !where n is the segment length. The scaled RTSM asserts that the variance is in-versely proportional to the segment length. To assess this assumption, triphonerealizations, that were extracted from the Wall Street Journal data base, using theSRI DECIPHER system [14], were considered. The various segment realizationswere clustered into groups based on duration, such that all elements within a grouphad the same duration. As was mentioned in the previous section, in cases whereall the segments have the same length, there is no need for using the methods wehave described. Instead, the closed form ML solution (4.14) - (4.16) can be used.Hence, we were able to estimate the variance of the random trajectory �2a, and thevariance of the samples given the trajectory �2, separately for each group. There-fore, there was no pre-imposed assumption on the dependence of the parameters onthe segment length. This experiment enables us to obtain an empirical dependenceof �2a on the duration, n. We note that the number of segment realizations for eachsegment was large enough to obtain a reliable estimate to �2a.Figure 4.1 shows the inverse of the variance of the sampled trajectory �2a, as afunction of segment duration, for the �rst seven mel-cepstrum features, based on 750realizations of the phoneme `t' in the triphone context `s-t-ih'. It can be seen fromFigure 4.1 that the variance of the sampled trajectory �2a is inversely proportionalto the segment length.The PDF of an observation segment x in the scaled model is obtained by sub-
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Figure 4.1: The inverse of the variances of the sampled trajectory as a function ofthe segment length.stituting �2an in place of �2a in (4.12), thus yieldingf(x) =  �2�2a + �2!12  1p2��!n exp(� n2�2  Vx + �2�2a + �2 (Ex � �)2!) (4.17)We now discuss the parameter estimation problem. A distinct advantage of thescaled model is that we can solve the likelihood equations analytically and do notneed to use an iterative algorithm (e.g. EM) for that purpose. Let x = (x1; :::; xk)be k segment realizations associated with the state s. Denote the length of thesequence xi by ni. To obtain the ML estimators for the model parameters, we setthe partial derivatives of f(x), (4.17) to zero as follows.@ log f(x)@� = 1�2a + �2 Xi ni(Exi � �) = 0
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@ log f(x)@�2a = � 12(�2a + �2)Xi  1� 1�2a + �2ni(Exi � �)2! = 0Hence, �2a + �2 = 1kXi ni(Exi � �)2 (4.18)@ log f(x)@�2 = � 12�2 Xi (ni � 1) + 12�4 Xi niVxi � (4.19)12(�2a + �2)  k � 1�2a + �2 Xi ni(Exi � �)2!Substituting (4.18) in (4.19) yields closed form solutions to the likelihood equations :�̂ = Pi;t xi;tPi ni�̂2 = Pi niVxiPi(ni � 1)�̂2a = 1kXi ni(Exi � �̂)2 � �̂2It should be noted that the ML estimator for �2a can be negative. It can beseen from the density expression (4.17) that the actual parameter is not �2a but�2 + �2a, and the ML estimation of �2 + �2a is always non-negative. Negative valuesfor the estimator of �2a do occur in real situations. Later in this chapter we describeexperiments that have been conducted with real speech data. In these experimentswe trained static random models. In some experiments the estimated variance wasfound to be negative. This fact does not coincide with the way we presented thestatic RTSM. The model was stated as a two-step experiment where we �rst samplea random mean trajectory and then add a Gaussian white noise to the sampledtrajectory. The normal distribution associated with the random mean trajectory46



has, of course, a non-negative variance. In order to understand what the meaning ofnegative variance is, we must consider another interpretation for the random model.The static RTSM assumes that the segment x = x0; :::; xn�1 has a non-diagonalmulti-normal distribution, such that the covariance matrix has a certain structure.We have de�ned the scaled static RTSM as :xt = �+ a + �t a � N(0; �2an ) ; �t � N(0; �2)The independence assumption between a and � implies that the �rst two momentsof the distribution of x are :E(x) = � � 1 ; V (x) = �2 � I + �2an 1 � 1Twhere 1 is an all ones column vector. Therefore, the scaled random model is no morethan the assumption that the observation sequence x has the following distribution :x � N  � � 1 ; �2 � I + �2an 1 � 1T!The determinant of the covariance matrix is (�2)n ��2a+�2�2 �. The matrix is positivede�nite if �2 > 0 and �2a + �2 > 0 . Hence, �2a can be negative. The condition�2a > ��2 ensures that the matrix �2 �I+ �2an 1 �1T is a valid covariance matrix. Thetwo-step model serves, when �2a has positive value, as an intuitive interpretation forthis distribution.For purpose of comparison we rewrite the re-estimation formulas of the mean inthe scaled and non-scaled RTSMs :non-scaled model : �̂ = Pi 1�2+ni�2a Pt xi;tPi ni�2+ni�2a47



scaled model : �̂ = Pi;t xi;tPniAs can be seen, the re-estimation equation of the non-scaled model assigns smallerweight to frames that correspond to segments with longer duration. On the otherhand, the scaled RTSM assigns equal weight to each frame, independently of theduration of the segment that corresponds to that frame. Hence, the re-estimationequation of the scaled model coincides with our intuition that each data sampleencapsulates the same amount of information about the mean trajectory.The scaled model also possesses a computational advantage over the non-scaledmodel. In order to compute the likelihood of a given utterance, the log-PDF values ofthe segments in that utterance need to be summed up. Now, (4.12) shows that in thenon-scaled model, it is required to compute the logarithm of the term �2=(�2+n�2a),which depends on n. On the other hand, in the scaled model, the correspondingterm, �2=(�2+�2a), is independent on n, and may therefore be computed in advance.By assuming a plausible range of segment durations, the duration-dependent vari-ance terms obtained in the unscaled model can be still computed in advance, butthere are more terms to compute and therefore also more to store.
4.4 Scaled Linear Random Trajectory SegmentalModelsThe assumption that the mean trajectory within a state is constant over time, isshared both by the Gaussian HMM and by the static RTSM. In practice, most statesviolate this assumption. A simple parametric extension of static models is obtainedby representing the mean trajectory as a linear function of time.Deng et al. [7] proposed a segment model which generalized the standard Gaus-sian HMM. In their model the mean trajectory is a deterministic linear function48



of time. In this linear HMM an observation sequence within a state is generatedaccording to : xt = �a + �b( tn�1 � 12) + �t t = 0; :::; n�1such that the time index t is initialized to zero at the beginning of the state and thenincremented with each new incoming data frame. The linear trajectory is representedhere via the line mid point �a and the slope �b which are state dependent parameters.Deng and Aksmanovic [9] extended this linear model by allowing a discrete mix-ture of linear functions. Holmes and Russell [28] presented a continuous stochasticvariant of a linear HMM. In their model, the linear mean trajectory is a randomvariable which is sampled on each arrival at the state. The long term variation inthis model is represented by an ensemble of linear mean trajectories. The short termvariation is considered to be a result of random 
uctuation as it is in the static case.In this model the segmented data is generated according to :xt = �a + a+ (�b + b)( tn�1 � 12) + �t t = 0; :::; n�1where x0; :::; xn�1 is the observation sequence, �a and �b are �xed parameters , a andb are independent normal random variables :a � N(0; �2a) ; b � N(0; �2b )and �t is a Gaussian white noise term, �t � N(0; �2). The line �a+�b( tn�1 � 12) is theaverage trajectory over all segment realizations and �a and �b de�ne a distributionfunction over all linear trajectories. Denote,Fa(n) = n ; Fb(n) = n(n+1)12(n�1) = n�1Xt=0( tn�1 � 12) (4.20)
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Ea;x = 1Fa(n)Xt xt ; Eb;x = 1Fb(n)Xt xt( tn�1 � 12) (4.21)(â; b̂) = argmaxa;b f(x; a; b)In Appendix 4.A we compute explicit expressions for â and b̂ and prove that thetrue PDF f(x) and the MAP approximation f(x; â; b̂) are related viaf(x) =  1�2a + Fa(n)�2 !� 12  1�2b + Fb(n)�2 !� 12 2�f(x; â; b̂)This relation corresponds to (4.13) in the static case.As in the static case, there is no closed form expression for the ML estimationof the linear model parameters. Holmes and Russell [28] proposed an approximatedsolution which is an extension of their solution for the static RTSM. Alternatively,although the linear RTSM is out of the scope of dynamical system models, the EMapproach for static RTSM, suggested by Digalakis [11], can be generalized to the lin-ear case. The missing data in the EM algorithm are the hidden values of the randomvariables a and b, which are sampled for each segment realization. The proposedEM algorithm is developed in Appendix 4.B. The balancing problem, discussed inthe previous section, also exists in the linear model. The approach of using a Richterdistribution for better modeling the intra-segmental variability, was applied to thelinear RTSM by Holmes and Russell [30].We now present the scaled version for the linear random segmental model. Themotivation for this model is similar to that for the static case. The scaled modelspreads the information on the hidden linear trajectory uniformly along the timeaxis. The segment x is generated in the scaled model according to :xt = �a + a+ (�b + b)( tn�1 � 12) + �t t = 0; :::; n� 1The di�erence from the unscaled linear model is that now the variances of a and b50



