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ABSTRACT

In this paper we introduce a supervised linear dimensionality re-
duction algorithm which is based on finding a projected input space
that maximizes mutual information between input and output val-
ues. The algorithm utilizes the recently introduced MeanNN es-
timator for differential entropy. We show that the estimator is
an appropriate tool for the dimensionality reduction task. Next
we provide a nonlinear regression algorithm based on the pro-
posed dimensionality reduction approach. The regression algo-
rithm achieves comparable to state-of-the-art performance on the
standard datasets being three orders of magnitude faster. In addi-
tion we demonstrate an application of the proposed dimensionality
reduction algorithm to reduced-complexity classification.

1. INTRODUCTION

Many real world regression problems deal with analysis of high-
dimensional data. The goal of supervised dimensionality reduction
is to reduce the dimensionality of the input space while preserv-
ing the information about the output values. A common method
is Canonical Correlation Analysis (CCA) [1] which is a way of
measuring the linear relationship between two multidimensional
variables. It finds two bases, one for each variable, that are op-
timal with respect to correlations and, at the same time, it finds
the corresponding correlations. Partial Least Squares (PLS) was
developed in econometrics in the 1960s by Herman Wold. PLS is
basically the singular-value decomposition of a between-sets co-
variance matrix; for an overview, see e.g. [2]. In the PLS regres-
sion, the principal vectors corresponding to the largest principal
values are used as a new, lower dimensional, basis for the signal.
A regression ofy ontox is then calculated in this new space. See
[3] for a recent study in dimensionality reduction using Reproduc-
ing Hilbert Kernel Spaces. Other relevant studies include [4], [5].

Recently, methods for feature extraction that are based on mu-
tual information maximization have been proposed, see e.g. [6].
These methods, however, perform dimensionality reduction, only
by choosing a subset of given dimensions and apply kNN based
mutual information estimators. Torkkola [7] suggested using mu-
tual information for supervised dimensionality reduction in a clas-
sification setup by learning a Parzen window approximation for
the joint input-target distribution. One of the main difficulties with
this kernel based estimation lies in the need for a correct choice of
kernel width.

Another approach named Maximum Mutual Information Pro-
jection (MMIP) [8] proposed dimensionality reduction based on
histogram estimation of mutual information. A significant draw-
back of the approach is in the treatment of multidimensional re-
sult subspace. The histogram estimation of mutual information is

of exponential complexity with respect to the result subspace di-
mension. Therefore the MMIP finds the subspace in an iterative
manner, performing in each step an optimal one-dimensional pro-
jection. The next iteration then searches for optimal 1D subspace
in the orthogonal complement subspace of previously found 1D
projections. This approach is suboptimal because the mutual infor-
mation is a nonlinear function and the orthogonal projection does
not remove dependence on the previously found 1D subspaces. It
means that resulting output multidimensional subspace does not
necessarily correspond to the maximal information between the
projected inputs and targets. Recently proposed Maximal Mutual
Information Feature Extractor (MMIFE) [9] is based on a nonlin-
ear entropy estimation of 1D random variable. The MMIFE has
a similar drawback as MMIP in the case of multidimensional re-
sulting subspaces since the MMIFE applies the same scheme of
iterative 1D projections and orthogonal complements.

In this paper we present an algorithm for supervised linear di-
mensionality reduction that uses mutual information as a criterion.
The advantage of this method is that it preserves the information
contained in the input space by searching for optimal linear combi-
nations of existing features. This optimization is efficiently accom-
plished by conjugated gradients methods applied to the recently in-
troduced MeanNN estimator [10] for the mutual information, that
benefits from an analytical expression for the gradient. Based on
this estimator we define an efficient nonlinear regression in the ex-
tracted linear subspace. The performance of the proposed regres-
sion is comparable to state-of-the-art methods while being three
orders of magnitude faster at the test stage. The same dimension-
ality reduction concept is then applied to classification tasks.

The rest of the paper is organized as follows. Section 2 reviews
non-parametrickNN and MeanNN estimators for differential en-
tropy. Section 3 introduces the Mutual Information Dimensional-
ity Reduction method. Section 4 presents the non-linear regression
method. Section 5 presents an application to classification prob-
lems. Section 6 reports experiment results on standard datasets.

