Digital Integrated Circuits (83-313)

Lecture 3: MOSFET Modeling

29 March 2020

Disclaimer: This course was prepared, in its entirety, by Adam Teman. Many materials were copied from sources freely available on the internet. When possible, these sources have been cited; however, some references may have been cited incorrectly or overlooked. If you feel that a picture, graph, or code example has been copied from you and either needs to be cited or removed, please feel free to email adam.teman@biu.ac.il and I will address this as soon as possible.
MOSFET Current Modeling

- In Digital Electronic Circuits, we used the **Shockley Model** or **Unified Model** for hand-analysis of circuit operation.
- However, there are many models with **varying levels of accuracy** to estimate the I-V curves of a MOSFET.
- In this section, we will overview several models that will come in use throughout this course and your future.
Lecture Content

1. Basic MOS Models
2. Advanced MOS Models
3. Threshold Voltage Revisited
4. Simulating Variation
5. Leakage in NanoScaled Transistors
Basic MOS Models
TCAD vs. Compact Models

- Technology CAD (TCAD) is a simulation environment for accurately simulating device behavior:
 - Provide a process “recipe” and device layout
 - Produce IV or CV curves through device simulator
 - Used to predict device and process physics
 - Takes 1hr-1day per IV curve and 100s MB RAM per transistor

- Compact models (a.k.a. SPICE models or ECAD) are simple models used for circuit simulation
 - Provide a set of equations that SPICE uses to calculate IV or CV curves
 - Should take <100us per IV curve and a few KB per transistor
 - Usually extracted empirically from measurements

TCAD is too slow and memory hungry to be used for circuit simulation!

SPICE uses compact models for calculating device behavior

© Adam Teman, 2020
Switch Model

- The most simple MOSFET model is the **Switch Model**.

\[I_{DS} \begin{cases} \text{constant} & \text{for } V_{GS} > V_T \\ 0 & \text{for } V_{GS} \leq V_T \end{cases} \]

\[V_{DS} = I_{DS} \cdot R_{on} \]

\[I_{DS} = \frac{1}{R_{on}} \]

Diagram:
- Graph showing the relationship between \(V_{GS} \), \(V_{DS} \), and \(I_{DS} \).
- Switch model diagram with \(V_{GS} > V_T \) and \(R_{on} \).
The Piece-Wise Linear Model

• As we know, when the channel pinches off, the current saturates.
• This can be depicted with the simple Piece-Wise Linear Switch Model

![Diagram showing the Piece-Wise Linear Switch Model]

\(I_{DS} \) vs. \(V_{DS} \)

- Linear region
- Saturation region

\(I_{DSAT} \) at \(V_{GT} \)

\(I/R_{on} \)
Adding Channel Length Modulation

- Channel Length Modulation modeled as a finite output resistance, causes a saturation current dependence on V_{DS}.

\[I_{DSAT} = \frac{1}{\lambda} \frac{1}{I_{DSAT}} V_{DS} \]

\[I_{DS} = I_{DSAT} \frac{1}{\lambda} \frac{1}{R_{on}} \]

The Switch Model
The Piece-Wise Linear Model
The Square Law Model
The V-Sat Model
The Unified Model
The VT Model
The α-Power Law
BSIM
Square Law (Shockley) Model

• To get a more accurate model, we already are familiar with the Shockley or Square Law Model.
• Current is just charge times velocity, so at any point, \(x \), along the channel:

\[
I_D(x) = -v(x)Q(x)Wdx
\]

• We found that charge can be approximated as:

\[
Q(x) = -C_{ox}\left[V_{GS} - V_{CS}(x) - V_T\right]
\]

• And the velocity is the mobility times the electrical field:

\[
v(x) = -\mu E(x) = \mu_n \frac{dV}{dx}
\]
Square Law (Shockley) Model

- So we get:

 \[I_D \, dx = \mu_n C_{ox} W (V_{GS} - V - V_T) \, dV \]

- And integrating from source to drain, we get

 \[I_{DS} = \int_0^L I_D \, dx = \int_0^{V_{DS}} \mu_n C_{ox} W (V_{GS} - V - V_T) \, dV = \mu_n C_{ox} \frac{W}{L} V_{DS} \left(V_{GS} - V_T - \frac{1}{2} V_{DS} \right) \]

- At pinch-off \((V_{DS} = V_{GS} - V_T)\), the voltage over the channel is constant, so we get:

 \[I_{DSAT} = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_T)^2 \]

- This is where the "Square-Law" name comes from.
Square Law (Shockley) Model

- Replacing V_{DS} with $V_{DSeff} = \min(V_{GS} - V_T, V_{DS})$ we get:

$$I_{DS} = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_T) V_{DSeff} - \frac{V_{DSeff}^2}{2} \right] \left(1 + \lambda V_{DS} \right)$$
The Velocity Saturation Model

- However, when looking at a short channel device, we see a linear dependence on V_{GS}.
- This can be attributed to Velocity Saturation.