are dependent on the segment duration as follows :a � N  0; �2aFa(n)! ; b � N  0; �2bFb(n)!The joint PDF of x, a and b is :f(x; a; b) = qFa(n)p2��a qFb(n)p2��b  1p2��!n e� 12 g(x;a;b)where g(x; a; b) = Fa(n)a2�2a + Fb(n)b2�2b + 1�2 Xt (xt� (�a+ a)� (�b+ b)( tn�1 � 12))2Algebraic manipulation of g(x; a; b) reveals :(â; b̂) = argmaxa;b f(x; a; b) = E((a; b)jx) (4.22)= 0@ 1�2 P(xt � �a)Fa(n)( 1�2a + 1�2 ) ; 1�2 P(xt � �b( tn�1 � 12))( tn�1 � 12)Fb(n)( 1�2b + 1�2 ) 1ATo gain further insight to the probabilistic behavior of the model we derive anexplicit expression for f(x). In Appendix 4.A we compute the following equivalentexpression for g(x,a,b) :g(x; a; b) =  Fa(n)�2a + Fa(n)�2 ! (a� â)2+ Fb(n)�2b + Fb(n)�2 ! (b� b̂)2+g(x; â; b̂) (4.23)and g(x; â; b̂) may be written as :g(x; â; b̂) = 1�2 (X x2t + Fa(n)( �2�2a + �2 (Ea;x � �a)2 � (Ea;x)2) (4.24)+ Fb(n)( �2�2b + �2 (Eb;x � �b)2 � (Eb;x)2))
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The following explicit expression for f(x) results,f(x) =  �2�2a + �2! 12  �2�2b + �2! 12  1p2��!n e� 12 g(x;â;b̂) (4.25)We shall now discuss the parameter estimation problem given the segmenteddata. We use the modi�ed segmental k-means approach in the same manner outlinedin the previous section. In spite of the fact that the linear model is more complicatedthan the static one, using a scaled model enables us to derive closed form expressionsfor the estimated parameters. Let x = (x1; :::; xk) be k segment realizationsassociated with the state s. Denote the length of the sequence xi by ni. The MLequations are :@ log f(x)@�2a = 1�2a + �2 Xi  1� 1�2a + �2Fa(ni)(Ea;xi � �a)2! = 0Hence, �2a + �2 = 1kXi Fa(ni)(Ea;xi � �a)2 (4.26)@ log f(x)@�2b = 1�2b + �2 Xi  1� 1�2b + �2Fb(ni)(Eb;xi � �b)2! = 0Hence, �2b + �2 = 1kXi Fb(ni)(Eb;xi � �b)2 (4.27)@ log f(x)@�2 = 1�2 Xi (ni � 2) (4.28)� 1�4 Xi (Xt x2i;t � Fa(ni)(Ea;xi)2 � Fb(ni)(Eb;xi)2)+ 1�2a + �2  k � 1�2a + �2 Xi Fa(ni)(Ea;xi � �a)2!
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+ 1�2b + �2  k � 1�2b + �2 Xi Fb(ni)(Eb;xi � �b)2!Substituting (4.26) and (4.27) in (4.28) enables us to solve the likelihood equations.Therefore the ML estimators are :�̂a = PFa(ni)Ea;xiPFa(ni) = Pi;t xi;tPFa(ni)�̂b = PFb(ni)Eb;xiPFb(ni) = Pi;t xi;t( tni�1 � 12)PFb(ni)�̂2 = Pi(Pt x2i;t � Fa(ni)(Ea;xi)2 � Fb(ni)(Eb;xi)2)Pi(ni � 2)�̂2a = 1kXFa(ni)(Ea;xi � �̂a)2 � �̂2�̂2b = 1kXFb(ni)(Eb;xi � �̂b)2 � �̂2As in the static case the ML estimators for �2a and �2b can be negative. Equation(4.25), which present the density function of a given segment for the scaled linearmodel, reveals that the actual parameters are �2a+�2 and �2b+�2. The ML estimationof these expressions is always non negative.
4.5 Baum-Welch re-EstimationIn previous sections we have described a training procedure for scaled randommodelsthat is an extension of the segmental k-means algorithm. In this section we present aBaum-Welch type re-estimation procedure for the scaled segmental random model.Using a scaled model enables us to perform the exact E- and M-steps of the Baum-Welch algorithm. This can not be done in the unscaled model [58]. The E-step53



can be performed even in the unscaled model. However, the optimization procedureduring the M-step does not yield a closed form for the estimated parameters.Consider a left to right segmental HMM consisting of m states. Denote thesegmental models associated with the states by M1; :::;Mm. Only one segment fromeach utterance is associated with a particular state. In other words, the utteranceis divided into m segments that correspond to the m segmental models. While thisassumption simpli�es notation, it is not necessary. Other HMM topologies can beanalyzed in a similar manner.According to this model, a state sequence is associated with each utterance.During the generation of the utterance, �rst a state sequence is chosen and thenthe observations sequence is sampled according to that state sequence. Denoteby ts(s; j) the time index of the transition into the state j in the sequence s (forexample, if s=11122333 then ts(s; 2) = 4). Denote by te(s; j) the time index of thetransition out from the state j in the sequence s. We denote the time interval ofthe visit in the state j in the sequence s by :t(s; j) = ts(s; j); ts(s; j)+1; :::; te(s; j)Using this notation we can write the joint density of a given utterance x and a statesequence s as follows : f(x; s) = mYj=1 f(xt(s;j)jMj)The probability of the utterance x is obtained by summing over all possible statesequences : f(x) =Xs f(x; s)Dynamic programming must be applied in order to e�ciently compute this expres-sion. Denote by �(j; t) the conditional probability of x1; :::; xt, given that the lastvisited state is j, and this sojourn is ended at time index t. A recursion formula for54



�(j; t) can be stated in the following way :�(1; t) = f(x1; :::; xtjM1) t = 1; :::; n�(j; t) =Xu<t�(j�1; u)f(xu+1; :::; xtjMj) j = 2; :::; m ; t = 1; :::; nwhere f is the density function of a entire segment according to a segmental model.The likelihood score of the utterance is f(x) = �(m;n), where n is the utterancelength and m is the index of the state at the end of the word. This recursionformula re
ects the topology of the HMM. Other topologies (e.g. addition of a selfloop to permit multiple entry to the same state) imply modi�cation of the recursionstep. Similar dynamic programming is performed in order to compute the likelihoodscore in the standard HMM [53]. However, in segmental models computation of thedensity function is far more complex. This is due to the fact that the probabilityof a frame does not depend only on the state but also on the location of this framewithin the segment sampled during the visit in the state. In a segmental model wecan not compute the probability of a single frame in a state. We must compute theprobability of the entire segment. The complexity of the algorithm can be reducedby assuming a maximal state duration.In the Viterbi decoding approach we choose the best suited state sequence. Forthe Baum-Welch algorithm we must consider all the possible state sequences. Eachstate sequence is considered according to its relative weight. Denote by w(j; t1; t2)the a-posteriori probability that the portion of the utterance x sampled at state jis xt1 ; :::; xt2 . Applying Bayes rule yields :w(j; t1; t2) = Pfsjts(s;j)=t1;te(s;j)=t2g f(x; s)f(x)An extension of the Forward-Backward algorithm can be applied for e�cient compu-tation of w(j; t1; t2). Denote by �(j; t) the conditional probability of xt; :::; xn given55



that at time index t there was a transition into the state j. A recursion formula for�(t; j) is : �(m; t) = f(xt; :::; xnjMm) t = 1; :::; n�(j; t) =Xu>t f(xt; :::; xu�1jMj)�(j+1; u) t = 1; :::; n ; j = 1; :::; m�1Using this notation we derive the following expression for w(j; t1; t2) :w(j; t1; t2) = �(j�1; t1�1)f(xt1 ; :::; xt2 jMj)�(j+1; t2+1)f(x)Computing the expression w(j; t1; t2) is the main step in performing the EM itera-tion in the Baum-Welch framework. In this chapter it is assumed that the obser-vations are scalar. In case of multi-dimensional observations and diagonal matrixcovariances, the weight w(j; t1; t2) is computed for all the observations componentstogether. Once the weight is computed, the estimation can be done for each com-ponent separately.Until now we have discussed segmental models in general. Assume that thesegmental model associated with the states is the scaled linear RTSM. Denote theparameters of the model Mj by f�j;a; �2j;a; �j;b; �2j;b; �2jg. According to the de�nitionof the scaled linear RTSM, given in the previous section, the model Mj can bewritten as : xt = �j;a + a+ (�j;b + b)( t�t1t2�t1 � 12) + �twhere t1; :::; t2 is the time interval of the sojourn in the state j, and a and b aresampled at the transition into the state j. Assume that the training data-baseconsists of the k utterances x1; :::; xk. Denote the length of xi by ni. Denote bywi(j; t1; t2) the a-posteriori probability that the portion of xi sampled at state j isxi;t1 ; :::; xi;t2. The EM auxiliary function is :Q(�; �0) = E(log f(x; s; �)jx; �0)56



= Xi Xs f(sjxi; �0) log f(xi; s; �)Di�erentiating the auxiliary function with respect to �j;a yields :@Q(�; �0)@�j;a = Xi Xs f(sjxi; �0) @@�j;a log f(xi; s; �0)= Xi Xs f(sjxi; �0) @@�j;a log f(xi;t(s;j)jMj)= Xi Xt1<t2wi(j; t1; t2) @@�j;a log f(xi;t1 ; :::; xi;t2 jMj)= Xi Xt1<t2wi(j; t1; t2) 1�2j;a + �2j t2Xt=t1(xi;t � �j;a)Setting this partial derivative to zero yields the re-estimation formula for �a. In asimilar manner we can obtain re-estimation formulae for the other parameters. Thealgebraic manipulation involved here is similar to one presented in Appendix 4.Bfor the segmental k-means training procedure. In order to simplify the presentationof the re-estimation formulae, we de�ned the following notation :�t = t2 � t1 + 1Ea;xi(t1; t2) = 1Fa(�t) t2Xt=t1 xi;tEb;xi(t1; t2) = 1Fb(�t) t2Xt=t1 xi;t( t� t1t2 � t1 � 12)We can now state the re-estimation equations of Baum-Welch algorithm for trainingthe scaled linear RTSM :�̂j;a = PiPt1<t2 wi(j; t1; t2)Pt2t=t1 xi;tPiPt1<t2 wi(j; t1; t2)Fa(�t) 57



�̂j;b = PiPt1<t2 wi(j; t1; t2)Pt2t=t1 xi;t( t�t1t2�t1 � 12)PiPt1<t2 wi(j; t1; t2)Fb(�t)�̂2j = PiPt1<t2 wi(j; t1; t2)(Pt x2i;t � Fa(�t)(Ea;xi(t1; t2))2 � Fb(�t)(Eb;xi(t1; t2))2)PiPt1<t2 wi(j; t1; t2)(�t� 2)�̂2j;a = 1kXi Xt1<t2wi(j; t1; t2)Fa(�t)(Ea;xi(t1; t2)� �̂j;a)2 � �̂2j�̂2j;b = 1kXi Xt1<t2wi(j; t1; t2)Fb(�t)(Eb;xi(t1; t2)� �̂j;b)2 � �̂2j
The random model is more informative than the deterministic one. Therefore,it is more sensitive to the initial values of the model parameters. Initialization canbe done in the following manner [28]. First, train a deterministic linear model oreven a standard HMM. Then given the deterministic model, we can apply Viterbidecoding to divide each utterance into segments. The segmented data can be usedas an input for the initialization process described in Appendix 4.B.

