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Abstract— In this study we apply a variant of a recently pro- to the specific application, such as presented in [13]. More
posed linear subspace method, the Neighbourhood Componentcomplicated tools, such as Principal Component Analysis
Analysis (NCA), to the task of hyperspectral classification The (PCA)[8] and the minimum noise fraction transform [12],

NCA algorithm explicitly utilizes the classification performance o o
criterion to obtain the optimal linear projection. NCA assumes [16] have been developed specifically to address the efticien

nothing about the form of the each class and the shape of the €xtraction of spectral features from hyperspectral dats se
separating surfaces. Experimental studies were conductedn As for an the appropriate classification algorithm many
the basis of hyperspectral images acquired by two sensorshé  sypervised methods have been developed to tackle the multi-
Airborne Visible/Infrared Imaging Spectroradiometer (AV IRIS) and hyperspectral data classification problem. Basicady;

and AISA-EAGLE. Experimental results confirm the significant | h ist f ised classification d .
superiority of the NCA classifier in the context of hyperspee eral approaches exist for supervised classification dfyos

tral data classification over methodologies that were previusly ~Of hyperspectral data. The Bayes classifier is very common

suggested. when classifying a hyperspectral image, but it suffers from
Index Terms- Classification, hyperspectral images, remotenproper modeling versus the real world [10]. Kernel-based
sensing, linear projection, NCA. methods are another approach for supervised classification

hyperspectral data [5]. Neural networks [4], standard supp
vector machines (SVMs) [17], kernel Fisher discriminant

A remarkable increase in spectral resolution has led (KFD) analysis [11], and regularized AdaBoost [18] are the
imaging sensors that can gather data in hundreds of contigumost common kernel-based methods used for hyperspectral
narrow spectral bands to generate hyperspectral imagés. Tdhassification today.
ability of imaging sensors to acquire the reflectance spactr  In this paper we apply a recently proposed linear subspace
of a pixel in significant detail, leads to substantial difieces method, the Neighbourhood Component Analysis (NCA) [14]
in the reflectance values of the pixels belonging to disparab the task of hyperspectral classification. The NCA aldonit
materials on the Earth’s surface [7]. The automatic anslgsi explicitly utilizes the classification performance critar to
hyperspectral data, however, is not a minor task. One of tbbtain the optimal linear projection. The fact that the opti
major difficulties in hyperspectral classification is thessiof mization criterion of previously proposed subspace method
dimensionality. The enormous number of features in a hypés-not explicitly related to the classification target réstih a
spectral image is often a major drawback for several reasonsed for an additional learning procedure that should find a
1) When using supervised classification, the number ofitrgin suitable distance function in the transformed subspacthdn
samples required for reasonable classification resulterdép proposed method the distance measure used in the transforme
on a large number of feature vectors [9] which is not alwaysibspace is explicitly stated in the optimization cost fiomc
available; 2) On increasing the number of features given @he optimal transformation is selected such that using the
input to the classifier over a given threshold, the classiiopa Euclidean distance in the transformed space yields optimal
accuracy decreases (this behavior is known as the Hughk&sssification results.
phenomenon [15]); 3) A hyperspectral image generally con-The experimental studies were carried out on the basis of
sists of thousands of pixels over hundreds of spectral banHgperspectral images acquired by two sensors: the Airborne
Classification of this tremendous amount of data, is timésible/Infrared Imaging Spectroradiometer (AVIRIS) sen
consuming and utilizes excessive computational efforictvh [1], and the AISA-EAGLE sensor [2]. Experimental results
may not be appropriate for many applications. Therefore, thonfirm the significant superiority of the NCA classifier in
traditional but still common approach for classificationaf the context of hyperspectral data classification over the co
hyperspectral image is consists of a feature reductie@eh ventional classification methodologies, whatever mutiss
procedure and a conventional classifier. There are, howegaategy is utilized to face the multi-class dilemma.
publications on classification that do not follow this apgub,
such as [17]' [6] Il. METHODS

