Multi-Microphone Speech Dereverberation using Eigen-decomposition

Sharon Gannot

School of Electrical Engineering, Bar-Ilan University

The Reverberation Phenomenon

(a) Clean signal

(b) Reverberant signal ($T_{60} = 0.4s$)
The Room impulse Response (RIR)

The talk is based on:

Outline

1. Problem Formulation
Outline

1. Problem Formulation
2. Preliminaries
Outline

1. Problem Formulation
2. Preliminaries
3. RIR Estimation - Algorithm Derivation
Outline

1. Problem Formulation
2. Preliminaries
3. RIR Estimation - Algorithm Derivation
4. Extensions of the Basic Algorithm
Outline

1. Problem Formulation
2. Preliminaries
3. RIR Estimation - Algorithm Derivation
4. Extensions of the Basic Algorithm
5. RIR Estimation in Subbands
6. Signal Reconstruction
7. Experimental Study

Sharon Gannot
Speech Dereverberation using EVD
Outline

1. Problem Formulation
2. Preliminaries
3. RIR Estimation - Algorithm Derivation
4. Extensions of the Basic Algorithm
5. RIR Estimation in Subbands
6. Signal Reconstruction
7. Experimental Study
8. Summary and Conclusions
Problem Formulation

Problem Formulation

\[x_m(n) = y_m(n) + \nu_m(n) = \sum_{k=0}^{n_h} h_m(k)s(n - k) + \nu_m(n) \]

\[H_m(z) = \sum_{k=0}^{n_h} h_m(k)z^{-k}; \quad m = 1, 2, \ldots, M. \]
Goal

Use a Two Stage Approach

Estimation

RIR

$\hat{H}_1(z)$

$\hat{H}_2(z)$

$\hat{H}_M(z)$

$x_1(n)$

$x_2(n)$

$x_M(n)$

Sharon Gannot

Speech Dereverberation using EVD
Goal

Use a Two Stage Approach

- Estimate the Acoustic Transfer Function (ATFs) $H_m(z)$.

\[x_1(n) \quad \rightarrow \quad \hat{H}_1(z) \]
\[x_2(n) \quad \rightarrow \quad \hat{H}_2(z) \]
\[x_M(n) \quad \rightarrow \quad \hat{H}_M(z) \]
Use a Two Stage Approach

- Estimate the Acoustic Transfer Function (ATFs) $H_m(z)$.
- Use $\hat{H}_m(z)$; $m = 1, \ldots, M$ to extract $s(n)$.

Goal

Use a Two Stage Approach

- Estimate the Acoustic Transfer Function (ATFs) $H_m(z)$.
- Use $\hat{H}_m(z)$; $m = 1, \ldots, M$ to extract $s(n)$.

Two Microphone, Noiseless Case

\[y_1(n) = h_1(n) \ast s(n) \]
\[y_2(n) = h_2(n) \ast s(n) \]

ATFs Nullifying filters

\[y_1(n) \]
\[H_1(z) \]
\[s(n) \]

\[y_2(n) \]
\[H_2(z) \]
\[E_\ell(z) \]

\[-H_1(z) \]
\[E_\ell(z) \]

Nullifying Filters

\[[y_2(n) \ast h_1(n) - y_1(n) \ast h_2(n)] \ast e_\ell(n) = 0 \]
\[\tilde{h}_{m,\ell}(n) = h_m(n) \ast e_\ell(n); \ m = 1, 2 \]
Data Matrix

$$Y_m^T = \begin{bmatrix}
y_m(0) & 0 & \cdots & 0 \\
y_m(1) & y_m(0) & & \\
: & & y_m(1) & \ddots & 0 \\
y_m(\hat{n}_h-1) & \vdots & \ddots & y_m(0) \\
y_m(\hat{n}_h) & y_m(\hat{n}_h-1) & y_m(1) \\
: & \vdots & \ddots & \ddots \\
y_m(N) & \vdots & \ddots & y_m(\hat{n}_h-1) \\
0 & y_m(N) & \ddots & y_m(\hat{n}_h) \\
: & \vdots & \ddots & \ddots \\
0 & \cdots & 0 & y_m(N)
\end{bmatrix}$$
Filtered Room Impulse Responses (RIRs)

Define:

\[
\tilde{h}^T_{m,\ell} = [\tilde{h}_{m,\ell}(0) \, \tilde{h}_{m,\ell}(1) \, \ldots \, \tilde{h}_{m,\ell}(\hat{n}_h)] \; ; \; m = 1, 2
\]