4.6 Experimental ResultsWe evaluated the model presented in the previous section using the ARPA, largevocabulary, speaker independent, continuous speech, Wall Street Journal (WSJ) cor-pus [15]. Experiments were conducted with DECIPHER, SRI's continuous speechrecognition system [14]. A detailed description of the WSJ data-base and the signalprocessing performed in the DECIPHER system can be found in Appendix A. Theautomatic segmentation is not perfect and is not comparable with that of a pro-fessional phonetician. However, this segmentation enables us to perform a fair andextensive comparison between di�erent acoustic models.The task we choose for evaluation is phonetic classi�cation. In classi�cation the58



correct segmentation (phone beginning and ending time) of the input observationsequence is given. Our objective is to assign correct phone labels to each segment.The DECIPHER system was used to determine automatically the phone segmenta-tion for each sentence in the database. Having obtained phonetically aligned testdata, the actual classi�cation process is just a matter of �nding the most likely phonelabel for a speech segment according to the models being evaluated. The trainingset consists of 100 realizations in various contexts for each phone. The testing setconsists of another 100 realizations for each phoneme.The goal of the experiments we have conducted is to compare between the per-formance of the scaled and unscaled random mean trajectory models. In previoussections we have discussed both the cases of constant and linear mean trajectories.The experiments were performed for static as well as linear models. This enable us to�nd how much the assumption of linear mean trajectory improves the performance.We also add results for models where the mean trajectory is a deterministic parame-ter (i.e. standard Gaussian HMM and Deng's linear model) as a reference. It shouldbe noted that a deterministic model has less parameters than the correspondingrandom model. The acoustic models we implemented for evaluation were:1. Standard Gaussian HMM.2. Static RTSM (Russell [58]).3. Scaled static RTSM (presented in section 3).4. Linear mean trajectory segment model (Deng et al. [7]).5. Linear RTSM (Holmes and Russell [28]).6. Scaled linear RTSM (presented in section 4).Several alternatives for model topologies have been employed in order to analyzethe balancing problem in di�erent situations. The �rst analyzed topology assignsone segment to the entire phone. The second one still associates a single segment59



model one state one state three states three statesself-loop with skipsdeterministic 52.1 61.7 61.9static non-scaled 50.7 52.4 61.1 61.7scaled 51.5 55.1 62.3 62.8deterministic 57.2 57.8 61.8 62.3linear non-scaled 58.0 57.0 63.3 63.9scaled 59.1 58.1 62.2 64.1Table 4.1: Phoneme classi�cation rate resultsmodel with each phone, but includes self loops. In other words, the phone can bemodeled by a number of segments which are all corresponding to the same segmentalmodel. The third topology, models each phone using three states. The last examinedtopology is also a three state model but a skip over a state is allowed. In this mannera phone can be explained using at most three states. Note that in the second andthe forth topologies the number of segments per phone is not �xed. Balancing themodel components in those cases is critical.Training the models that includes more than one segment per phone was doneusing the segmental k-means algorithm. The parameters of the unscaled randommodels were computed using the iterative inner EM algorithm that is presented inAppendix 4.B. We preferred to use this training method because, although it is aniterative procedure, it computes the true likelihood function. The scaled model wastrained using the closed form formulae that were developed in previous sections. Therandom models, both scaled and unscaled, were initialized using the deterministicversion of the model for the �rst iteration of the segmental k-means algorithm.Duration was not modeled explicitly. Therefore, all durations were assigned equalprobability.As can be seen from Table 4.1, the scaled model usually outperforms the previ-ously suggested non-scaled model, both for the static case and for the linear case.These results also reassess the signi�cant performance improvement caused by usinga linear model instead of a static one. It is noteworthy to mention that by com-60



model m-?-n p-?-t s-?-ae t-?-s k-?-t averagestatic non-scaled 49.4 61.0 80.3 69.3 82.9 79.6scaled 52.7 65.1 79.6 71.4 84.2 80.3linear non-scaled 59.3 64.0 88.4 72.1 87.5 82.0scaled 61.9 67.7 88.9 74.8 90.0 82.4Table 4.2: Triphone classi�cation rate resultsparing the parameters of the scaled and the corresponding unscaled model, we havefound that the values of the mean parameters and the values of the intra-segmentalvariances are similar.Another task we evaluated is triphone classi�cation. Given a triphone context(the phones before and after the current one), the goal is to determine the label of thecurrent phone based on the acoustics. Context dependent classi�cation was chosenbecause, in that case there are fewer discrepancies between utterances. Hence,in practice, this is usually the case of interest when using segment models. Thetopology we have used for this task is the simplest one. Each phoneme is modeledby a single segmental model. This is the �rst topology from the topologies list ofthe previous experiment.In Table 4.2 we present recognition results for some frequently occurring triphonecontexts. The �rst column in Table 4.2 summarizes a classi�cation experiment giventhe triphone context m-n. The segmented WSJ database was used to extract thephones that appear between the phones m and n. The classi�cation was done amongthose phonemes that have a signi�cant number of occurrences (at least 60) in the m-ncontext. In this context these phonemes are (using ARPABET notation) : aa, ae, ah,aw, ax, ay, eh, ey and iy. Half of the data was used to train the triphone models. Theother half was used for the actual classi�cation task. The subsequent four columnspresent results for similar classi�cation tasks in other triphone contexts. The �nalcolumn presents the classi�cation performance averaged over the 120 most frequentlyoccurring triphone contexts. As can be seen, the scaled model outperforms thepreviously suggested non scaled model. 61



4.7 ConclusionsIn this chapter we have proposed, implemented and evaluated a new type of randomtrajectory segment model where the variance of the mean trajectory is inverselyproportional to the segment duration. In this model the division of the acousticinformation in an utterance does not depend on a speci�c segmentation. Instead,we extract the same amount of information about the mean trajectory from eachdata frame. We have named this approach a scaled RTSM. One desirable attributeof the scaled model is that it leads to a simple training algorithm. More precisely,given a training set, consisting of a list of segment realizations, the ML estimationof the scaled model can be solved analytically. On the other hand, in the non-scaledmodel, an iterative algorithm, (e.g., EM) is required. Such iterative algorithm, isnot guaranteed to reach the global maximum.
Appendix 4.AWe derive an explicit expression for the PDF of the linear RTSM. Both the scaledand the non-scaled versions are discussed. We begin by analyzing the scaled model.The de�nition of the scaled linear model implies that the joint PDF of the observedsegment x of length n and the linear function coe�cients a and b is :f(x; a; b) = qFa(n)p2��a qFb(n)p2��b  1p2��!n e� 12 g(x;a;b)whereg(x; a; b) = Fa(n)a2�2a + Fb(n)b2�2b + 1�2 Xt (xt � (�a + a)� (�b + b)( tn�1 � 12))2
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We show that g(x; a; b) may be written as :g(x; a; b) =  Fa(n)�2a + Fa(n)�2 ! (a� â)2 +  Fb(n)�2b + Fb(n)�2 ! (b� b̂)2 +1�2 (Fa(n)( �2�2a + �2 (Ea;x � �a)2 � (Ea;x)2) +Fb(n)( �2�2b + �2 (Eb;x � �b)2 � (Eb;x)2) +Xt x2t )The terms â, b̂, Fa(n), Fb(n), Ea;x and Eb;x are de�ned in (4.20), (4.21).g(x; a; b) = Fa(n)a2�2a + Fb(n)b2�2b + 1�2 Xt (xt � (�a + a)� (�b + b)( tn�1 � 12))2=  Fa(n)�2a + Fa(n)�2 ! a2 � 2a 1�2 Xt (xt � �a) + Fb(n)�2b + Fb(n)�2 ! b2 � 2b 1�2 Xt (xt � �b( tn�1 � 12))( tn�1 � 12) +1�2 Xt (xt � �a � �b( tn�1 � 12))2=  Fa(n)�2a + Fa(n)�2 ! a� �2a�2a + �2 (Ea;x � �a)!2 + Fb(n)�2b + Fb(n)�2 ! b� �2b�2b + �2 (Eb;x � �b)!2�Fa(n)�2 �2a�2a + �2 (Ea;x � �a)2 � Fb(n)�2 �2b�2b + �2 (Eb;x � �b)2 +1�2 Xt (xt � �a � �b( tn�1 � 12))2 (4.29)Given the observation sequence x, g(x; a; b) is a quadratic form in a and b. Hence, weconclude that the conditional distribution of a and b given the segment x is Gaussian.Furthermore, a and b are conditionally independent. Now, the �rst moments maybe read directly from (4.29):E(ajx) = â =  �2a�2a + �2! (Ea;x � �a)63



V ar(ajx) =  Fa(n)�2a + Fa(n)�2 !�1E(bjx) = b̂ =  �2b�2b + �2! (Eb;x � �b)V ar(bjx) =  Fb(n)�2b + Fb(n)�2 !�1Direct algebraic manipulations reveal the following relationXt (xt � �a � �b( tn�1 � 12))2 =Fa(n)((Ea;x � �a)2 � (Ea;x)2) + Fb(n)((Eb;x � �b)2 � (Eb;x)2) +Xt x2tSubstituting this relation in (4.29) yields :g(x; a; b) =  Fa(n)�2a + Fa(n)�2 ! (a� â)2 +  Fb(n)�2b + Fb(n)�2 ! (b� b̂)2 +1�2 (Xx2t + Fa(n) (1� �2a�2a + �2 )(Ea;x � �a)2 � (Ea;x)2!+Fb(n) (1� �2b�2b + �2 )(Eb;x � �b)2 � (Eb;x)2!)Hence,g(x; a; b) =  Fa(n)�2a + Fa(n)�2 ! (a� â)2 +  Fb(n)�2b + Fb(n)�2 ! (b� b̂)2 + g(x; â; b̂)Now, g(x; â; b̂) may be written as :g(x; â; b̂) = 1�2 (Xt x2t + Fa(n)( �2�2a + �2 (Ea;x � �a)2 � (Ea;x)2)+ Fb(n)( �2�2b + �2 (Eb;x � �b)2 � (Eb;x)2))64