Reducing the data dimensionality can be done by a selectiorin this section we review the NCA algorithm [14]. We
of only several suitable bands for classification, with exdp begin with a labeled data set consisting »f real-valued

I. INTRODUCTION



input vectorsry, . .., z,, in RP and corresponding class labelsA yields an expression which can viewed as the difference
c1,...,cn. In the case of hyperspectral images, the vectors dvetween the overall variability and the intra-class valiigb
the spectral signatures of the pixels, and the labels are thefined by the probabilistic model (1) induced from[14].
land-cover classes. We want to find a low-dimensional line@he learning algorithm therefore is: maximize the above
transformationA : RP? — R? that maximizes the perfor- objective (3) using a gradient-based optimizer such as con-
mance of nearest neighbour classification in the reducezkspgugate gradients. Of course, as the cost function above is
Ideally, we would like to optimize performance on futurettesot convex, some care must be taken to avoid local maxima
data, but as we do not know the true data distribution wiuring training. We have experimentally observed that the
instead attempt to optimize leave-one-out (LOO) perforoeanlinear transformation obtained by the RCA method [3] can
on the training data. Given a finite set of linear transfoior serve as a good and easily computed starting point for the
to choose from, we can easily select the best one, namebnjugate gradient algorithm.
the one that minimizes the number of classification errors.
The nearest-neighbour classification error, however, ite u Ill. EXPERIMENTAL RESULTS
discontinuous function of the transformatidn given that an A. Dataset Description and Experiment Design
infinitesimal change inA may change the neighbour graph The following experimental results are based on two hy-
and thus affect LOO classification performance by a finitgerspectral datasets. The first hyperspectral dataset insed
amount. Hence we can not use this optimization criterion ur experiments is a section of a scene taken over northwest
our case where there is a continuously parameterized famifiianas Indian Pines by the AVIRIS sensor in 1992 [1].
of linear transformations which must be searched. Insteatom the 220 spectral channels acquired by the AVIRIS
we adopt a more well-behaved measure of nearest-neighbegtisor, 20 channels were discarded as they were affected
performance, by introducing a differentiable cost functioby atmospheric problems. From the 16 different land-cover
based on stochastic (“soft”) neighbour assignments in tBfsses available in the original ground truth, seven were
transformed space. In particular, each pairsielects another discarded, since only few training samples were available
pointj as its neighbour with some probability;, and inherits them (this makes the experimental analysis more significant
its class label from the point it selects. We definegtheusing  from the statistical viewpoint). The remaining nine larmlser
a softmax over Euclidean distances in the transformed spagsses were used to randomly generate a set of 4757 training
eXp(_% |Az; — Az;|)?) samples (used for learning the classifiers). Th_e remairtig® 4 _
= 1 5 ) pii =0 samples were used as test samples (exploited for assessing
2 ki XP(— 3| Azs — Azi]|?) 1) their accuracies). This dataset was also used in [17] to Eeam
the classification of hyperspectral images with supportorec
u%achines. In experiment 1, we use this dataset to compare the
performances of NCA with those of the SVM and four other
nonparametric classifiers. These nonparametric classiier
p; = Z Dij (2) the radial basis function neural network, which is another
jec; kernel-based classification method (like SVMs) that uses a
different classification strategy based on a statisticéthera
than a geometrical criterion, the K-nearest neighborsiflag
C(A) = Zlog(z Dij) = Zlog(pi) (3) which is widely used in pattern recognition as a reference
i JEC; i classification method. We have also compared the NCA with
near dimensionality reduction methods, the RCA and the
DA that were mentioned in the previous section. The second

pij(A)

Denote the set of points in the same classlagC; = {j|c; =
¢;}. Under the stochastic selection rule (1), we can comp
the probabilityp; that a point; will be correctly classified:

The obijective function we maximize is the following:

Maximizing this objective would correspond to maximizind'

the probability of obtaining @erfect (error free) classification , !
of the entire training setMaximizing the objective function NYPerspectral dataset is subset of a scene acquired by 87 Al
C(A) is also equivalent to minimizing the Kullback-LeiblerEAGLE sensor over southern Israel in 2004. This dataset has

divergence between the true class distribution (havingygro SPatial dimensions af94 x 850 pixels, and 59 spectral bands.
bility one on the true class) and the stochastic class biigidn 1© réduce the computational time, only 20 bands were used
induced byp;; via A. Note that sincel|Az; — Az,[|2 = M the experiments. The ground truth of this image consibts o
(i — x»)TAsz&(x- — 2,), the optimization c;iterion Jdependss major land-cover classes. Ten percent of the pixels in this
onzly onjATA He;ce 'Zav,ery orthogonal matri, yields a dataset were used as training samples, while the otheisgpixel

. ’ dxd

solution R- A that is completely equivalent ta. To keep this set were used as test samples. Experiment 2 is appléxd ov

. : . the second dataset to examine the performances of the NCA
the representation parsimonious we can use the Choleski

decomposition representation by forcing the entries Aof While the number of_tgst samples is relatively large compare
o . 0 the number of training samples.

below the main diagonal to be zero and the entries on the

diagonal to be non-negative. This makes the representatiorB. Experiment 1: Results of DATASET |

A unique. Melgani and Bruzzone ([17] examined the SVM classifier

Differentiating C' with respect to the transformation matrixwhen applied to hyperspectral data. Their results imply tha



Fig. 1. Classification results of experiment 1. (a) The hgpectral image
in true color, (b) The ground truth, (c) The NCA classificatiesults.

a classifier, while the results in terms of classificatioruaacy
and computational time provided by the different classfame
summarized in Table | (The results of SVM-Lineae, SVM-
RBF, K-nn classifier and RBF classifier are taken from [17]).
Fig. 1 shows a visual impression of the NCA results on
database I. The data was projected on an 8-dimensional spacepsas
as part of the NCA algorithm.It can be seen from Table | "
that the NCA exhibited the best Overall Accuracy (OA), i.e.,
the best percentage of correctly classified pixels among all
the test pixels considered. It is worth noting that, the $mal
number of training samples (4757) is insufficient to properl
fill the emptiness of the hyperdimensional feature spacés Th
fact leads to a relatively poor classification accuracies of
the K-nn classifier. However, the NCA computes the linear
transformation matrix which brings the data into a lower
feature space, and then also uses the K-nn classifier. Dhneref

sufficient for the K-nn in the original feature space, nowdiéa
the best results in the reduced features space, computéae by t
NCA. This fact shows the ability of the NCA transformation
matrix to maximize the results given the training samplds se

C. Experiment 2:Results of DATASET Il d e f

The second experiment examined the NCA performanc@. 2. Classification results of experiment 2. (a) The hgpectral image
on large database, with the number of test samples beingue color, (b) The manually obtained, ground truth, (¢eTMahalanobis
relatively large compared to the number of training sampI_egasstzir;icczggsfgfﬁ:”afj‘zgs’Tflde) Lh&":ﬂzsasri?c\gt\iﬂo:fgafhe SVM-RBF
Only 10% of the pixels were used as training pixels, while
the remaining 90% of the pixels were used as testing samples.
The data was reduced to dimension of 4 as part of the NGAriability.
algorithm. The results of this experiment show the NCA rissul
compared to five other classifiers: the linear SVM, non-linea IV. DISCUSSION AND CONCLUSION
SVM, Mahalanobis Distance, LDA and the RCA classifiers. In this paper, we addressed the problem of classifying
The linear and non-linear SVM parameters were chosen to ngperspectral remote sensing data using Neighbourhood Com
the parameters that led to the best results in [17]. Detailpdnents Analysis. This method is now in wide use, partitylar
description about the Mahalanobis distance classifier @nib areas of image classification. The NCA exhibited the best
found in [19]. The results of this experiments are showresults compared to the state-of-the-art classifiers otlyrbe-
in Table Il, and in Figure 2. We can see from the resuliag used. This paper also contains a modification of the ntetho
that the NCA overcomes all the other classifiers in term dfiat can be used to weight more important and less important
overall accuracy. It can be noted that the Mahalanobismiista classes during the classification. The modified method i&ilise
classifiers fail to classify classes with high number ofrtitag in cases where a high accuracy is required only for some of
and test samples. This is attributes for the fact is thatselas the classes in the scene. This work was carried out on images
with high number of samples vary highly over the featurthat were acquired using hyperspectral sensors. The use of
space, and the single Gaussian model can not model thislti-spectral sensor is much more financially attractine a