Concatenate:

\[
\tilde{h}_\ell = \begin{bmatrix} \tilde{h}_{1,\ell} \\ \tilde{h}_{2,\ell} \end{bmatrix} ; \quad Y = \begin{bmatrix} Y_2 \\ -Y_1 \end{bmatrix}
\]

Nullifying Filters:

\[
Y^T \tilde{h}_\ell = 0 ; \; \forall \ell.
\]

Therefore:

\[
\tilde{h}_\ell Y Y^T \tilde{h}_\ell = 0 \Rightarrow \tilde{h}_\ell \hat{R}_y \tilde{h}_\ell = 0 ; \; \forall \ell
\]
Null Subspace

Eigenvalue (or Singular Value) Decomposition

\[\lambda_\ell = 0 \quad \ell = 0, 1, \ldots, \hat{n}_h - n_h \]
\[\lambda_\ell > 0 \quad \text{otherwise} \]
Null Subspace

Eigenvalue (or Singular Value) Decomposition

\[\lambda_\ell = 0 \quad \ell = 0, 1, \ldots, \hat{n}_h - n_h \]
\[\lambda_\ell > 0 \text{ otherwise} \]

Null Subspace Vectors

\[V = [v_0 \ v_1 \ \cdots \ v_{\hat{n}_h-n_h}] = \begin{bmatrix} \tilde{h}_{1,0} & \tilde{h}_{1,1} & \cdots & \tilde{h}_{1,\hat{n}_h-n_h} \\ \tilde{h}_{2,0} & \tilde{h}_{2,1} & \cdots & \tilde{h}_{2,\hat{n}_h-n_h} \end{bmatrix} \]
Over-Estimated Room Impulse Responses

Acoustical Transfer Functions

For $\ell = 0, 1, \ldots, \hat{n}_h - n_h$, $m = 1, 2$:

\[
\tilde{h}_\ell \iff \tilde{H}_{m,\ell}(z)
\]

\[
\tilde{H}_{m,\ell}(z) = H_m(z)E_\ell(z)
\]
Over-Estimated Room Impulse Responses

Acoustical Transfer Functions
For \(\ell = 0, 1, \ldots, \hat{n}_h - n_h, \ m = 1, 2: \)

\[
\hat{h}_\ell \Leftrightarrow \hat{H}_{m, \ell}(z) \\
\hat{H}_{m, \ell}(z) = H_m(z)E_\ell(z)
\]

Fundamental Lemma
Over-Estimated Room Impulse Responses

Acoustical Transfer Functions

For $\ell = 0, 1, \ldots, \hat{n}_h - n_h$, $m = 1, 2$:

$$\tilde{h}_\ell \Leftrightarrow \tilde{H}_{m,\ell}(z)$$

$$\tilde{H}_{m,\ell}(z) = H_m(z)E_\ell(z)$$

Fundamental Lemma

- For $m = 1, 2, \ldots, M$:

 $\tilde{H}_{m,\ell}(z)$ have $\hat{n}_h - n_h$ common roots $\Rightarrow E_\ell(z)$.

Sharon Gannot Speech Dereverberation using EVD
Over-Estimated Room Impulse Responses

Acoustical Transfer Functions
For $\ell = 0, 1, \ldots, \hat{n}_h - n_h$, $m = 1, 2$:

$$\tilde{h}_\ell \iff \tilde{H}_{m,\ell}(z)$$
$$\tilde{H}_{m,\ell}(z) = H_m(z)E_{\ell}(z)$$

Fundamental Lemma
- For $m = 1, 2, \ldots, M$:
 $\tilde{H}_{m,\ell}(z)$ have $\hat{n}_h - n_h$ common roots $\Rightarrow E_{\ell}(z)$.
- For $\ell = 0, 1, \ldots, \hat{n}_h - n_h$:
 $\tilde{H}_{m,\ell}(z)$ have n_h common roots $\Rightarrow H_m(z)$.
RIR Estimation - Algorithm Derivation

Filtering (Silvester) Matrix:

\[H_m = \begin{bmatrix}
 h_m(0) & 0 & 0 & \ldots & 0 \\
 h_m(1) & h_m(0) & 0 & \ldots & 0 \\
 \vdots & \ddots & \ddots & \ddots & \vdots \\
 h_m(n_h) & \ddots & \ddots & \ddots & 0 \\
 0 & h_m(n_h) & \ddots & h_m(0) & \vdots \\
 \vdots & 0 & h_m(1) & \ddots & \vdots \\
 \vdots & \ddots & \ddots & \ddots & \vdots \\
 0 & 0 & \ldots & 0 & h_m(n_h)
\end{bmatrix}_{\hat{n}_h-n_h+1} \]
Over-Estimated Room Impulse Responses
Matrix Form