Using this representation we may solve the double integral :f(x) = Za Zb f(x; a; b)da dband obtain the following explicit expression for the PDF,f(x) =  Fa(n)�2a + Fa(n)�2 !� 12  Fb(n)�2b + Fb(n)�2 !� 12 2�f(x; â; b̂)=  �2�2a + �2!12  �2�2b + �2! 12  1p2��!n e� 12g(x;â;b̂)The expressions we derived for f(x), g(x; a; b) and the moments of the conditionaldistribution of a and b given x may be easily transformed to the non-scaled linearcase. We need only substitute Fa(n)�2a and Fb(n)�2b for �2a and �2b . For example, inthe non-scaled case we have :E(ajx) = â =  Fa(n)�2aFa(n)�2a + �2! (Ea;x � �a)E(bjx) = b̂ =  Fb(n)�2bFb(n)�2b + �2! (Eb;x � �b)
and the PDF of the observation sequence x of length n is :f(x) =  1�2a + Fa(n)�2 !� 12  1�2b + Fb(n)�2 !� 12 2�f(x; â; b̂)
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Appendix 4.BThe static RTSM can be seen as a special case of the dynamical system model [12]such that the state space is constant over time. The EM algorithm presented byDigalakis et al. can be applied to the static RTSM. In this appendix we derive theEM re-estimation equations for the unscaled linear RTSM which is out of the scopeof dynamic segment systems. The re-estimation equations for static RTSM can beeasily deduced from the equations developed here. Suppose we have k segmentrealizations x1; :::; xk. Denote the length of xi by ni. Denote by ai and bi the hiddencoe�cients of the line which was sampled for the segment xi. De�ne zi = (xi; ai; bi),z1; :::; zk are the complete data for this EM framework. Denote the parameter set wewant to estimate by � = f�a; �b; �2a; �2b ; �2g. The current estimate at the beginningof the iteration is denoted by �0 = f�a0; �b0; �2a0; �2b0; �20g.log f(zi; �) = log�2a + a2i�2a + log�2b + b2i�2b + ni log �2 +1�2 Xt (xi;t � (�a � ai)� (�b � bi)( tn�1 � 12))2 + Cwhere C is a constant that is independent of the parameter vector �. Hence,E(log f(zi; �)jx; �0) = ni log�2+log�2a + 1�2aE(a2i jxi; �0) + log�2b + 1�2b E(b2i jxi; �0)++ 1�2 Xt E((xi;t � (�a � ai)� (�b � bi)( tni�1 � 12))2jxi; �0)Denote : Eai = E(aijxi; �0) =  1�2a0 + Fa(ni)�20 !�1 Fa(ni)�20 (Ea;xi � �a0)
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Vai = V ar(aijxi; �0) =  1�2a0 + Fa(ni)�20 !�1Ebi = E(bijxi; �0) =  1�2b0 + Fb(ni)�20 !�1 Fb(ni)�20 (Eb;xi � �b0)Vbi = V ar(bijxi; �0) =  1�2b0 + Fb(ni)�20 !�1
where Fa(ni) = ni ; Ea;xi = 1Fa(ni)Xt xi;tFb(ni) = ni(ni+1)12(ni�1) ; Eb;xi = 1Fb(ni)Xt xi;t( tni�1 � 12)These relations are developed in Appendix 4.A. Direct algebraic manipulations re-veal the following relation :E((xi;t � (�a � ai)� (�b � bi)( tni�1 � 12))2jxi; �0) =Fa(ni)Vai + Fb(ni)Vbi +Xt (xi;t � (�a + Eai)� (�b + Ebi)( tni�1 � 12))2We now de�ne the EM auxiliary function :Q(�; �0) = E(log f(z; �)jx; �0) =Xi E(log f(zi; �)jxi; �0)= k log�2a + 1�2a Xi E(a2i jxi; �0) + 1�2 Xi Fa(ni)Vai +k log�2b + 1�2b Xi E(b2i jxi; �0) + 1�2 Xi Fb(ni)Vbi +Xi ni log �2 + 1�2 Xi;t (xi;t � (�a + Eai)� (�b + Ebi)( tni�1 � 12))2
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Optimization of the auxiliary function with respect to the model parameters yieldsthe following new estimated parameter vector, �̂ = f�̂a; �̂b; �̂2a; �̂2b ; �̂2g�̂a = Pi Fa(ni)(Ea;xi � Eai)Pi Fa(ni)�̂b = Pi Fb(ni)(Eb;xi � Ebi)Pi Fb(ni)�̂2a = 1kXi (Vai + E2ai) = 1kXi E(a2i jxi; �0)�̂2b = 1kXi (Vbi + E2bi) = 1kXi E(b2i jxi; �0)�̂2 = 1Pi ni Xi (Fa(ni)Vai + Fb(ni)Vbi +Xt (xi;t � (�̂a + Eai)� (�̂b + Ebi)( tni�1 � 12))2)Possible initialization values for the EM algorithm are :�a0 = 1PFa(ni)Xi Fa(ni)Ea;xi ; �2a0 = 1kXi (Ea;xi � �a0)2�b0 = 1PFb(ni)Xi Fb(ni)Eb;xi ; �2b0 = 1kXi (Eb;xi � �b0)2�20 = 1Pni Xi;t (xi;t � �a0 � �b0( tni � 1 � 12))2
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Chapter 5
Continuous Mixture of SegmentalModels
In this chapter we shall present a segmental modeling approach based on a non-parametric description of the mean trajectory during a sojourn in a phonetic unit.First, we provide a motivation for the model from examination of segment datarealizations. Then we shall present the model itself, followed by a discussion of thetraining algorithm. Finally, we shall present experimental results which examinevarious aspects of the model.
5.1 MotivationsOur model was motivated by extensive examination of segment data realizations. InFigure 5.1, several realizations of the �rst cepstral coe�cient in the triphone ih-s-oware presented (The database used was the speaker independent, large vocabulary,Wall Street Journal (WSJ) corpus [15]). Figure 5.2 presents the same data afternonlinear time warping of the segment realizations, so as to achieve time alignment69



between the various realizations. Figure 5.3 also presents time aligned segmentrealizations, but with an additional stage of global displacement removal. It can beclearly seen, that the variance of the trajectories in Figure 5.3 is smaller than thecorresponding variance in Figure 5.2. Hence, in this case, the incorporation of theglobal displacement term yields improved modeling.
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Figure 5.1: Realizations of �rst cepstral coe�cient of the phone `s' in the triphonecontext ih-ow.
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Figure 5.2: Data after nonlinear time warping.These �gures re
ect the fact that the speech signal is produced by a continuouslyvarying physical system (the vocal track). There is a smooth local dynamic alongthe sojourn in the phonetic unit. We can also observe from these �gures that when70
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Figure 5.3: Data after nonlinear time warping and displacement elimination.we �x a context there is not any signi�cant variability among di�erent realizationsof a phonetic unit. In other words, the phone does not exhibit several distincttrajectories. The observed di�erence can be described as a shift from the meantrajectory that is global to the entire segment. This phenomenon can be explainedon two levels. First, the shift re
ects the speaker personal style which is dependentupon the shape of vocal organs, gender, age, dialect etc. From a more local point ofview the size of the shift depends on the ending point of the previous phoneme andthe starting point of the next one. This is one way of describing the co-articulatione�ect. The vocal articulators move from the position necessary for articulation ofthe previous phone towards the position required for the next phone, via the positionneeded for the current phone. During 
uent speech when the context phones are notfully articulated there will be a shift from the mean trajectory due to the continuousnature of the speech signal. In the next section we shall formulate these intuitiveobservations into a probabilistic model.
5.2 Model FormulationIn this section we present a new segmental model which is composed of two elements.The �rst element is a non-parametric representation of the mean and variance tra-71



jectories, and the second is a parameterized transformation (e.g. random shift) ofthe trajectory that is global to the entire segment [21], [22]. The mean trajectorycurve is represented using a non-parametric description. That is to say, instead ofusing a polynomial or some other parametric description, as in [7], [8], [41], [11],[58], [27], [28], [29] and [18], the curve is represented by specifying a list of sampledpoints along it. More precisely, we assume that each segment may be representedby a left to right HMM structure, such that each HMM state is represented by asingle Gaussian HMM. The sequence of mean values of the HMM state sequenceconstitutes a template of the mean trajectory. Likewise, the sequence of variancesof the HMM state sequence constitutes a template of the variance trajectory. Timewarping of the template trajectory is made possible by controlling the state sequenceof the HMM (e.g., contracting may be realized by rapid transitions out of states).The second element of the model is a parameterized transformation of the trajectory,that is global to the entire segment. Let the state sequence of some given segmentrealization be denoted by s = (s1; s2; : : : ; sn), and let the corresponding observationsequence be denoted by x = (x1; x2; : : : ; xn). To simplify notation, it will be assumedduring this chapter that the observations are one dimensional. Generalization to themulti-dimensional case is straight-forward. We assume the following model for theobservation, xt, at time t : xt = Ta (�(st); �(st); t)where �(st) and �(st) are the mean and variance at state st, and Ta(�) is some randomtransformation indexed by a. a is a random variable that is chosen once for theentire segment realization. The transformation that we focus on in this chapter, is arandom displacement of the mean trajectory. In that case, Ta(�; �; t) = �+a+�t(�).Hence, xt = �(st) + a+ �t(�(st)) (5.1)
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Here, a is a zero mean, normal random variable, sampled once per segment, thatrepresents the global displacement of the current segment realization. �t(�) is a zeromean, Gaussian random variable.a � N(0; �2a) ; �t � N(0; �2(st))The e�ect of the displacement variable may be interpreted as a continuous mixtureof parallel curves that represent the mean trajectory along the segment. The distri-bution of a is the continuous segmental analog to the mixture coe�cients in standardHMM. That is to say, in standard HMM, a discrete mixture component is chosenonce per frame, i.e., it is a frame based approach, while in a random segmentalmodel, a continuous mixture component is chosen once per segment realization.The proposed model (5.1) is similar to the models suggested in [58], [27], [28],[29] and [18]. In these references, however, the approach is parametric, while ourapproach is non-parametric and allows time warping of the mean trajectory. The
exibility that is gained by allowing time warping could signi�cantly improve themodeling capability of the template trajectory. The boundaries between phones arenot well de�ned and there is no any consistent starting point. Non-parametric rep-resentation allows us 
exibility in the starting point of the phone. Non-parametricdescription of the mean trajectory appears in [19] and [25], but we suggest a di�erentestimation procedure which seems to be more robust. This shall be discussed furtherin the next section. The idea of non-unique mean trajectory can be originated inthe traditional mixture HMM. Kimball and Ostendorf [42], [49] described a modelthat consists of discrete mixtures of trajectories. That approach assists us enrich themodel family we use, but as we can see from Figure 5.1, it does not always re
ectthe actual behavior of the data.
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5.3 Recognition and Training AlgorithmsWe now present recognition and training algorithms for the new proposed model.The input to the recognition algorithm is a segment realization. The output of thealgorithm is the identity of the segment. The optimal maximum likelihood (ML)solution to this problem is to determine on the segment identity p̂, based on thelikelihood of the segment data x, i.e.p̂ = argmaxp2P f(x) (5.2)where P is the set of candidate segments, and f(x) is the density of x under theassumption that the segment identity is p. f(x) is given by :f(x) = ZaXs f(x; s; a)dawhere f(x; s; a) = f(s)f(a)Yt f(xt � aj�(st); �(st))denote also f(x; s) = Za f(x; s; a)daA shortcoming of the ML approach is that the computation of f(x) is extremelycomplicated. There is no e�cient algorithm to obtain the integral as a closed from.This is in contrast with the parametric random model discussed in the previouschapter. In the parametric model a distinct shift value is attached to each state,and therefore there is no summation over all the state sequences inside the integral.The model presented in this chapter can be viewed as a random parametric modelsuch that the shift operation is done jointly for several states.As an alternative we propose the following segment recognition criterion :p̂ = argmaxp2P �maxs f(x; s)� (5.3)74