TABLE |

BEST OVERALLAND CLASS-BY-CLASS ACCURACIES, AND COMPUTATONAL TIMES ACHIEVED ON THE TEST SET BY THE
DIFFERENT CLASSIFIERS, (DATABASE)

Method w1 Wo w3 Wy ws We wy ws Wy OA TIME (s)
NCA 90.61| 94.39| 97.89| 99.44| 99.21| 92.31| 92.97| 92.23| 100 | 94.7 1770
SVM-Linear 89.02| 69.13| 94.51| 98.60| 100 75.47| 83.48| 83.17| 99.22| 87.10 40342
SVM-RBF 91.47| 87.76| 94.94| 98.88| 100 | 88.57| 91.25| 95.79| 99.38| 93.42 2702
K-nn classifier| 96.73 | 61.16| 86.59 | 80.46| 99.60| 98.88 | 90.72| 65.82 | 74.42| 83.94 2618
RBF classifier| 98.44 | 74.11| 88.47| 79.83| 99.21| 98.04 | 91.98| 73.72| 80.06| 86.99 4743
LDA 71.97| 77.81| 97.47| 98.32| 99.21| 81.50| 80.95| 67.96 | 98.13| 84.13 15
RCA 80.06| 81.12| 98.73| 99.16| 99.21| 81.70| 86.51 | 88.07| 99.53| 88.82 17
TABLE 1l

BEST OVERALLAND CLASS-BY-CLASS ACCURACIES, AND COMPUTATONAL TIMES ACHIEVED ON THE TEST SET BY THE
DIFFERENT CLASSIFIERS, (DATABASEII)

Method w1 Wo w3 Wy ws We wr wg OA TIME (s)
NCA 64.06 | 86.74| 91.16| 89.73| 75.92| 93.97| 57.00| 60.87| 89.37 4582
SVM-Linear 4359 | 86.16| 97.28| 85.31| 62.96| 95.36| 45.48 | 47.82| 88.22 1309
SVM-RBF 36.76| 86.70| 95.00| 86.12| 63.53| 95.29| 43.13 | 44.02| 88.17 1293
Mahalanobis Distance¢ 83.37 | 80.94 | 99.62| 66.64 | 79.26 | 89.27 | 64.80| 49.76| 83.90 67
LDA 54.88| 84.33| 92.86| 88.64 | 68.47| 93.32| 52.24| 51.99| 87.74 59
RCA 58.73| 85.21| 99.07| 90.22| 72.84| 93.53| 55.07 | 51.99| 88.48 63

much less time consuming than use of hyper-spectral sensols
The ability of the NCA to obtain high-accuracy classificatio

in a low-dimension space, can lead to a specially designqgll
multi-spectral sensor for a specific scene or a mission. This
way, much money and time can be saved if the type of sce[lzg]
or mission is well specified before acquiring the image. Note
that neither spatial nor morphological information wasdise
in our experiments. It is obvious, however, that using sudhtl
information will improve the results. Therefore, our fugur
work will focus on improving the results while embedding spd12]
tial and morphological information. Another future resdar
direction is reducing the computational complexity of the AN

; [13]
algorithm.
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