Define:
\[e^T_\ell = [e_\ell(0) \; e_\ell(1) \; \ldots \; e_\ell(\hat{n}_h - n_h)] \]

Extraneous Filters:
\[E = [e_0 \; e_1 \; \cdots \; e_{\hat{n}_h - n_h}] . \]

Null Subspace Vectors (Over-estimated RIRs):
\[V = \begin{bmatrix} \tilde{h}_{1,0} & \tilde{h}_{1,1} & \cdots & \tilde{h}_{1,\hat{n}_h - n_h} \\ \tilde{h}_{2,0} & \tilde{h}_{2,1} & \cdots & \tilde{h}_{2,\hat{n}_h - n_h} \end{bmatrix} = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix} E \triangleq HE \]

Define \(E^i \triangleq \text{inv}(E) = [e^i_0 \; e^i_1 \; \cdots \; e^i_{\hat{n}_h - n_h}] \)

Then:
\[H = VE^i \]
RIR Extraction
Exploiting the Silvester Structure

\[
\begin{bmatrix}
V \ O \ & \cdots \ & \cdots \ & \cdots \ & O \\
O \ & \ V \ & O \ & \cdots \ & O \\
\vdots \ & \vdots \ & \vdots \ & \ddots \ & \vdots \\
O \ & \cdots \ & \cdots \ & \cdots \ & \ O \\
O \ & \cdots \ & \cdots \ & \cdots \ & \ O \\
\end{bmatrix}
- S^{(0)}
\]

\[
\begin{bmatrix}
\vdots \\
0 \\
\vdots \\
\vdots \\
\end{bmatrix}
- S^{(1)}
\]

\[
\begin{bmatrix}
e_i^0 \\
\cdots \\
e_i^j \\
\cdots \\
e_i^j_{\tilde{n}_h-n_h} \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 \\
0 \\
\vdots \\
0 \\
0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\theta
\end{bmatrix}
\]

- all-zeros matrix
- \(S^{(\ell)} \) - shift by \(\ell \) matrix (\(\ell = 0, 1, \ldots, \tilde{n}_h - n_h \))
RIR Estimation - Basic Case

\[\tilde{V}_\theta = 0 \]

Find eigenvector of \(\tilde{V} \) corresponding to eigenvalue 0

Extract \(h_1, h_2 \) from the eigenvector
Algorithm Summary

RIR Estimation - Basic Case

\[\tilde{V} \theta = 0 \]
Algorithm Summary

RIR Estimation - Basic Case

\[\tilde{V} \theta = 0 \]

Find eigenvector of \(\tilde{V} \) corresponding to eigenvalue 0
Algorithm Summary

RIR Estimation - Basic Case

- $\tilde{V} \theta = 0$
- Find eigenvector of \tilde{V} corresponding to eigenvalue 0
- Extract h_1, h_2 from the eigenvector
Extensions

- Two Microphone Noisy Case
Extensions

- Two Microphone Noisy Case
 - White Noise Case
Extensions

- Two Microphone Noisy Case
 - White Noise Case
 - Colored Noise Case
Extensions

- Two Microphone Noisy Case
 - White Noise Case
 - Colored Noise Case

- Multi-Microphone Case ($M > 2$)
Extensions

- **Two Microphone Noisy Case**
 - White Noise Case
 - Colored Noise Case

- **Multi-Microphone Case** \((M > 2)\)

- **Partial Knowledge of the Null Subspace**
Two Microphone Noisy Case

\[\mathbf{X} = \mathbf{Y} + \mathbf{\Upsilon}, \]

\(\mathbf{X} \) - noisy signal data matrix
\(\mathbf{\Upsilon} \) - noise-only data matrix

\[\hat{\mathbf{R}}_x \approx \hat{\mathbf{R}}_y + \hat{\mathbf{R}}_\nu \]

\[\hat{\mathbf{R}}_x = \frac{\mathbf{X}\mathbf{X}^T}{N+1} \) - noisy signal correlation matrix
\[\hat{\mathbf{R}}_\nu = \frac{\mathbf{\Upsilon}\mathbf{\Upsilon}^T}{N+1} \) - noise-only signal correlation matrix
White Noise
\(\hat{R}_\nu \approx \sigma_\nu^2 I \)