2. NONPARAMETRIC ESTIMATORS FOR
DIFFERENTIAL ENTROPY

Our dimensionality reduction method is based on a smooth non-
parametric approximation of differential entropy that is reviewed
below. The differential entropy ofX is defined as:

H(X) = −

∫

f(x) log f(x)dx (1)

We describe the derivation of the Shannon differential entropy
estimate of [11], [12]. Our aim is to estimateH(X) from a random
sample (x1, ..., xn) of n random realizations of ad-dimensional



random variableX with an unknown density functionf(x). The
entropy is the average of− log f(x). If there were unbiased es-
timators forlog f(xi), this would yield an unbiased estimator for
the entropy. We estimatelog f(xi) by considering the probability
density functionPik(ǫ) for the distance betweenxi and itsk-th
nearest neighbor (the probability is computed over the positions
of all othern − 1 points, withxi kept fixed). The probability
Pik(ǫ)dǫ is equal to the chance that there is one point within dis-
tancer ∈ [ǫ, ǫ + dǫ] from xi, that there arek−1 other points at
smaller distances, and that the remainingn−k−1 points have larger
distances fromxi. Denote the mass of theǫ-ball centered atxi by
pi(ǫ), i.e. pi(ǫ) =

∫

‖x−xi‖<ǫ
f(x)dx. Applying the trinomial

formula we obtain:

Pik(ǫ) =
(n−1)!

1!(k−1)!(n−k−1)!

dpi(ǫ)

dǫ
pk−1
i (1− pi)

n−k−1 (2)

It is easy to verify that
∫

Pik(ǫ)dǫ=1. Hence, the expected value
of the functionlog pi(ǫ) according to the distributionPik(ǫ) is:

EPik(ǫ)(log pi(ǫ)) =

∫ ∞

0

Pik(ǫ) log pi(ǫ)dǫ = (3)

k

(

n−1

k

)

∫ 1

0

pk−1(1− p)n−k−1 log p dp = ψ(k)− ψ(n)

whereψ(x) is the digamma function (the logarithmic derivative of
the gamma function). To verify the last equality, differentiate the
identity

∫ 1

0
xa−1(1−x)b−1 = Γ(a)Γ(b)/Γ(a + b) with respect to

parametera and recall thatΓ′(x) = ψ(x)Γ(x). The expectation
is taken over the positions of all othern − 1 points, withxi kept
fixed. Assuming thatf(x) is almost constant in the entireǫ-ball
aroundxi, we obtain:

pi(ǫ) ≈ cdǫ
df(xi) (4)

whered is the dimension ofx and cd is the volume of thed-
dimensional unit ball (cd = πd/2/Γ(1 + d/2) for the Euclidean
norm). Substituting Eq. (4) into Eq. (3), we obtain:

− log f(xi) ≈ ψ(n)− ψ(k) + log(cd) + dE(log(ǫ)) (5)

which leads to the unbiasedkNN estimator for the entropy [11]:

Hk(X) = ψ(n)− ψ(k) + log(cd) +
d

n

n
∑

i=1

log ǫi (6)

whereǫi is the distance fromxi to itsk-th nearest neighbor. An al-
ternative proof of the asymptotic unbiasedness and consistency of
thekNN estimator can be found in [13]. This estimation forms a
connection between information theory and nearest-neighbor con-
cepts. Unlike previously suggested approximations, there are no
parameters to be tuned.

Being non-parametric, thekNN estimator (6) relies on the or-
der statistics. This makes the analytical calculation of the gradient
virtually impossible. Also it leads to a certain lack of smoothness
of the estimator value as a function of the sample coordinates. Fi-
nally, finding thek-nearest neighbor is a computationally intensive
problem. It becomes practically obligatory to use involved approx-
imate nearest neighbor techniques for large data sets.

