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Abstract— In this study we apply a variant of a recently pro-
posed linear subspace method, the Neighbourhood Component
Analysis (NCA), to the task of hyperspectral classification. The
NCA algorithm explicitly utilizes the classification performance
criterion to obtain the optimal linear projection. NCA assumes
nothing about the form of the each class and the shape of the
separating surfaces. Experimental studies were conductedon
the basis of hyperspectral images acquired by two sensors: the
Airborne Visible/Infrared Imaging Spectroradiometer (AV IRIS)
and AISA-EAGLE. Experimental results confirm the significant
superiority of the NCA classifier in the context of hyperspec-
tral data classification over methodologies that were previously
suggested.

Index Terms- Classification, hyperspectral images, remote
sensing, linear projection, NCA.

I. I NTRODUCTION

A remarkable increase in spectral resolution has led to
imaging sensors that can gather data in hundreds of contiguous
narrow spectral bands to generate hyperspectral images. This
ability of imaging sensors to acquire the reflectance spectrum
of a pixel in significant detail, leads to substantial differences
in the reflectance values of the pixels belonging to disparate
materials on the Earth’s surface [7]. The automatic analysis of
hyperspectral data, however, is not a minor task. One of the
major difficulties in hyperspectral classification is the curse of
dimensionality. The enormous number of features in a hyper-
spectral image is often a major drawback for several reasons:
1) When using supervised classification, the number of training
samples required for reasonable classification results depends
on a large number of feature vectors [9] which is not always
available; 2) On increasing the number of features given as
input to the classifier over a given threshold, the classification
accuracy decreases (this behavior is known as the Hughes
phenomenon [15]); 3) A hyperspectral image generally con-
sists of thousands of pixels over hundreds of spectral bands.
Classification of this tremendous amount of data, is time
consuming and utilizes excessive computational effort, which
may not be appropriate for many applications. Therefore, the
traditional but still common approach for classification ofa
hyperspectral image is consists of a feature reduction/selection
procedure and a conventional classifier. There are, however
publications on classification that do not follow this approach,
such as [17], [6].

Reducing the data dimensionality can be done by a selection
of only several suitable bands for classification, with respect

to the specific application, such as presented in [13]. More
complicated tools, such as Principal Component Analysis
(PCA)[8] and the minimum noise fraction transform [12],
[16] have been developed specifically to address the efficient
extraction of spectral features from hyperspectral data sets.

As for an the appropriate classification algorithm many
supervised methods have been developed to tackle the multi-
and hyperspectral data classification problem. Basically,sev-
eral approaches exist for supervised classification algorithms
of hyperspectral data. The Bayes classifier is very common
when classifying a hyperspectral image, but it suffers from
improper modeling versus the real world [10]. Kernel-based
methods are another approach for supervised classificationof
hyperspectral data [5]. Neural networks [4], standard support
vector machines (SVMs) [17], kernel Fisher discriminant
(KFD) analysis [11], and regularized AdaBoost [18] are the
most common kernel-based methods used for hyperspectral
classification today.

In this paper we apply a recently proposed linear subspace
method, the Neighbourhood Component Analysis (NCA) [14]
to the task of hyperspectral classification. The NCA algorithm
explicitly utilizes the classification performance criterion to
obtain the optimal linear projection. The fact that the opti-
mization criterion of previously proposed subspace methods
is not explicitly related to the classification target results in a
need for an additional learning procedure that should find a
suitable distance function in the transformed subspace. Inthe
proposed method the distance measure used in the transformed
subspace is explicitly stated in the optimization cost function.
The optimal transformation is selected such that using the
Euclidean distance in the transformed space yields optimal
classification results.

The experimental studies were carried out on the basis of
hyperspectral images acquired by two sensors: the Airborne
Visible/Infrared Imaging Spectroradiometer (AVIRIS) sensor
[1], and the AISA-EAGLE sensor [2]. Experimental results
confirm the significant superiority of the NCA classifier in
the context of hyperspectral data classification over the con-
ventional classification methodologies, whatever multi-class
strategy is utilized to face the multi-class dilemma.

II. M ETHODS

In this section we review the NCA algorithm [14]. We
begin with a labeled data set consisting ofn real-valued



input vectorsx1, . . . , xn in RD and corresponding class labels
c1, ..., cn. In the case of hyperspectral images, the vectors are
the spectral signatures of the pixels, and the labels are the
land-cover classes. We want to find a low-dimensional linear
transformationA : RD → Rd that maximizes the perfor-
mance of nearest neighbour classification in the reduced space.
Ideally, we would like to optimize performance on future test
data, but as we do not know the true data distribution we
instead attempt to optimize leave-one-out (LOO) performance
on the training data. Given a finite set of linear transformations
to choose from, we can easily select the best one, namely
the one that minimizes the number of classification errors.
The nearest-neighbour classification error, however, is quite a
discontinuous function of the transformationA, given that an
infinitesimal change inA may change the neighbour graph
and thus affect LOO classification performance by a finite
amount. Hence we can not use this optimization criterion in
our case where there is a continuously parameterized family
of linear transformations which must be searched. Instead,
we adopt a more well-behaved measure of nearest-neighbour
performance, by introducing a differentiable cost function
based on stochastic (“soft”) neighbour assignments in the
transformed space. In particular, each pointi selects another
point j as its neighbour with some probabilitypij , and inherits
its class label from the point it selects. We define thepij using
a softmax over Euclidean distances in the transformed space:

pij(A) =
exp(− 1

2
‖Axi − Axj‖

2)
∑

k 6=i exp(− 1

2
‖Axi − Axk‖2)