RIR Estimation - White Noise

1. Find eigenvector of \(\tilde{V} \) corresponding to the smallest eigenvalue
2. Total Least Squares
3. Extract \(h_1, h_2 \) from the eigenvector
White Noise
\(\hat{R}_\nu \approx \sigma^2_\nu I \)

RIR Estimation - White Noise

- \(\mathbf{V} \) - eigenvectors corresponding to eigenvalue \(\sigma^2_\nu \)
 (remains intact)
White Noise
\(\hat{R}_\nu \approx \sigma^2_{\nu} I \)

RIR Estimation - White Noise

- \(\mathbf{V} \) - eigenvectors corresponding to eigenvalue \(\sigma^2_{\nu} \) (remains intact)
- \(\tilde{\mathbf{V}} \theta = \epsilon \)
White Noise
\[\hat{R}_\nu \approx \sigma^2_\nu \mathbf{I} \]

RIR Estimation - White Noise
- \(\mathbf{V} \) - eigenvectors corresponding to eigenvalue \(\sigma^2_\nu \)
 (remains intact)
- \(\tilde{\mathbf{V}} \theta = \epsilon \)
- Find eigenvector of \(\tilde{\mathbf{V}} \) corresponding to the smallest eigenvalue \(\Rightarrow \) Total Least Squares
White Noise
\[\hat{R}_\nu \approx \sigma^2 \nu I \]

RIR Estimation - White Noise
- \(\mathbf{V} \) - eigenvectors corresponding to eigenvalue \(\sigma^2_\nu \)
 (remains intact)
- \(\tilde{\mathbf{V}} \theta = \epsilon \)
- Find eigenvector of \(\tilde{\mathbf{V}} \) corresponding to the smallest
 eigenvalue \(\Rightarrow \text{Total Least Squares} \)
- Extract \(\mathbf{h}_1, \mathbf{h}_2 \) from the eigenvector
Colored Noise

RIR Estimation - Colored Noise

Calculate generalized EVD of \hat{R}_x and \hat{R}_ν (or generalized SVD of X and Υ).

V - generalized eigenvectors corresponding to generalized eigenvalue 1

$\tilde{V}_\theta = \epsilon$

Find eigenvector of \tilde{V} corresponding to the smallest eigenvalue \Rightarrow Total Least Squares

Extract h_1, h_2 from the eigenvector.

Sharon Gannot

Speech Dereverberation using EVD
Colored Noise

RIR Estimation - Colored Noise

- Calculate generalized EVD of \hat{R}_x and \hat{R}_ν
 (or generalized SVD of X and Υ)
Colored Noise

RIR Estimation - Colored Noise

- Calculate generalized EVD of \hat{R}_x and \hat{R}_ν
 (or generalized SVD of X and Υ)
- V - generalized eigenvectors corresponding to generalized eigenvalue 1
Colored Noise

RIR Estimation - Colored Noise

- Calculate generalized EVD of \hat{R}_x and \hat{R}_ν
 (or generalized SVD of X and Υ)
- V - generalized eigenvectors corresponding to generalized eigenvalue 1
- $\tilde{V}\theta = \epsilon$
Colored Noise

RIR Estimation - Colored Noise

- Calculate generalized EVD of \hat{R}_x and \hat{R}_ν
 (or generalized SVD of X and Y)
- V - generalized eigenvectors corresponding to generalized eigenvalue 1
- $\tilde{V}\theta = \epsilon$
- Find eigenvector of \tilde{V} corresponding to the smallest eigenvalue \Rightarrow Total Least Squares
Colored Noise

RIR Estimation - Colored Noise

- Calculate generalized EVD of \hat{R}_x and \hat{R}_ν
 (or generalized SVD of X and Υ

- V - generalized eigenvectors corresponding to generalized eigenvalue 1

- $\tilde{V}\theta = \epsilon$

- Find eigenvector of \tilde{V} corresponding to the smallest eigenvalue \Rightarrow **Total Least Squares**

- Extract h_1, h_2 from the eigenvector
Multi-Microphone Case \((M > 2)\)

Pairing \(\frac{M \times (M-1)}{2}\) channels:

\[
[y_i(n) * h_j(n) - y_j(n) * h_i(n)] * e_l(n) = 0
\]