Recently [10] proposed a new smooth estimator for the en-
tropy evaluation as a function of sample coordinates. It is based

on the fact that thekNN estimator (6) is valid for everyk. There-
fore the differential entropy can be also extracted from a mean of
several estimators corresponding to different values ofk. Next we
consider all the possible values of order statisticsk from1 ton−1:

Hmean =
1

n− 1

n−1
∑

k=1

Hk = (7)

= log(cd) + ψ(n) +
1

n− 1

n−1
∑

k=1

(−ψ(k) +
d

n

n
∑

i=1

log ǫi,k)

whereǫi,k is thek-th nearest neighbor ofxi. Consider the double-
summation last term in Eq. (7). Exchanging the order of summa-
tion, the last sum adds for each sample pointxi the sum of the
log of its distances to all its nearest neighbors in the sample. It is
of course equivalent to the sum of the logs of its distances to all
other points in the sample set. Hence the mean estimator (7) for
the differential entropy can be written as:

Hmean =
d

n(n− 1)

∑

i 6=j

log ‖xi − xj‖+ const (8)

Note that, unlike the kNN based estimator, this entropy estimator
is a smooth function of the given data points and is not sensitive to
small perturbations in the values ofx1, ..., xn.

Next assume that additional to input vectorsx1, . . . , xn ∈
RD we have also target valuesy1, ..., yn ∈ R. We can express
the mutual information betweenX andY by means of joint and
marginal entropies. Using the MeanNN entropy estimator we get
a MeanNN estimator for the mutual information:

Imean(X;Y ) = Hmean(X)+Hmean(Y )−Hmean(X,Y ) (9)

3. MI LINEAR DIMENSIONAL REDUCTION

In this study we address the problem of supervised dimension-
ality reduction. Our goal is to utilize the smooth entropy esti-
mator, reviewed in the previous section, to form an information-
theoretic criterion that can be easily optimized. Givenn vec-
tors X = {x1, . . . , xn} in RD and corresponding target val-
uesY = {y1, ..., yn} in R we want to find a linear transfor-
mationA : RD → Rd that maximizes the mutual information
I(AX;Y ). Since we want to predict the target in the projected
space, we search for features that are most correlated with the tar-
get. The mutual information criterion is a way to quantify this
correlation. We search for a matrixA that maximizes the mutual
information between the targets and transformed inputs.

To estimate the mutual information between a one-dimensional
random variable Y and thed-dimensional random vectorAX, with
no prior information about their joint distribution, we apply the
MeanNN estimator of mutual information (see Section 2). We
want to maximize the mutual information as a function of the ma-
trix A. An information theory relation reveals that:I(AX;Y ) =
H(AX) +H(Y )−H(AX, Y ). SinceY does not depend onA,
to maximize the mutual information we need compute:

Imean(AX;Y ) = const+
d

2n(n− 1)

∑

i 6=j

log(‖A(xi − xj)‖
2)

(10)

−
d+ 1

2n(n− 1)

∑

i 6=j

log(‖A(xi − xj)‖
2 + ‖yj − yi‖

2)



To find the best linear dimensionality reduction we have to solve
the optimization problem:

Â = argmax
A

Imean(AX;Y )

Such an optimization can be done using conjugate gradient tech-
niques. The smoothness of the MeanNN entropy estimator enables
its gradient to be analytically computed. DifferentiatingImean(AX;Y )
with respect to the transformation matrixA yields a gradient rule
which we can use for learning:

∂Imean(AX;Y )

∂A
=

d

n(n− 1)

∑

i 6=j

A(xi − xj)(xi − xj)
⊤

‖A(xi − xj)‖2

−
d+ 1

n(n− 1)

∑

i 6=j

A(xi − xj)(xi − xj)
⊤

‖A(xi − xj)‖2 + ‖yj − yi‖2
(11)

The learning algorithm therefore is: maximize the above objec-
tive (10) using a gradient-based optimizer such as delta-bar-delta
or conjugate gradients. Of course, as the cost function above is
not convex, some care must be taken to avoid local maxima during
training. We dub the proposed method Mutual Information Di-
mensionality Reduction (MIDR). It is summarized in Figure 1. A
standard information theory exercise reveals thatI(AX;Y ) is in-
variant to any invertible transformation on eitherAX or Y . Since
‖A(xi − xj)‖

2 = (xi − xj)
⊤A⊤A(xi − xj), our optimization

criterion depends only onA⊤A. Hence, every orthogonal matrix
Rd×d yields a solutionR · A that is completely equivalent toA.
Therefore our cost functionImean(AX;Y ) is rotation invariant.
We note in passing that we can make the MI approximation scale
invariant by applying it toI(AX; ‖A‖Y ) = I(AX;Y ) such that
‖ · ‖ is the Frobenius norm. However, taking this approach the
cost we optimize is no longer rotation invariant since the Frobe-
nius norm is not rotation invariant. We choose to take the ap-
proach described above that yields a rotation invariant score. In our
approach, to control the matrix scale we can penalize large-norm
transformationsA by adding a regularization term−λ‖A‖2 to the
cost function we are maximizing such thatλ is a pre-specified pos-
itive constant that can be set in a cross validation step.