, pii = 0

(1)
Denote the set of points in the same class asi by Ci = {j|ci =
cj}. Under the stochastic selection rule (1), we can compute
the probabilitypi that a pointi will be correctly classified:

pi =
∑

j∈Ci

pij (2)

The objective function we maximize is the following:

C(A) =
∑

i

log(
∑

j∈Ci

pij) =
∑

i

log(pi) (3)

Maximizing this objective would correspond to maximizing
the probability of obtaining aperfect (error free) classification
of the entire training set. Maximizing the objective function
C(A) is also equivalent to minimizing the Kullback-Leibler
divergence between the true class distribution (having proba-
bility one on the true class) and the stochastic class distribution
induced bypij via A. Note that since‖Axi − Axj‖

2 =

(xi − xj)
⊤

A
⊤

A(xi − xj), the optimization criterion depends
only onA

⊤

A. Hence, every orthogonal matrixRd×d yields a
solution R ·A that is completely equivalent toA. To keep
the representation parsimonious we can use the Choleski
decomposition representation by forcing the entries ofA

below the main diagonal to be zero and the entries on the
diagonal to be non-negative. This makes the representationof
A unique.

DifferentiatingC with respect to the transformation matrix

A yields an expression which can viewed as the difference
between the overall variability and the intra-class variability
defined by the probabilistic model (1) induced fromA [14].
The learning algorithm therefore is: maximize the above
objective (3) using a gradient-based optimizer such as con-
jugate gradients. Of course, as the cost function above is
not convex, some care must be taken to avoid local maxima
during training. We have experimentally observed that the
linear transformation obtained by the RCA method [3] can
serve as a good and easily computed starting point for the
conjugate gradient algorithm.

III. EXPERIMENTAL RESULTS

A. Dataset Description and Experiment Design

The following experimental results are based on two hy-
perspectral datasets. The first hyperspectral dataset usedin
our experiments is a section of a scene taken over northwest
Indianas Indian Pines by the AVIRIS sensor in 1992 [1].
From the 220 spectral channels acquired by the AVIRIS
sensor, 20 channels were discarded as they were affected
by atmospheric problems. From the 16 different land-cover
classes available in the original ground truth, seven were
discarded, since only few training samples were available for
them (this makes the experimental analysis more significant
from the statistical viewpoint). The remaining nine land-cover
classes were used to randomly generate a set of 4757 training
samples (used for learning the classifiers). The remaining 4588
samples were used as test samples (exploited for assessing
their accuracies). This dataset was also used in [17] to examine
the classification of hyperspectral images with support vector
machines. In experiment 1, we use this dataset to compare the
performances of NCA with those of the SVM and four other
nonparametric classifiers. These nonparametric classifiers are
the radial basis function neural network, which is another
kernel-based classification method (like SVMs) that uses a
different classification strategy based on a statistical rather
than a geometrical criterion, the K-nearest neighbors classifier,
which is widely used in pattern recognition as a reference
classification method. We have also compared the NCA with
linear dimensionality reduction methods, the RCA and the
LDA that were mentioned in the previous section. The second
hyperspectral dataset is subset of a scene acquired by the AISA
EAGLE sensor over southern Israel in 2004. This dataset has
spatial dimensions of294×850 pixels, and 59 spectral bands.
To reduce the computational time, only 20 bands were used
in the experiments. The ground truth of this image consists of
8 major land-cover classes. Ten percent of the pixels in this
dataset were used as training samples, while the other pixels in
this set were used as test samples. Experiment 2 is applied over
the second dataset to examine the performances of the NCA
while the number of test samples is relatively large compared
to the number of training samples.

B. Experiment 1: Results of DATASET I

Melgani and Bruzzone ([17] examined the SVM classifier
when applied to hyperspectral data. Their results imply that
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Fig. 1. Classification results of experiment 1. (a) The hyperspectral image
in true color, (b) The ground truth, (c) The NCA classification results.

nonlinear SVM gives the best overall accuracy of the selected
dataset. We decided to repeat the same setup using the NCA as
a classifier, while the results in terms of classification accuracy
and computational time provided by the different classifiers are
summarized in Table I (The results of SVM-Lineae, SVM-
RBF, K-nn classifier and RBF classifier are taken from [17]).
Fig. 1 shows a visual impression of the NCA results on
database I. The data was projected on an 8-dimensional space
as part of the NCA algorithm.It can be seen from Table I
that the NCA exhibited the best Overall Accuracy (OA), i.e.,
the best percentage of correctly classified pixels among all
the test pixels considered. It is worth noting that, the small
number of training samples (4757) is insufficient to properly
fill the emptiness of the hyperdimensional feature space. This
fact leads to a relatively poor classification accuracies of
the K-nn classifier. However, the NCA computes the linear
transformation matrix which brings the data into a lower
feature space, and then also uses the K-nn classifier. Therefore,
it can be seen that the same training points which were not
sufficient for the K-nn in the original feature space, now lead to
the best results in the reduced features space, computed by the
NCA. This fact shows the ability of the NCA transformation
matrix to maximize the results given the training samples set.