\(i, j = 1, 2, \ldots, M; \ l = 0, 1, \ldots, \hat{n}_h - n_h\)

Construct an extended data matrix:

\[
X = \begin{bmatrix}
X_2 & X_3 & \cdots & X_M & O & \cdots & O & \cdots & O \\
-X_1 & O & \cdots & X_3 & \cdots & X_M & O \\
O & -X_1 & \cdots & -X_2 & O & \cdots & \vdots \\
\vdots & O & \cdots & \vdots & \vdots & \vdots & O \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots \\
O & O & \cdots & -X_1 & \cdots & -X_2 & \cdots & -X_{M-1}
\end{bmatrix}
\]
Algorithm

RIR Estimation - Multi-Microphone

Calculate generalized EVD of new \hat{R} and \hat{R}_ν (or generalized SVD of new X and Υ)

$V_{\text{new null subspace}}$

$\tilde{V}_\theta = \epsilon_1, \epsilon_2, \ldots, \epsilon_n$

Find eigenvector of \tilde{V} corresponding to the smallest eigenvalue \Rightarrow Total Least Squares

Extract h_1, h_2, \ldots, h_M from the eigenvector

Sharon Gannot

Speech Dereverberation using EVD

Algorithm

\textbf{RIR Estimation - Multi-Microphone}

- Calculate generalized EVD of new \hat{R}_x and \hat{R}_y
 (or generalized SVD of new X and Y)
Algorithm

RIR Estimation - Multi-Microphone

- Calculate generalized EVD of new \hat{R}_x and \hat{R}_ν
 (or generalized SVD of new X and Y)
- \mathbf{V} - new null subspace
Algorithm

RIR Estimation - Multi-Microphone

- Calculate generalized EVD of new \hat{R}_x and \hat{R}_ν
 (or generalized SVD of new X and \mathcal{Y})
- \tilde{V} - new null subspace
- $\tilde{V}\hat{\theta} = \epsilon$, where:
 \[
 \hat{\theta}^T = \begin{bmatrix}
 (e_0^i)^T & (e_1^i)^T & \cdots & (e_{\hat{n}_h-n_h}^i)^T & h_1^T & h_2^T & \cdots & h_M^T
 \end{bmatrix}
 \]
Algorithm

RIR Estimation - Multi-Microphone

- Calculate generalized EVD of new \(\hat{R}_x \) and \(\hat{R}_\nu \)
 (or generalized SVD of new \(X \) and \(\nu \))
- \(\tilde{V} \) - new null subspace
- \(\tilde{V} \theta = \epsilon \), where:
 \[
 \theta^T = \begin{bmatrix}
 (e_0^i)^T & (e_1^i)^T & \cdots & (e_{\hat{n}_h-n_h}^i)^T & h_1^T & h_2^T & \cdots & h_M^T
 \end{bmatrix}
 \]
- Find eigenvector of \(\tilde{V} \) corresponding to the smallest eigenvalue \(\Rightarrow \) Total Least Squares
Algorithm

RIR Estimation - Multi-Microphone

- Calculate generalized EVD of new \hat{R}_x and \hat{R}_v (or generalized SVD of new X and Y)
- V - new null subspace
- $\tilde{V} \theta = \epsilon$, where:

 $\theta^T = \begin{bmatrix} (e_i^0)^T & (e_i^1)^T & \cdots & (e_i^{\hat{n}_h-n_h})^T & h_1^T & h_2^T & \cdots & h_M^T \end{bmatrix}$
- Find eigenvector of \tilde{V} corresponding to the smallest eigenvalue \Rightarrow **Total Least Squares**
- Extract h_1, h_2, \ldots, h_M from the eigenvector
Partial Knowledge of the Null Subspace

Augmented Null Subspace:

\[\bar{V} = \begin{bmatrix} V & 0^T & 0^T & 0^T \\ 0^T & V & 0^T & 0^T \\ \vdots & \vdots & \ddots & \vdots \\ 0^T & 0^T & \cdots & V \end{bmatrix} = \bar{H} \begin{bmatrix} E & 0^T & 0^T & 0^T \\ 0^T & E & 0^T & 0^T \\ \vdots & \vdots & \ddots & \vdots \\ 0^T & 0^T & \cdots & E \end{bmatrix} \]

\[L > \hat{n}_h - n_h + \hat{\ell} \]

\[E^{Pi} = \text{Pinv}\{\bar{E}\} = \bar{E}^T (\bar{E}\bar{E}^T)^{-1} \]