4. AN APPLICATION TO NON-LINEAR REGRESSION

To demonstrate the level of performance of the proposed dimen-
sionality reduction method we next apply it to the problem of non-
linear regression. Consider a fixed sample ofn input pointsX =
{x1, . . . , xn} in RD, along with target valuesY = {y1, . . . , yn}
in R. Our goal is to estimate a functional dependence:y = f(x)
in a way, that allows efficient computation of a predicted output
ytest = f(xtest) for an inputxtest at the testing stage.

We consider here the dimensionality reduction as a way to
cope with challenges of high dimensional inputs space of regres-
sion tasks. The basic idea is to perform the dimensionality re-
duction of the input space as a preprocessing step that preserves
peculiar information about the target function. A proper dimen-
sionality reduction results in a low dimensional space such that
the target function still may be predicted based on the features ly-
ing in that subspace. Such a prediction should then be performed
by a regression technique. This prediction will be computation-
ally efficient because it runs in the low dimensional subspace. Yet
a high accuracy may be achieved with a good combination of a
dimensionality reduction and regression method. For instance, a

linear dimensionality reduction may be performed at a first step to
achieve an informative low dimensional subspace in which a more
involved nonlinear prediction technique will be applied. Such two
steps algorithm constitutes a nonlinear regression method that ben-
efits from fast linear operation in initial input space and a precise
regression in the reduced subspace that still may be performed fast
and accurately.

Here we describe a simple nonlinear regression approach which
shows high accuracy in terms of testing set error while remaining
highly computationally efficient. We achieve this by running the
MIDR to reduce the input dimensionality so as to obtain a smaller
subspace, that still retains maximal information about the target
values.

Afterwards, functiong is approximated by a multinomial func-
tionP of degreel:

g(x) ≈ P (Ax) = P (w)

P (w) =
∑

i1+i2+...+id≤l

ci1i2...idw
i1
1 w

i2
2 . . . w

id
d

The approximation is done by fitting coefficients in theL2 norm:

P̂ = argmin ‖Y − P (w)‖2

This minimization problem is a linear problem as a function of
the polynomial coefficients and therefore it can be easily solved.
Values of the intended intrinsic dimensiond and the multinomial
degreel are determined by the cross-validation.

Of course, the regression in the resulted linear subspace may
be performed by other than polynomial regression approach. More
powerful techniques such as GPR or SVM may be applied. How-
ever usually they are more computationally hard. In this perfor-
mance vs complexity tradeoff we have chosen the polynomial re-
gression because it is a well performing method yet it may be com-
puted in a fast manner. In particular it does not require any subset
from the training set to be stored for the test stage computations.
Below we empirically demonstrate that in the output subspace of
MIDR a simple polynomial regression achieves roughly the same
or better results as an involved GPR technique.

The MIDR in this case may be viewed as a generalization of
Projection Pursuit [14]. In fact, in the projection pursuit regression
(PPR) the residual variance is brought to minimum whereas MIDR
maximizes the mutual information between the predictor function
and target values. Therefore the PPR method best suits for Gaus-
sian variables as opposite to MIDR that has not inherent limitations
for the explored variables distributions. We denote the non-linear
regression algorithm based on the MIDR dimensionality reduction
method followed by a polynomial regression model as ‘Mutual In-
formation Polynomial Regression’ (MIPR) algorithm.

5. AN APPLICATION TO CLASSIFICATION

In this paper we focus on efficient non-linear regression algorithms.
The proposed mutual information based linear dimensionality re-
duction can be also utilized for classification. The problem of
classification differs from regression in terms of the domain of
the target values. Namely, consider for a fixed sample ofn in-
put pointsX = {x1, . . . , xn} in RD: their target values are
C = {c1, . . . , cn} in a discrete setΩ, as opposed to R in the
case of regression. Here also our goal is to estimate a functional
dependence:c = f(x) in a way, that allows for efficient compu-
tation of a predicted outputctest = f(xtest) for an inputxtest at



Input: A set ofn pairs:(xi, yi) ∈ RD ×R, reduced dimensiond.