C. Experiment 2:Results of DATASET II

The second experiment examined the NCA performance
on large database, with the number of test samples being
relatively large compared to the number of training samples.
Only 10% of the pixels were used as training pixels, while
the remaining 90% of the pixels were used as testing samples.
The data was reduced to dimension of 4 as part of the NCA
algorithm. The results of this experiment show the NCA results
compared to five other classifiers: the linear SVM, non-linear
SVM, Mahalanobis Distance, LDA and the RCA classifiers.
The linear and non-linear SVM parameters were chosen to be
the parameters that led to the best results in [17]. Detailed
description about the Mahalanobis distance classifier can be
found in [19]. The results of this experiments are shown
in Table II, and in Figure 2. We can see from the results
that the NCA overcomes all the other classifiers in term of
overall accuracy. It can be noted that the Mahalanobis distance
classifiers fail to classify classes with high number of training
and test samples. This is attributes for the fact is that classes
with high number of samples vary highly over the feature
space, and the single Gaussian model can not model this
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Fig. 2. Classification results of experiment 2. (a) The hyperspectral image
in true color, (b) The manually obtained, ground truth, (c) The Mahalanobis
Distance classification results, (d) The Linear-SVM results, (e) The SVM-RBF
classification results, and (f) The NCA classification results.

variability.

IV. DISCUSSION AND CONCLUSION

In this paper, we addressed the problem of classifying
hyperspectral remote sensing data using Neighbourhood Com-
ponents Analysis. This method is now in wide use, particularly
in areas of image classification. The NCA exhibited the best
results compared to the state-of-the-art classifiers currently be-
ing used. This paper also contains a modification of the method
that can be used to weight more important and less important
classes during the classification. The modified method is useful
in cases where a high accuracy is required only for some of
the classes in the scene. This work was carried out on images
that were acquired using hyperspectral sensors. The use of
multi-spectral sensor is much more financially attractive and



TABLE I

BEST OVERALL AND CLASS-BY-CLASS ACCURACIES, AND COMPUTATIONAL TIMES ACHIEVED ON THE TEST SET BY THE

DIFFERENT CLASSIFIERS, (DATABASE I)

Method w1 w2 w3 w4 w5 w6 w7 w8 w9 OA TIME (s)
NCA 90.61 94.39 97.89 99.44 99.21 92.31 92.97 92.23 100 94.7 1770
SVM-Linear 89.02 69.13 94.51 98.60 100 75.47 83.48 83.17 99.22 87.10 40342
SVM-RBF 91.47 87.76 94.94 98.88 100 88.57 91.25 95.79 99.38 93.42 2702
K-nn classifier 96.73 61.16 86.59 80.46 99.60 98.88 90.72 65.82 74.42 83.94 2618
RBF classifier 98.44 74.11 88.47 79.83 99.21 98.04 91.98 73.72 80.06 86.99 4743
LDA 71.97 77.81 97.47 98.32 99.21 81.50 80.95 67.96 98.13 84.13 15
RCA 80.06 81.12 98.73 99.16 99.21 81.70 86.51 88.07 99.53 88.82 17

TABLE II

BEST OVERALL AND CLASS-BY-CLASS ACCURACIES, AND COMPUTATIONAL TIMES ACHIEVED ON THE TEST SET BY THE

DIFFERENT CLASSIFIERS, (DATABASE II)

Method w1 w2 w3 w4 w5 w6 w7 w8 OA TIME (s)
NCA 64.06 86.74 91.16 89.73 75.92 93.97 57.00 60.87 89.37 4582
SVM-Linear 43.59 86.16 97.28 85.31 62.96 95.36 45.48 47.82 88.22 1309
SVM-RBF 36.76 86.70 95.00 86.12 63.53 95.29 43.13 44.02 88.17 1293
Mahalanobis Distance 83.37 80.94 99.62 66.64 79.26 89.27 64.80 49.76 83.90 67
LDA 54.88 84.33 92.86 88.64 68.47 93.32 52.24 51.99 87.74 59
RCA 58.73 85.21 99.07 90.22 72.84 93.53 55.07 51.99 88.48 63

much less time consuming than use of hyper-spectral sensors.
The ability of the NCA to obtain high-accuracy classification
in a low-dimension space, can lead to a specially designed
multi-spectral sensor for a specific scene or a mission. This
way, much money and time can be saved if the type of scene
or mission is well specified before acquiring the image. Note
that neither spatial nor morphological information was used
in our experiments. It is obvious, however, that using such
information will improve the results. Therefore, our future
work will focus on improving the results while embedding spa-
tial and morphological information. Another future research
direction is reducing the computational complexity of the NCA
algorithm.
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