\[\Rightarrow \bar{V}E^{Pi} = \bar{H} \]
Algorithm

RIR Estimation - Multi-Microphone

Calculate \bar{V} - augmented null subspace

$\tilde{\bar{V}}_{\theta} = \epsilon$

Find eigenvector of $\tilde{\bar{V}}$ corresponding to the smallest eigenvalue

\Rightarrow Total Least Squares

Extract h_1, h_2 from the eigenvector

Sharon Gannot

Speech Dereverberation using EVD
Algorithm

RIR Estimation - Multi-Microphone

- Calculate \tilde{V} - augmented null subspace
Algorithm

RIR Estimation - Multi-Microphone

- Calculate \tilde{V} - augmented null subspace
- $\tilde{V} \theta = \epsilon$
Algorithm

RIR Estimation - Multi-Microphone

- Calculate \tilde{V} - augmented null subspace
- $\tilde{V} \theta = \epsilon$
- Find eigenvector of \tilde{V} corresponding to the smallest eigenvalue \Rightarrow Total Least Squares
Algorithm

RIR Estimation - Multi-Microphone

- Calculate $\tilde{\mathbf{V}}$ - augmented null subspace
- $\tilde{\mathbf{V}} \theta = \epsilon$
- Find eigenvector of $\tilde{\mathbf{V}}$ corresponding to the smallest eigenvalue \Rightarrow Total Least Squares
- Extract $\mathbf{h}_1, \mathbf{h}_2$ from the eigenvector
Subband Filters

![Graph showing the amplitude of different subbands across frequency.

Sharon Gannot Speech Dereverberation using EVD
RIR Estimation in Subbands

Sharon Gannot
Speech Dereverberation using EVD
Signal Reconstruction (general)

\[g_m(n); \ m = 1, 2, \ldots, M - \text{set of} \ M \text{ equalizers.} \]

Estimated speech signal:

\[
\hat{s}(n) = \sum_{m=1}^{M} g_m(n) \ast x_m(n) = \\
\sum_{m=1}^{M} g_m(n) \ast h_m(n) \ast s(n) + \sum_{m=1}^{M} g_m(n) \ast \nu_m(n)
\]

Equalization:

\[
\sum_{m=1}^{M} g_m(n) \ast h_m(n) = \delta(n) \iff \sum_{m=1}^{M} G_m(z)H_m(z) = 1
\]

Sharon Gannot
Speech Dereverberation using EVD
Multi-channel Inverse Filter Theorem (MINT)

FIR Equalizers:

\[g_m^T = \begin{bmatrix} g_m(0) & g_m(1) & \cdots & g_m(L_g) \end{bmatrix} \]

Causal equalization:

\[
\begin{bmatrix}
H_1 & H_2 & \cdots & H_M
\end{bmatrix}
\begin{bmatrix}
g_1 \\
g_2 \\
\vdots \\
g_M
\end{bmatrix}
=
\begin{bmatrix}
1 \\
0 \\
0 \\
\vdots \\
0
\end{bmatrix}
\]

\[
\hat{g} = \arg\min_g \| Hg - d \|^2 = \left(H^T H \right)^{-1} H^T d
\]
Non-Causal Equalizers

Matched Beamformer (MBF)

\[
G_m(z) = \frac{H_m^*(1/z^*)}{\sum_{m=1}^{M} H_m(z) H_m^*(1/z^*)} \iff G_m(e^{j\omega}) = \frac{H_m^*(e^{j\omega})}{\sum_{m=1}^{M} |H_m(e^{j\omega})|^2}.
\]
Non-Causal Equalizers

Matched Beamformer (MBF)

\[
G_m(z) = \frac{H_m^*(1/z^*)}{\sum_{m=1}^{M} H_m(z)H_m^*(1/z^*)} \iff G_m(e^{j\omega}) = \frac{H_m^*(e^{j\omega})}{\sum_{m=1}^{M} |H_m(e^{j\omega})|^2}.
\]

Inverse Filter

\[
G_m(z) = \frac{1}{H_m(z)} \iff G_m(e^{j\omega}) = \frac{1}{H_m(e^{j\omega})}.
\]
Experimental Study

Figures of Merit

- Inspection of the estimated RIR and ATF
Experimental Study

Figures of Merit

- Inspection of the estimated RIR and ATF
- Comparison of the input speech signal, the reverberant signal, and the processed signal
Experimental Study
Figures of Merit