Output: A linear projectionA of input spaceX ⊂ RD → AX ⊂ Rd that preserves maximal information
about targetY based on the cost functionC(A) = Imean(AX;Y )

Method:

• Set initial value forA.

• Apply a Conjugate-Gradient optimization to find the maximum ofC(A):

C(A) =
d

2n(n− 1)

∑

i 6=j

log(‖A(xi − xj)‖
2)−

d+ 1

2n(n− 1)

∑

i 6=j

log(‖A(xi − xj)‖
2 + ‖yj − yi‖

2)

using an analytical expression for the gradient:

∂C(A)

∂A
=

d

n(n− 1)

∑

i 6=j

A(xi − xj)(xi − xj)
⊤

‖A(xi − xj)‖2
−

d+ 1

n(n− 1)

∑

i 6=j

A(xi − xj)(xi − xj)
⊤

‖A(xi − xj)‖2 + ‖yj − yi‖2

Fig. 1. The Mutual Information Dimensionality Reduction (MIDR) algorithm.

the testing stage. A standard method for classification is the kNN
technique, in which a test inputxtest is classified by finding its
k-th nearest neighbor out of the train inputsx̂train and assigning
ctest = ctrain(x̂train). However, if the inputs belong to high-
dimensional space the nearest neighbor search becomes compu-
tationally prohibitive. A useful technique to overcome the curse
of dimensionality is to perform a dimensionality reduction in the
input subspace prior to the NN classification. In fact, the LDA
technique does exactly the same by projecting the inputs in the
subspace spanned by eigenvectors of a combination of intra-inter
covariance matrices [15]. In order to apply MIDR for the task of
classification we need to estimate the mutual information between
the continuous inputs and discrete target values. Fortunately, this
can be done easily be means of conditional entropies:

I(X;C) = H(X)−H(X|C) = H(X)−
∑

c∈Ω

p(c)H(X|c)

(12)
In the above equationc denotes each possible value of the target
variable,p(c) is the probability for the target variable to have value
c, andH(X|c) is the entropy of the input random vector restricted
to values such that their output equalsc, so-called in-class entropy.
So the MeanNN estimator can be applied to estimate the mutual
information between the continuous and discrete variables. There-
fore optimal linear dimensionality reduction matrixA is found by
maximizing the MeanNN estimate of the mutual information.

argmax
A

(

H(AX)−
∑

c∈Ω

p(c)H(AX|c)

)

≈

argmax
A





1

n(n− 1)

∑

i 6=j

log(‖A(xi − xj)‖
2)

−
∑

c∈Ω

p(c)

nc(nc − 1)

∑

ic 6=jc

log(‖A(xic − xjc)‖
2)





(13)

wherenc is the number of samples having target valuec. Clearly
n =

∑

c∈Ω nc. The gradient of the MeanNN estimator of the

mutual information with respect toA is given by

∂I

∂A
=





2

n(n− 1)

∑

i 6=j

A(xi − xj)(xi − xj)
⊤

‖A(xi − xj)‖2
−

∑

c∈Ω

2p(c)

nc(nc − 1)

∑

ic 6=jc

A(xic − xjc)(xic − xjc)
⊤

‖A(xic − xjc)‖
2





A 1NN classification constitutes the last stage of the classifi-
cation approach, here dubbed ’Mutual Information Classification’
(MIC).
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6. EXPERIMENTAL RESULTS

First, we compared MIPR performance with other possibilities for
the regression in the resulting subspace, such as Gaussian Process
Regression, considered today to be the state-of-the-art in regres-
sion. The GPR technique models the outputs as Gaussian pro-
cesses with a few hyperparameters, see e.g. [16]. We also used
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the GPR on the full input space to evaluate the possible loss of
accuracy due to dimensionality reduction. We applied Canonical
Correlation Analysis as a representative alternative supervised lin-
ear dimensionality reduction method. The CCA method finds an
optimal subspace by maximization of the correlation between the
input and output spaces [1]. In addition we compared the proposed
approach with the PLS regression.