The approximation of (5.2) by (5.3) is similar to the standard approximation ofML word estimation by ML sequence estimation (Viterbi decoding). Even for thissimpli�ed criterion there is no e�cient algorithm to compute it. In order to solvethis maximization problem we must explicitly check all the exponential amount ofstate sequences. In the next section we give an e�cient algorithm, for �nding theexact solution, for a simpler version of our model. We now present an iterativealgorithm to evaluate maxs f(x; s) = f(x; ŝ) numerically.1. Initialization : â = 0.2. Compute ŝ = argmaxs f(x; s; â) by applying standard Viterbi segmentationon the data after displacement elimination (i.e., x1 � â; x2 � â; : : : ; xn � â).3. Compute â = argmaxa f(x; ŝ; a). In Appendix 5.A we obtain the followingexpression for â. â = Pnt=1 1�2(ŝt) (xt � �(ŝt))1�2a +Pnt=1 1�2(ŝt) (5.4)4. Repeat 2 and 3 until convergence.5. Compute : f(x; ŝ) = Za f(x; ŝ; a)da = 1p2�!n 1�aQnt=1 �(ŝt)  1�2a + nXt=1 1�2(ŝt)!� 12 e� 12k(x;ŝ) (5.5)where k(x; s) = nXt=1 1�2(st) (xt � �(st))2 � �Pnt=1 1�2(st) (xt � �(st))�21�2a +Pnt=1 1�2(st)Eq. (5.5) is derived in Appendix 5.A. 75



We have compared the performance of this scheme with the true solution ob-tained by performing exhaustive search. These tests ensure us that this heuristicalgorithm indeed achieves the global maximum most of the time.The proposed training algorithm is a combination of the algorithm above andthe well-known Baum-Welch training procedure. Given a sequence of k segmentdata realizations x1; : : : ; xk, where xi = (xi;1; : : : ; xi;ni), denote by ai, the segmentalmixture coe�cient of xi. Training consists of the following iterative steps :1. Initialization : ai = 0 i = 1; 2; : : : ; k ; �a =12. Apply the Baum-Welch algorithm toxi;1 � ai; : : : ; xi;ni � ai i = 1; : : : ; kin order to obtain a new set of segment template parameters (state means,variances, and transition probabilities). We then apply the Viterbi algorithmin order to determine the state segmentation ŝi.3. Apply the previous iterative algorithm to obtain ai = argmaxa f(xi; ŝi; a).4. Given a1; a2; : : : ; ak, update the variance of the random displacement :�2a = 1k kXi=1 (ai)25. Repeat 2-4 until convergence.A major decision that needs to be made concerns the number of states thatare used in our model. While trajectory descriptions with large number of statesare more accurate on the one hand, when a large number of states are used, thetraining algorithm needs to estimate a large number of parameters on the other.76



Hence, in that case, it is essential to properly initialize the training algorithm thatwas described above. Otherwise, the algorithm does not produce meaningful results.This problem is avoided in Kimball et al. [42], [49], since a relatively small numberof states (typically �ve states per segment) is used.The following initialization algorithm is proposed.1. Given the segment data realizations, x1; x2; : : : ; xk, an initial segment templateis determined. The length, M , of this template is set equal to the averagelength of the given segment realizations. Then each segment realization islinearly time warped to size M . Finally, the initial segment template is set tothe mean of these linearly time warped segment realizations.2. A dynamic time warping (DTW) [60] routine is used to time align each segmentrealization xi against the template segment.3. The time aligned segment realizations are averaged together in order to obtaina new template.4. Stages 2 and 3 are repeated as many times as necessary. Typically two itera-tions are su�cient.5. Finally,M vectors of means and variances of the HMM states, that constitutethe initial template, are obtained by averaging the last version of time alignedsegment data realizations.Note that the initialization routine does not employ random displacement model-ing. The DTW routine that we used speci�es the local constraint that no morethan two adjacent template frames can be mapped to the same segment realizationframe, and vice versa (no more than two adjacent segment realization frames canbe mapped to the same template frame). In addition, the DTW routine speci�esthe standard global constraint that the grid region of matching frames is limitedto a band diagonal region. These constraints limit the amount of permitted timecontracting and expanding. Standard Viterbi decoding does not incorporate such77



constraints, and thus does not produce reliable initialization. The method presentedhere ensures that we will get a relatively smooth and continuous curve for the tra-jectory. Other methods to estimate the mean trajectory appear in the literature.Ghitza [19] suggested choosing one of the realizations, which is the centroid of thesegments ensemble, as the mean trajectory. Goldenthal [25] used the �rst step ofour initialization i.e. averaging the segments without warping in order to �nd atrajectory model.The recognition and training algorithms that were described above are usefulfor re-scoring an N-best list. We assume the phone boundaries are known. Notethat due to the fact that mean trajectory time warping is allowed, segmentationinaccuracies at the previous stage can be tolerated.Figure 5.4 presents the mean trajectory of the �rst cepstral coe�cient of thetriphone ih-s-ow produced by the training algorithm. The �gure also shows thevariance trajectory (we draw a line that is one standard deviation away from themean trajectory).
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Figure 5.4: Non-parametric model of the mean trajectory.
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5.4 A Simpli�ed Version of the ModelIn the previous section we have presented the segmental model :xt = �(st) + a+ �t(�(st))During the recognition stage we already know the model parameters and want toclassify a given segment realization. Given a frame sequence x = (x1; :::; xn) wewant to compute the following Viterbi-like approximation for the likelihood score :f(x; ŝ) = maxs f(x; s) = maxs Za f(x; s; a)daf(x; ŝ) is the joint density of the data x and the best suited state sequence ŝ. Wehave suggested a heuristic iterative procedure to �nd f(x; ŝ). A natural questionin this situation is the following. Is this procedure the best available? As a partialanswer we shall discuss a very restricted version of the model. We will show that inthis case we do have an exact algorithm to compute f(x; ŝ) which is neither heuristicnor iterative. In spite of this fact, even for this simpli�ed model the solution is notstraightforward.We add the following assumptions to our framework :1. The data frames are one-dimensional. In other words, we model each featureseparately. The states are chosen independently for each feature. In the gen-eral case discussed at the previous sections we have enabled a common statesegmentation for all the features.2. There is no Markovian structure imposed on the state sequence. We assumeinstead IID behavior. In other words, the model is reduced to the standardmixture model.3. The normal distributions attached to each of the states share a common vari-79



ance denoted by �2.The density function of a frame sequence according to this model is :f(x) = Za 1p2��a exp(� a22�2a )Xs Yt 1p2�� exp�� 12�2 (xt � �(st)� a)2� daAs before, we want to �nd maxs f(x; s). The joint density of x, s and a can bewritten as : f(x; s; a) = ( 1p2�� )n 1p2��a exp(�12g(x; s; a))where g(x; s; a) = a2�2a + 1�2 Xt (xt � �(st)� a)2It can be veri�ed from Appendix 5.A that :g(x; s; a) =  1�2a + n�2! (a� âs)2 + g(x; s; âs)where âs = maxa f(x; s; a) = 1�2 Pt(xt � �(st))1�2a + n�2From this we can conclude that :f(x; s) = Za f(x; s; a)da =  1�2a + n�2!� 12 p2�f(x; s; âs)This implies :argmaxs f(x; s) = argmaxs f(x; s; âs) = argmins;a g(x; s; a)= argmins;a  a2�2a + 1�2 Xt (xt � �(st)� a)2!In other words, in order to �nd the best state sequence ŝ, we do not have to performthe integral over the shift variable a. Instead, we can take for each s the best80



associated shift : argmaxs f(x; s) = argmaxs (maxa f(x; s; a))We can now reduce our problem to the following abstract formulation. Letx1; :::; xn; �1; :::; �k; w be known real numbers. For each \state sequence" s 2 f1; :::; Jgnand each \shift" a 2 R de�ne :g(s; a) = wa2 + nXt=1(xt � �(st)� a)2We want to solve e�ciently the minimization problem mins;a g(s; a). We can givea probabilistic interpretation for this situation. De�ne a discrete random vari-able Ys that accepts the n+1 values 0; x1 � �(s1); :::; xn � �(sn) with probabilitiesww+n ; 1w+n ::: 1w+n . Using this terminology one can easily observe that :g(s; a) = (w + n)E(Ys � a)2Denote : as = E(Ys) = 1w + nXt (xt � �(st))The variance is the smallest second moment. It satis�es the following inequality foreach real number a :V ar(Ys) = E(Ys � E(Ys))2 � E(Ys � a)2Therefore we obtain :g(s) = g(s; as) = mina g(s; a)81