- Inspection of the estimated RIR and ATF
- Comparison of the input speech signal, the reverberant signal, and the processed signal
- Normalized Projection Misalignment (NPM)

\[
\text{NPM [dB]} = 20 \log_{10} \left(\frac{1}{\|h\|^2} \left| h - \frac{(h^T \hat{h}) \hat{h}}{\|\hat{h}\|^2} \right|^2 \right) \\
= 20 \log_{10} \left(1 - \left(\frac{h^T \hat{h}}{\|h\| \|\hat{h}\|} \right)^2 \right)
\]
Full-band Version - Results

NPM vs. SNR

Scenario

\[M = 2, \quad n_h = 16, \quad \hat{n}_h = 21, \quad F_s = 8000\text{Hz}, \quad T = 0.5\text{s}, \quad \text{Discrete uniform distributed RIR coefficients, 50 “Monte Carlo” trials.} \]
Full-band Version - Results

NPM vs. SNR

Scenario

\(M = 2, n_h = 16, \hat{n}_h = 21, Fs = 8000Hz, T = 0.5s, \) Discrete uniform distributed RIR coefficients, 50 “Monte Carlo” trials.

White Noise Input

<table>
<thead>
<tr>
<th>SNR</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPM</td>
<td>-3.5</td>
<td>-8.6</td>
<td>-16.5</td>
<td>-28.0</td>
<td>-35.0</td>
<td>-44.0</td>
<td>-53</td>
</tr>
</tbody>
</table>

Speech Input

<table>
<thead>
<tr>
<th>SNR</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPM</td>
<td>0.0</td>
<td>0.0</td>
<td>-2.0</td>
<td>-10.0</td>
<td>-11.0</td>
<td>-24.5</td>
<td>-38.0</td>
</tr>
</tbody>
</table>
Full-band Version - Results

NPM vs. SNR

Scenario

\(M = 2, n_h = 16, \hat{n_h} = 21, Fs = 8000Hz, T = 0.5s, \) Discrete uniform distributed RIR coefficients, 50 “Monte Carlo” trials.

<table>
<thead>
<tr>
<th>White Noise Input</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SNR</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>NPM</td>
<td>-3.5</td>
<td>-8.6</td>
<td>-16.5</td>
<td>-28.0</td>
<td>-35.0</td>
<td>-44.0</td>
<td>-53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speech Input</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SNR</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>NPM</td>
<td>0.0</td>
<td>0.0</td>
<td>-2.0</td>
<td>-10.0</td>
<td>-11.0</td>
<td>-24.5</td>
<td>-38.0</td>
</tr>
</tbody>
</table>
Full-band Version - Results

NPM vs. filter order

Scenario

$M = 2$, SNR=50dB, $\hat{n}_h - n_h = 5$, $Fs = 8000$Hz, $T = 0.5$s, Gaussian distributed with decaying envelope RIR coefficients, 50 “Monte Carlo” trials.
Scenario

$M = 2$, SNR$=50$dB, $\hat{n}_h - n_h = 5$, $Fs = 8000$Hz, $T = 0.5$s, Gaussian distributed with decaying envelope RIR coefficients, 50 “Monte Carlo” trials.

White Noise Input

<table>
<thead>
<tr>
<th>n_h</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPM</td>
<td>-60.0</td>
<td>-49.5</td>
<td>-33.0</td>
<td>-18.0</td>
<td>-0.5</td>
</tr>
</tbody>
</table>
Full-band Version - Results

Truncated Simulated RIR

Scenario

\[M = 2, \text{SNR}=50\text{dB}, \hat{n}_h - n_h = 5, F_s = 8000\text{Hz}, T = 0.5\text{s}, T_{60} = 0.7\text{s}, \text{RIR truncated to } n_h = 600. \text{NPM}=-26\text{dB}. \]
Full-band Version - Results

Sonograms

(a) Clean signal

(b) Reverberant signal (500 taps)

(a) Dereverberated signal (MINT)

(b) Dereverberated signal (MBF)

Sharon Gannot
Speech Dereverberation using EVD
Subband Version - Results

Scenario

$M = 2$, $\text{SNR}=120\text{dB}$, $n_h = 24$, 6 bands, $\hat{n}_h^k - n_h^k = 2$ per-band, $T=4000$, Gaussian distributed with decaying envelope RIR coefficients, white noise input, gain ambiguity compensated.
Limitations of the Proposed Methods

- Noise Robustness
Limitations of the Proposed Methods

- Noise Robustness
- Null Subspace
Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT
Limitations of the Proposed Methods