We tested the method on a number of standard datasets from
the Data for Evaluating Learning in Valid Experiments (Delve)
collection 1. We used eight different data sets which belong to
three different dataset families. The first family, calledbank, de-
scribes queues of customers in a series of banks. The other two
familieskin andpumadynwere generated by two synthetic robotic
arms. Each family contains 8-dimensional and 32-dimensional in-
put spaces and the output space is 1-dimensional. In our experi-
ments we used training sets of size 1000. For each run we used
different splits of the data in the training, validating (1000 sam-
ples) and testing (1000 samples) datasets. The results for the test
set appear in Figure 2.

The MIPR algorithm produces comparable results to the GPR
technique using the full input space and in general performs bet-
ter than other methods. In particular, mutual information linear
dimensionality reduction leads to a smaller error than the CCA
method followed by the same polynomial regression (the method
is referenced in the graph as CCA PR). On the other hand, ap-
plication of a more elaborate and computationally intensive GPR
technique after the MIDR stage does not improve the results.

We next present various performance aspects and a parameter
sensitivity analysis of the proposed MIPR algorithm on the ’puma-
8nh’ dataset. The optimal dimensional reduction wasd = 4, see
Figure 3 (top). The optimal multinomial degree was 3 in all runs,
see Figure 3 (bottom). Note that the computational advantage of
the MIPR method is significant. For the size 1000 test set the run-

1http://www.cs.toronto.edu/˜delve

ning time for the proposed scheme was approximately three or-
ders of magnitude faster than the GPR: 0.0021 seconds per run
for the method vs. 1.83 seconds per run for the GPR. It is worth
pointing out that we compared the running times using our mat-
lab non-optimized code vs. the GPR function from the standard
optimized gpml package2. The training time for all the methods
we examined was comparable: the average training time for our
method was 1 min and for GPR it was 6 min. We ran our compar-
ison on a computer with an Intel(R) Xeon(R) 2.67 GHz processor,
3 GB RAM. It is clear that by making a set of routine optimiza-
tions even faster execution times can be achieved in the case of the
MIPR method and its computational advantage over GPR will be
even more significant.

Finally we made numerical experiments in the field of reduced-
complexity classification. We evaluated the performance of the
MIC algorithm on the standard datasets from the UCI repository
[17]. To assess a contribution of the MIDR to the classification ac-
curacy we applied two other mutual information based dimension-
ality reduction techniques MMIP [8] and MMIFE [9] followed by
1NN classification. In addition we applied LDA algorithm. The
dimensionality reduction to two-dimensional subspace was done
(d = 2). Finally we applied 1NN classification in the full input
space to provide a baseline of methods accuracy assessment. To
illustrate the ability of the proposed algorithm to utilize fully the
information contained in the training set we used a relatively small
portion (10%) of data for training and the testing was carried out
on the rest of points. The results appear in Figure 4.

The proposed algorithm MIC outperforms other classification
schemes based on the dimensionality reduction such as LDA, MMIP,
MMIFE for all the datasets. Moreover, for the most of the datasets
MIC performs not worse than 1NN classification that benefits from
the full input space data. All the above emphasizes the fact that the
MeanNN estimator for the entropy (and hence for the mutual infor-

2http://www.gaussianprocess.org/gpml/code/
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mation) produces a qualitative measure of the differential entropy
leading to an optimal linear dimensionality reduction.

7. CONCLUSION

This paper makes several contributions. First, we introduced a su-
pervised linear dimensionality reduction algorithm MIDR based
on maximization of mutual information between the subspace of
inputs and the outputs values that produces optimal multidimen-
sional result subspaces. We demonstrated a simple nonlinear re-
gression algorithm MIPR that is based on MIDR. The regression
method achieves essentially the same performance as the state-of-
the-art regression algorithm GPR and in general performs better
than other methods. The MIPR algorithm has a significant com-
putational advantage in the test stage, being three orders of magni-
tude faster than GPR. The MIPR structure lends itself well to fast
implementation. Finally, we provided an application for reduced-
complexity classification. It leads to superior results compared to
the classically employed methods such as LDA. The classifica-
tion framework emphasizes the advantage MIDR on other mutual
information based dimensionality reduction schemes MMIP and
MMIFE.
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