= (w + n)V ar(Ys) = (w + n)(E(Y 2s )� E2Ys)= nXt=1(xt � �(st))2 � 1w + n  nXt=1 xt � �(st)!2Thus far we have shown that for each state sequence s we can easily �nd the optimalshift associated with it. We shall now explain how we can �nd the best statesequence.De�ne : A(t; i) = (xt � �(i))2 ; B(t; i) = xt � �(i) (5.6)As =Xt A(t; st) ; Bs =Xt B(t; st)Using this notation we can write :g(s) = As � 1w + nB2sWe can project each state sequence s onto a point (As; Bs) 2 R2. Let S be theconvex hull of f(As; Bs)g. A � 1w+nB2 is a concave function of A and B, thereforeit obtains its minimum over the region S at the extreme points (which are a subsetof f(As; Bs)g. From here we can conclude that if we want to �nd mins g(s) there isno need to check all the state sequences. We need only check those state sequenceswhich are projected to extreme points of S.It will be explained now how we can e�ciently check all the extreme points ofS. We use a standard technique from computational geometry. An extreme point(A;B) is characterized by some real �, such that :A+ �B = maxs (As + �Bs) or � A+ �B = maxs (�As + �Bs)82



From de�nition (5.6) we obtainmaxs (As + �Bs) = maxs Xt (A(t; st) + �B(t; st))We can solve this maximization problem component wise due to the fact that weassume no Markovian structure on the state sequences s, i.e there are no prior re-strictions on the state sequence. We need only solve a trivial maximization problem.The solution is : maxs (As + �Bs) =Xt maxj (A(t; j) + �B(t; j))In this manner, for each � 2 R we �nd a point s� which is an extreme point of Sand it is, therefore, a potential candidate for optimality. We cannot check each realnumber �, but there is no need to do so. We can concentrate only on critical points� where s changes, and search for the minimum point among them. The criticalpoints are the solutions to the equations :�A(t; i) + �B(t; i) = �A(t; j) + �B(t; j) 1 � t � n ; 1 � i < j � k (5.7)Solving equation (5.7) we get the following � values :�(2xt � �(i)� �(j)) ; �(xt � �(i))2 + (xt � �(j))2�(i)� �(j) (5.8)This step concludes the presentation of the algorithm to compute mins;a g(s; a).We summarize the algorithm to �nd mins;a g(s; a) :1. Compute the set of critical points using expression (5.8).2. The critical points divide the real line into disjoint intervals. At each interval83



choose a number �. Find the state sequence s characterized by � :st = argmaxj (A(t; j) + �B(t; j)) t = 1; :::; n3. For each state sequence s that was found at the previous step compute explic-itly g(s) = nXt=1(xt � �(st))2 � 1w + n  nXt=1 xt � �(st)!2and choose the state sequence s where g accepts its minimum.When the length of the data sequence is over 10, this algorithm is much moree�cient than the exhaustive search over all the state sequences. A detailed analysisof an algorithm similar to the one presented in this section can be found in [26].We can relax the �rst assumption mentioned at the beginning of the section.Suppose that the data frames are K-dimensional and the covariance matrices arediagonal. In a way similar to de�nition (5.6), we can de�ne :Ak(t; i) = (xt;k � �k(i))2 ; Bk(t; i) = xt;k � �k(i)As = KXk=1Xt Ak(t; st) ; Bs;k =Xt Bk(t; st)Using this de�nition we obtain :g(s) = Xk 0@ nXt=1(xt;k � �k(st))2 � 1w + n  nXt=1 xt;k � �k(st)!21A= As � 1w + nXk B2s;kThis is a function of more than two variables and therefore it is much more compli-cated to �nd its maximum.The third assumption can be relaxed too. In case where each state has a di�erent84



variance associated with it, the resulting function is of the formA�B2C . Although thisfunction is not concave, it is quasi-concave. Therefore, it still obtains its minimum atthe extreme points of a convex set. This convex set is now a subset of a 3-dimensionalspace.
5.5 Experimental ResultsWe evaluated the model presented in the previous section using the (WSJ) cor-pus [15]. Experiments were conducted with the DECIPHER [14]. A detailed descrip-tion of the WSJ data-base and the signal processing performed in the DECIPHERsystem can be found in Appendix A.Our model was implemented using the N-best re-scoring paradigm, by re-scoringthe list of the N-best sentence hypotheses generated by the DECIPHER. Contextdependent phonetic models were used. A segmental model was constructed foreach triphone that appears in the training data set. The test set consisted of 200sentences. In Table 5.1 we present the word error rate of standard HMM, as imple-mented in the DECIPHER, and the word error rate after re-scoring the N-best listusing the segmental model. In that case, language modeling was not incorporated.In Table 5.2 we show the decrease in the word error when we add the segmentalmodel to the HMM as another knowledge source, and linearly combine the twoscores. In that case, language modeling was incorporated.Tables 5.1 and 5.2 show that the new model is comparable to state of the artHMM system, with sophisticated tying of parameters. To probe the new modelfurther and to compare it to alternative models, we carried out several triphonerecognition experiments. Context dependent phonetic units were chosen since inthat case there is less variability between utterances. Hence, in practice, this isusually the case of interest.In Table 5.3 we present recognition results for some frequently occurring triphonecontexts. The �rst data row indicates the number of triphone occurrences for each85



model word errorHMM acoustics 22.1segmental acoustics 21.4Table 5.1: Word error rate results without language model.model word errorHMM acoustics + linguistics 8.1HMM acoustics + segmental acoustics + linguistics 7.8Table 5.2: Word error rate results with language model.context. Half of the occurrences were used to train each model. The other halfwere used to test the models. There were six triphones in the �rst context (s[k]ih,s[l]ih, s[m]ih, s[p]ih, s[t]ih and s[w]ih), �ve triphones in the second context (n[ay]t,n[eh]t, n[ey]t, n[ih]t and n[ow]t), �ve triphones in the third context (aa[k]t, aa[n]t,aa[p]t, aa[r]t and aa[s]t), ten triphones in the forth context (ih[b]eh, ih[d]eh, ih[f]eh,ih[jh]eh, ih[l]eh, ih[m]eh, ih[p]eh, ih[r]eh, ih[s]eh and ih[v]eh), and seven triphones inthe �fth context (g[aa]t, g[ae]t, g[ah]t, g[ax]t, g[eh]t, g[ey]t and g[ih]t).The models examined were :1. Mixture of Gaussians HMM. Such model, with s states and m mixtures isdenoted by HMM(s,m).2. A segmental polynomial model (3.2) with deterministic �k parameters. Suchmodel with s states and a polynomial of order K describing the mean trajec-tory of each state is denoted by POLY(s,K).3. A segmental polynomial model (3.2) with multi-normal �k parameters. Suchmodel with s states and a polynomial of order K describing the mean trajec-tory of each state is denoted by POLYRND(s,K).4. The new proposed model with random displacement modeling. Such modelwith s states is denoted by NPRMDISP(s).86



5. The new proposed model without random displacement modeling, i.e. a stan-dard non-parametric model. Such model with s states is denoted by NPRM(s).To implement model (3.2) (both for the case where �k are deterministic parameters,and for the case where they are random variables), all possible state partitions wereconsidered for each utterance that needs to be recognized.s[�]ih n[�]t aa[�]t ih[�]eh g[�]t# 1088 740 2263 1619 662HMM(3,3) 90.7 85.2 96.6 89.3 64.1POLY(3,2) 89.0 82.7 95.9 87.5 66.8POLYRND(3,1) 89.6 79.2 96.3 87.4 64.4NPRM(9) 90.7 78.7 94.5 89.9 58.7NPRMDISP(9) 91.6 85.4 96.5 87.9 67.1Table 5.3: Triphone recognition rate results.As can be seen, in four out of the �ve contexts presented, global random dis-placement, non-parametric modeling (NPRMDISP) is preferable to standard non-parametric segmental modeling (NPRM). The new model also compares favorablywith the other models that were examined.The experiments summarized in Table 5.3 were repeated for many other fre-quently occurring triphone contexts. For most triphone contexts examined, randomdisplacement modeling improved the standard non-parametric model. Nevertheless,in many other cases, random displacement modeling decreased the recognition rate.Hence, for some of the triphones, a standard non-parametric model (i.e., a degen-erated displacement model that employs �xed zero displacement) is expected to bepreferable. On the other hand, we observed that a random displacement modelalways assigns higher likelihood values to previously unseen data, and hence has animproved prediction capability. The maximum likelihood criterion can not , there-fore, be used in order to determine when the random displacement model should bedegenerated. 87



5.6 ConclusionsWe presented a new model, that is a continuous mixture of segment trajectories.This model is composed of two elements. The �rst element is a non-parametricrepresentation of the mean and variance trajectories, and the second is some pa-rameterized transformation of the trajectory that is global to the entire segment.This transformation adapts the general model to a speci�c segment realization, andmay for example account for di�erent speech styles. We then focused on a par-ticular transformation that applies a random displacement to the mean trajectory.The model was compared to alternative segment models on a triphone recognitiontask. The model improves segment modeling, in the sense that it improves theprediction of previously unseen data. Our triphone recognition experiments showbene�t to the new model for most of the contexts examined, compared to a standardnon-parametric model without global displacement modeling.Several avenues of future research seem appropriate. First, other global trajec-tory transformations need to be examined. One possibility is to consider trans-formations that control the sharpness of peaks and valleys of the mean trajectory.In that case, the model accounts for segment utterances with varying degrees ofsmoothness.Second, we have seen that a global, random displacement transformation alwaysimproves the ability of a non-parametric model to predict previously unseen data.However, the new model was not always superior in the triphone recognition exper-iments. The maximum likelihood criterion cannot be used in order to determine forwhich triphones random displacement modeling should degenerate to a �xed zerodisplacement. Other criteria need to be investigated in order to successfully imple-ment a combined model, for which some of the triphones employ such degeneratedtransformation.
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Appendix 5.AWe derive Eqs. (5.4) and (5.5). Denote by f(x; s; a) the joint density function of thedata x, the states sequence s, and the shift a. Similarly f(x; s) is the joint densityof x and s. We �rst derive the optimal shift, denoted by â, given x and s.f(x; s; a) = 1p2��a exp(� a22�2a) nYt=1 1p2��(st) exp(�(xt � a� �(st))22�2(st) )
@ log f(x; s; a)@a = � a�2a + nXt=1 1�2(st) (xt � a� �(st)) = 0Therefore the maximum likelihood shift, given x and s, is :âs = argmaxa f(x; s; a) = Pnt=1 1�2(st) (xt � �(st))1�2a +Pnt=1 1�2(st)Next, we derive a closed form expression for f(x; s).f(x; s) = Za f(x; s; a)da=  1p2�!(n+1) 1�aQnt=1 �(st) Za exp��12g(x; s; a)� dawhere g(x; s; a) = a2�2a + nXt=1 1�2(st) (xt � a� �(st))2g(x; s; a) can be written as :g(x; s; a) = a2  1�2a + nXt=1 1�2(st)!� 2a nXt=1 1�2(st) (xt � �(st)) +nXt=1 1�2(st)(xt � �(st))2=  1�2a + nXt=1 1�2(st)!0@a� Pnt=1 1�2(st) (xt � �(st))1�2a +Pnt=1 1�2(st) 1A2 +89