- Noise Robustness
- Null Subspace
- MINT
- Common Zeros
Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT
- Common Zeros
 - Room Impulse Responses
Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT

- Common Zeros
 - Room Impulse Responses
 - Extraneous zeros resulting in from the overestimation
Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT

- Common Zeros
 - Room Impulse Responses
 - Extraneous zeros resulting in from the overestimation

- The Demand for the Entire RIR Compensation
Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT

- Common Zeros
 - Room Impulse Responses
 - Extraneous zeros resulting in from the overestimation

- The Demand for the Entire RIR Compensation
 - $\hat{n}_h \geq n_h$
Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT
- Common Zeros
 - Room Impulse Responses
 - Extraneous zeros resulting in from the overestimation
- The Demand for the Entire RIR Compensation
 - $\hat{n}_h \geq n_h$
- Filter-bank Design
Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT

- Common Zeros
 - Room Impulse Responses
 - Extraneous zeros resulting in from the overestimation

- The Demand for the Entire RIR Compensation
 - $\hat{n}_h \geq n_h$

- Filter-bank Design
 - Band overlap
Limitations of the Proposed Methods

- **Noise Robustness**
 - Null Subspace
 - MINT

- **Common Zeros**
 - Room Impulse Responses
 - Extraneous zeros resulting in from the overestimation

- **The Demand for the Entire RIR Compensation**
 - \(\hat{n}_h \geq n_h \)

- **Filter-bank Design**
 - Band overlap
 - Band gaps
Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT
- Common Zeros
 - Room Impulse Responses
 - Extraneous zeros resulting in from the overestimation
- The Demand for the Entire RIR Compensation
 - $\hat{n}_h \geq n_h$
- Filter-bank Design
 - Band overlap
 - Band gaps
- Gain Ambiguity
Limitations of the Proposed Methods

- Noise Robustness
 - Null Subspace
 - MINT
- Common Zeros
 - Room Impulse Responses
 - Extraneous zeros resulting in from the overestimation
- The Demand for the Entire RIR Compensation
 - $\hat{n}_h \geq n_h$
- Filter-bank Design
 - Band overlap
 - Band gaps
- Gain Ambiguity
 - Subband method
Summary

- The reverberating filters are embedded in the null subspace of the multi-channel received data
Summary

- The reverberating filters are embedded in the null subspace of the multi-channel received data.
- The null subspace is estimated using either the GSVD of the data matrix or the GEVD of the respective correlation matrix.
Summary

- The reverberating filters are embedded in the null subspace of the multi-channel received data.
- The null subspace is estimated using either the GSVD of the data matrix or the GEVD of the respective correlation matrix.
- The channel order overestimation and the additive colored noise are treated by employing TLS-based procedure.
Summary

- The reverberating filters are embedded in the null subspace of the multi-channel received data.
- The null subspace is estimated using either the GSVD of the data matrix or the GEVD of the respective correlation matrix.
- The channel order overestimation and the additive colored noise are treated by employing TLS-based procedure.
- Both full-band and subband versions.
The reverberating filters are embedded in the null subspace of the multi-channel received data.

The null subspace is estimated using either the GSVD of the data matrix or the GEVD of the respective correlation matrix.

The channel order overestimation and the additive colored noise are treated by employing TLS-based procedure.

Both full-band and subband versions.

Both variants demonstrate high sensitivity to SNR level and the RIR order.
The reverberating filters are embedded in the null subspace of the multi-channel received data.

- The null subspace is estimated using either the GSVD of the data matrix or the GEVD of the respective correlation matrix.
- The channel order overestimation and the additive colored noise are treated by employing TLS-based procedure.
- Both full-band and subband versions.
- Both variants demonstrate high sensitivity to SNR level and the RIR order.

At the current stage, the proposed methods are incapable of solving the dereverberation problem.

Subband structures might be able to bring the prospective solution for the dereverberation problem.
Summary

- The reverberating filters are embedded in the null subspace of the multi-channel received data.
- The null subspace is estimated using either the GSVD of the data matrix or the GEVD of the respective correlation matrix.
- The channel order overestimation and the additive colored noise are treated by employing TLS-based procedure.
- Both full-band and subband versions.
- Both variants demonstrate high sensitivity to SNR level and the RIR order.
- At the current stage, the proposed methods are incapable of solving the dereverberation problem.
- Subband structures might be able to bring the prospective solution for the dereverberation problem.