nXt=1 1�2(st) (xt � �(st))2 � �Pnt=1 1�2(st) (xt � �(st))�21�2a +Pnt=1 1�2(st)=  1�2a + nXt=1 1�2(st)! (a� âs)2 + g(x; s; âs)where g(x; s; âs) = nXt=1 1�2(st) (xt � �(st))2 � �Pnt=1 1�2(st) (xt � �(st))�21�2a +Pnt=1 1�2(st)Hence, f(x; s) =  1�2a + nXt=1 1�2(st)!� 12 p2�f(x; s; âs)=  1p2�!n 1�aQnt=1 �(st)  1�2a + nXt=1 1�2(st)!� 12 e� 12g(x;s;âs)
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Chapter 6
Synthetic Segmental TriphoneModels
Acoustic models which are context dependent can improve the performance of largevocabulary speech recognition systems. Due to insu�cient examples, however, itis not possible to train a distinct model for each triphone context. In this chapterwe suggest a method of segmental model sharing based on phonetic knowledge ofpossible similar triphones. A synthetic description of the triphone mean trajectoryis constructed from simpler elements that are related to the phones composing thetriphone. Experimental results on phone classi�cation task show that the suggestedsynthetic modeling signi�cantly outperforms context independent models.
6.1 IntroductionSmall vocabulary speech recognition systems are based on modeling of words whichare the basic units of language. Many examples of each word are needed for robustmodeling. This demand is not feasible when the size of the vocabulary is large.91



In this case there is a need to use smaller phonetic units in order to allow datasharing across words. Most attempts of sub-word modeling are based on phones.A phone is the acoustic realization of a phoneme, and each word can be presentedas a concatenated sequence of phonemes. The drawback of phone modeling is thatthe acoustic realization of a word is far from being simply a concatenated sequenceof phones. Speech is a product of the vocal tract which is a continuous physicalsystem. There is no sudden transition of the vocal articulator from one phone tothe next one. Instead, there is a smooth and moderate 
ow between consecutivephones. This e�ect, known by the name co-articulation, implies that phone modelsthat take the context of the phone realization into consideration, are more consistent.The coarticulation e�ect is demonstrated in Figure 6.1. Each curve was produced byaveraging trajectories of the �rst cepstral coe�cient of the phoneme `l' in a particulartriphone context. The averaging was done along with non-linear warping. Thelength of the curve is the average length of the phone `l' in that context. The datawas extracted from the WSJ data-base that was segmented by SRI's DECIPHERsystem into phone boundaries. A detailed description of the procedure that wasemployed to produce the �gure can be found in chapter 5. From Figure 6.1 it can beseen that the phones before and after the current phone have a remarked in
uenceon both the duration and the shape of the trajectory of the current phone. Figure6.1 demonstrates the loss of information occurring when the context is not takeninto consideration.
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Figure 6.1: Mean trajectories of the phone `l' for di�erent triphone contexts.92



The most commonly used context in acoustic modeling is a triphone which is aphone with its left and right phone contexts. Denote the phone b appearing afterthe phone a and before the phone c by a�b�c. Triphones su�er from the samemodeling problem as do words. There are thousands of triphones in English and,therefore, there is a training problem caused by insu�cient data. One solution is toback-o� to biphone or monophone models in a rarely used triphone. However, themost popular way to increase the trainability of a triphone system is to share modelsor part of models between di�erent triphones. Lee [46] proposed a sharing methodbased on merging triphone contexts that show acoustic similarity into a generalizedtriphone. The acoustic models are associated with the these generalized triphones.Hwang and Huang [33] [34] re�ned this method by introducing the term senoneto denote a state in phonetic HMM considered as a basic subphonetic unit. Theysuggested a sharing between triphones in the senonic level. Digalakis et al. [11]suggested a sharing method for mixture of Gaussians HMM. They proposed thattriphone HMM states that show acoustic similarity will share the same codebookof mixture components. In the studies reviewed here, the acoustic data related toeach triphone was used to �nd triphone models (or part of models) which show asimilar acoustic behavior in order to share some of the model parameters across thetriphones. In this approach there is a modeling problem in triphones that appearonly a few times in the training set or do not appear at all. In these cases acousticinformation, if it exists, is misleading. The same problem of sharing triphone modelsexists in segmental models. In this chapter we concentrate on a segment model thatdescribes in a non-parametric manner the triphone mean trajectory along the featurespace. We shall show how phonetic information can be used to build a syntheticdescription of the triphone mean trajectory.
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6.2 Synthetic Modeling of the Mean TrajectoryRelying on phonetic knowledge to determine similarity between triphones is usuallypreferable to acoustic knowledge gained from the training data. For example, thereis no need to refer to the acoustic data to conclude that the last parts of the triphonesa�b�c and d�b�c have the same acoustic structure. The phonetic approach wassuccessfully applied to the triphone sharing problem by Young and Odell [48]. Theyused phonetic decision trees to check possible triphone state tyings. The decisionitself on the preferred clustering was made according to information conveyed inthe acoustic data. A phonetic decision tree for predicting unseen triphones wasimplemented in CMU's SPHINX system [35].Here we take the phonetic approach one step further. Instead of phonetic analysisof the similarity between triphone models, we try to obtain a phonetic synthesis ofa triphone. This is done by using the phonetic elements composing the triphone inorder to build a synthetic triphone model. Goldenthal [25] proposed merging biphonetracks to create a triphone based synthetic model. Our method is motivated by thephysical explanation for the coarticulation e�ect. After the vocal articulators havereached their target position for the current phone, there is a movement towards theposition needed to articulate the next phone. This phenomenon is demonstrated inFigure 6.2. In this �gure we present mean trajectories of the �rst cepstral coe�cientof several triphone contexts of the phone `ao' (the phone appears in `bought'). Thetrajectory of each triphone was computed from averaging triphone realizations takenfrom the WSJ corpus. The length of each curve is the average length of the relatedtriphone. In four of the triphones the next phone is `s' and in the rest of them thenext phone is `r'. It can be clearly seen how the next phone pulls the last part ofthe mean trajectory towards its starting articulation position.We choose a modeling method that can easily incorporate the phonetic synthesis.The model associated with each phone is a non-parametric description of the meantrajectory. Each phone was modeled by a Gaussian HMM with n states. The HMMtopology is a left to right, such that skipping over states is allowed. For simplicity94
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Figure 6.2: Mean trajectories of the phone `ao' in various triphone contexts.it is assumed that the acoustic data are scalars. Denote the Gaussian distributionsassociated with the HMM states byN(�i; �2i ) i = 1; :::; nThe sequence �1; �2::: can be considered as the mean trajectory of the phone alongthe feature space. The curves in Figure 6.2 are examples of modeling the meantrajectory. The model can be trained by using the well known Baum-Welch re-estimation procedure. The model claims to be a description of the mean trajectoryand, therefore, a reasonable decision for the number of states is the average lengthof the phonetic unit. The assumption that the number of the HMM states is in theorder of the number of frames can cause problems in initialization of the trainingalgorithm. An initialization method for a phonetic model that describes the meantrajectory along the feature space is described in chapter 5.Our target is to adapt this general phone model to a speci�c triphone context.In order to quantify the intuition presented above, regarding the in
uence of thecontext, we estimate the feature value at the transition point for each pair of con-secutive phones. Denote the value at the transition point from phone a to phone bby G(a; b). The synthetic triphone model for a�b�c will be composed from G(a; b) ,95



G(b; c) and the mean trajectory model for the phone b denoted by �i(b); i = 1; :::; n.The context independent mean trajectory of the phone is adapted to the context inthe following way :
�i(a�b�c) = 8>>>>>>>><>>>>>>>>:

n�2in G(a; b) + 2in �i(b) i � n22i�nn G(b; c) + 2n�2in �i(b) i > n2The synthetic model, therefore, is based on the monophone model. This modelis linearly warped along the feature axis such that the mean trajectory will begin atthe transition point from the previous phone and end at the transition point to thenext phone. This construction is demonstrated in Figures 6.3 and 6.4. Figure 6.3shows the mean trajectory of the �rst cepstral coe�cient of the triphone s�ao�r.Figure 6.4 shows the mean trajectory of the �rst cepstral coe�cient of the phone`ao' averaged over all contexts. The two short horizontal lines in Figure 6.4 are theaverage values of the �rst cepstrum at the transition from `s' to `ao' and from `so'to `r'. The sloped curve in Figure 6.4 is the synthetic triphone trajectory. It can beseen from Figures 6.3 and 6.4 that the synthetic triphone model better approximatesthe exact triphone model than does the context independent phone model.
6.3 Experimental ResultsWe evaluated our model using the WSJ corpus. Experiments were conducted withDECIPHER system which was used for segmenting the data into phone boundaries(see Appendix A). The recognition task we performed is phone classi�cation. Foreach phone, we have trained a Gaussian HMM with eight states. The training dataincludes 400 examples from each phone. In order to obtain the values of the function96
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Figure 6.3: Mean trajectory of the triphone s�ao�r.
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Figure 6.4: Synthetic construction of the mean trajectory of the triphone s�ao�rfrom simpler elements.G(a; b), we estimated from the segmented data base the values of the features at thetransition point from one phone to the next. The test set included an additional 400examples in various contexts for each phone. Table 6.1 shows phone classi�cationresults of context independent models and synthetic triphone models built accordingto the method presented in the previous section.model recognition ratephone models 56.1synthetic triphone models 66.2Table 6.1: Phone classi�cation results.Another experiment was performed to evaluate the quality of the approximated97



triphone model as opposed to an exact triphone model that was trained from ex-amples of a speci�c triphone. For each phone we have chosen one frequently usedtriphone context. We have trained a triphone model which consists of GaussianHMM with eight states. The training set was composed of 400 examples of thetriphone. The test set included another 400 examples of the triphone. The perfor-mance of the triphone models was compared to the performance of the two modelstrained in the previous experiment. Table 6.2 summarizes the results.model recognition ratephone models 56.8synthetic triphone models 67.3triphone models 92.2Table 6.2: Triphone classi�cation results.
6.4 ConclusionsIn this chapter we have presented a general framework for parameter sharing betweentriphone models. The method is based on constructing synthetic triphone modelsfrom simpler model elements related to the three phones composing the triphone.This method does not rely heavily on the acoustic realization of a given triphone.It can suggest models even for triphones that do not appear at all in the trainingset. This approach can, therefore, be applied in cases of small sized training sets.The results presented in Table 6.1 indicate the potential of the synthetic ap-proach. Table 6.2, however, indicates that there is still a room for improving thesynthesis. Other decomposition of the triphone model into simpler elements can beconsidered. The acoustic behavior of triphones is much more consistent than phones,and, therefore, a triphone model is tighter. The context adaption may also includeadaption of the variance of the Gaussian distributions. We have demonstrated thetriphone synthesis approach using a simple segmental modeling method. There is98



still a need to generalize the synthesis method in a manner that it can be appliedto other models discussed in this thesis.The importance of the method proposed in this chapter lies in the reasoning thata better performing synthesis will apply a better understanding of the mechanismthat governs the acoustic implication of the coarticulation e�ect.
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Chapter 7
Conclusions
This thesis has addressed a number of issues in segmental modeling. In particularit has investigated the question of incorporating into the acoustic model the tem-poral behavior of the speech signal along with e�ects that are global to the entireutterance. In this chapter we summarize the contribution of the thesis and suggestsome directions for future work.
7.1 Thesis ContributionIn this thesis we �rst analyzed the gap existing between the actual behavior of thespeech waveform and the assumptions of the HMM paradigm. The trajectory of thespeech along the feature space is continuous, and there is most of the time smoothand moderate movement from one acoustic-phonetic event to the other. The HMM,however, assumes that there is no progress along time within the state boundaries.Instead, there is a sudden transition at the end of the state into the next one. Itshould be noted that the speech signal can be non-continuous. For example, in therelease of a stop consonant such as `t', the movement of the tongue tip is continuousbut the resulting acoustic pattern is not smooth and arguably not continuous.100



The segmental modeling approach, which has been reviewed in chapter 3, tries to�ll the aforementioned gap. In this study we have concentrated on random segmentalmodels. In this approach the speech variability is due to two e�ects. First, themean trajectory is considered a random process. This enables us to incorporaterandom e�ects, that are common to (at least) all the frames in the segment, into theacoustic model. The second random element models the local 
uctuation from themean trajectory as a white noise. It was reported by Holmes and Russell [30] that aparametric description of the random mean trajectory outperforms the deterministicmodel which, in the case of a static mean trajectory, coincides with the standardGaussian HMM. In chapter 4 we analyzed the problems that exist in the randomsegmental model caused by the fact that di�erent segment realizations of the samephone di�er in length. This implies that the balance between the two randomelements of the model changes as a function of the segment length. In recognitiontasks where the phone boundaries are not known, it is important that the localscore of the segment will be weighted according to segment length in order to avoid atendency toward longer or shorter segments. We have shown the bene�ts of rescalingthe model parameters according to segment length. On the rescaled model thevariance of the random mean trajectory is inversely proportional to segment length.It is shown that, unlike previously suggested models, each frame contributes the sameamount of information during the mean trajectory estimation process. A technicaladvantage of rescaling is the much simpli�ed parameter estimation procedure. Ina rescaled model there is no need to approximate the target function or to use aniterative procedure in order to �nd the ML estimate. Instead, a closed form can beobtained. Phonetic classi�cation results support this approach. It was found thatrescaling the model can improve recognition rate.The parametric representation we have used in this thesis is actually a polyno-mial description of the mean trajectory. We have analyzed in detail the static andthe linear cases. The acoustic trajectory during the articulation of a phonetic unitcannot always be well described by a linear function. The use of static or linear101



functions results in a need for dividing the signal into small segments. This contra-dicts our attempt to �nd an acoustic model which refers to the complete phoneticevent. To solve this problem, we have generalized in chapter 5 the concept of ran-dom segmental modeling to the case of non-deterministic representation of the meantrajectory. In this model there is no apriori assumption about the structure of themean trajectory. Instead, it is represented by a synthetic template that describesthe local dynamic within the segment. The random element associated with themodel enables us to shift the template along the feature axis in order to achieve abetter match with the data. The random non-parametric model can also be con-sidered a random parametric model such that the same random shift is shared by anumber of consecutive segments. We have proposed a heuristic procedure for eval-uating the model parameters. We demonstrated the di�culty that exists with theparameter estimation by giving an exact solution for a very special case. It has beenshown that even in that special case the exact solution for the problem of param-eter estimation is not trivial. This di�culty however is theoretical. The proposediterative procedure is a good solution for practical goals. The presentation of therandom non-parametric approach is concluded with classi�cation experiments thatdemonstrate the importance of modeling the local dynamical behavior.The coarticulation e�ect approves the usage of triphone models. This can beaccomplished by using model sharing across di�erent contexts. Many sharing meth-ods have been suggested for the standard HMM modeling. In order to achieve highrecognition rate when using a segmental model, we must also construct in this case amodel for each triphone context. We have concentrated on a segmental model whichis based on a description of the mean trajectory along the feature space. We havepresented a method for constructing a synthetic mean trajectory for each triphonecontext in order to enable model sharing across triphones. The results presented inTable 6.1 indicate the potential of the synthetic approach. The importance of themethod proposed in this thesis lies in the reasoning that a better performing syn-thesis will apply a better understanding of the mechanism that governs the acoustic102



implication of the coarticulation e�ect.
7.2 Future WorkThe idea behind random segmental modeling is to distinguish between random ef-fects which change every frame and other e�ects that last for a longer period whichis at least the articulation of a basic phonetic unit. There are, however, e�ects suchas speaker identity or recording equipment that are global to the entire sentence. InHMM and even in segmental models there is no mechanism to force joint acousticdecisions among consecutive segments. In order to solve this problem the segmentalapproach should be generalized beyond the segment level. The acoustic model mayinclude a number of levels of random e�ects, such that higher levels will correspondto random e�ects that remain steady for a longer period.We have considered in this thesis the issue of a smooth description of the meantrajectory which is implemented via a non-parametric representation. In the currentmodel there is still a discontinuity at the transition point from one segment to theother. This transition point is arti�cial. In reality there is no distinct boundarybetween phonetic units. Hence, it is desired to extend the concept of a continuousdescription of the mean trajectory beyond the segment boundaries.Many segmental models have been suggested in the past and in this thesis wehave proposed several new ones. There are models that are adequate for vowels,other describe better transitions between phonemes etc. The information obtainedfrom di�erent models can be used to achieve a more accurate classi�cation decision.This can be done either by using a simple linear combination of the contributions ofeach model or by a more complicated expert system that can automatically choose,according to the acoustic situation, a speci�c way for combining the models.Today the HMM is still the most popular technique in speech recognition. Inorder to enable fair competition between HMM and segmental models there is still aneed for further development in the segmental modeling area. For example, in order103



to use triphone models, a segmental approach should include a method for parametersharing across di�erent contexts. Another drawback of segmental modeling is thehigh complexity needed for computing the likelihood score. A major advantage ofHMM is its relative simplicity which has resulted in the development of fast decodingalgorithms. Segment models can be used in real tasks only by rescoring the HMMdecisions. Therefore there is a need for further research in order to �nd e�cientalgorithms to compute a satisfactory approximation of the segmental score.Acoustic speech modeling can be implemented in two di�erent ways. One optionis a modeling approach that attempts to give a realistic description of how the speechwaveform is actually generated. Another approach is to consider the model only as aprobabilistic 
exible mechanism that can adapt itself to di�erent speech conditions.While HMM takes the second approach, segmental models pretend to approximatethe mechanism of creating the acoustic sound. A target for further research is totry to develop models that attempt to describe the acoustic process and still havethe 
exibility of the HMM.
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Appendix A
Corpus and Signal Processing
Our experiments on various types of segment models were conducted using theARPA, large vocabulary, speaker independent, continuous speech, Wall Street Jour-nal (WSJ) corpus [15]. The texts were drawn from articles appearing in the dailyAmerican �nancial newspaper. The database we used includes 18000 sentences fromthe 1994 version.SRI's DECIPHER speech recognition system was used to produce the phonealignment of the speech waveform i.e. to determine the boundaries between thephones. The recognizer was con�gured with a front end that outputs a 39-dimensionalvector. The �rst components of the vector consist of 12 cepstral coe�cients and anenergy term. The other components of the feature vector are the �rst and secondtime derivatives of the �rst 13 components. The cepstral coe�cients were computedfrom an FFT �lterbank. The acoustic modeling of the DECIPHER is based on con-tinuous distribution, consisting of a mixture of Gaussian distributions, which modelsa triphone context. Parameter sharing is performed by using the same code-book(genone) of Gaussian distributions for similar triphones. A detailed description ofthe acoustical modeling component of the DECIPHER system can be found in [14].Table A.1 presents the phone set we have used. The phones are written in105



ARPABET notation.phone example phone example phone exampleaa father em bottom ow boatae bat en button oy boyah but er bird p penao bought ey bait r roseaw about f fun s sunax about g green sh shineaxr butter hh hat t tenay bite ih bit th thickb bet iy beat uh bookbr bridge jh judge uw bootch cheap k cat v veryd dog l list w wetdh that m moon y yeseh bet n nut z zooel bottle ng song zh measureTable A.1: List of phone symbols and examples.
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