$$\nu_{sat} \approx 10^5 \text{ m/s}$$
The Velocity Saturation Model

• A good approximation of the mobility curve is:

\[v = \begin{cases} \frac{\mu \xi}{1 + \frac{\xi}{\xi_{\text{crit}}}} & \text{if } \xi < \xi_{\text{crit}} \\ \nu_{\text{sat}} & \text{if } \xi > \xi_{\text{crit}} \end{cases} \]

• For continuity:

\[\xi_{\text{crit}} = \frac{2\nu_{\text{sat}}}{\mu} \]

• After integration, we get:

\[I_{DS} = \frac{\mu_n C_{ox}}{1 + \frac{V_{DS}}{\xi_{\text{crit}}} L} \left(\frac{(V_{GS} - V_T) V_{DS}}{2} - \frac{V_{DS}^2}{2} \right) \]
The Velocity Saturation Model

- This is hard to use, but we can reach an important conclusion.
- We found that:

\[I_{DS} = \frac{\mu_n C_{ox}}{1 + \frac{V_{DS}}{\xi_{crit} L}} \frac{W}{L} \left[(V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right] \]

- And we know that for a velocity saturated device:

\[I_{DS} = WC_{ox} (V_{GS} - V_{DSAT} - V_T) v_{sat} \]

- Equating, we get:

\[V_{DSAT} = \frac{(V_{GS} - V_T) \xi_{crit} L}{(V_{GS} - V_T) + \xi_{crit} L} \]

\[V_{DSAT} (\xi_{crit} L >> V_{GT}) = V_{GS} - V_T \Rightarrow \text{pinch off} \]

\[V_{DSAT} (\xi_{crit} L << V_{GT}) = \xi_{crit} L \Rightarrow \text{vel sat} \]
The Unified Model for Hand Analysis

- A few simple estimations will make the V-Sat model more user-friendly:
 - The mobility is piecewise linear, saturating at \(\xi > \xi_{\text{crit}}/2 \)
 - \(V_{\text{DSAT}} \) is piecewise linear, saturating at \(V_{\text{DSAT}} = \xi_{\text{crit}} L/2 \), when \(V_{\text{GT}} > \xi_{\text{crit}} L/2 \)
The Unified Model for Hand Analysis

- This brings us to the Unified Model:

\[I_{DS} = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_T)V_{DSeff} - \frac{V_{DSeff}^2}{2} \right] (1 + \lambda V_{DS}) \]

\[V_{DSeff} = \min \left(V_{GS} - V_T, V_{DS}, V_{DSAT} \right) \]

\[V_{DSAT} = \xi_{crit} \frac{L}{2} \]

\[\xi_{crit} = \frac{2v_{sat}}{\mu} \]
Advanced MOS Models
VT* Model

- Sometimes we want to use a really simple model.
- We can assume that if the transistor is on, it’s velocity saturated.

\[I_{DS} = k_n \left[(V_{GS} - V_T) V_{DSAT} - \frac{V_{DSAT}^2}{2} \right] = k_n \left[V_{GS} - \left(V_T + \frac{V_{DSAT}}{2} \right) V_{DSAT} \right] \]

\[I_{DS} = \begin{cases} 0 & V_{GS} < V_T^* \\ k_n (V_{GS} - V_T^*) V_{DSAT} & V_{GS} > V_T^* \end{cases} \]

\[V_T^* = V_T + \frac{V_{DSAT}}{2} \]
Sakurai found that by changing the exponent of the square law, a better fit can be found with simple calculations.

\[I_{DSAT}(\alpha) = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_T)^\alpha \]
BSIM and Newer Models

- **BSIM** (Berkeley Short-channel IGFET Model) is the primary compact model family used for SPICE simulation for the last three decades.
- These model use hundreds of parameters to achieve a good fit.
- **BSIM4** is the main model for bulk CMOS
 - Takes into account most physical effects as well as many fitting parameters.
- The Compact Model Coalition (CMC) chooses, maintains and promotes new models
 - Additional models include **EKV**, **PSP**, and models for non-MOS devices.

Source: Yen Ki Lin, UC Berkeley
Time to Kahoot!

www.kahoot.com
VLSI Lecture 3a
Threshold Voltage Revisited
Energy Band Diagrams

- To understand the **threshold voltage** and other **secondary effects** of the MOS device, we often use **energy band diagrams**.
- The first approach is looking **in from the gate**:
Energy Band Diagrams

- The second approach is looking from the source to the drain.
Threshold Voltage - Basic Theory

- The basic definition of threshold voltage is the gate voltage (V_G) required to invert the channel.

\[
V_{T0} = \Phi_{MS} - 2\Phi_F - \frac{Q_{OX}}{C_{ox}} - \frac{Q_{dep}}{C_{ox}}
\]

\[
Q_{dep} = \sqrt{2qN_A\varepsilon_{si}} | -2\Phi_F |
\]

\[
\Phi_F = -\phi_T \ln \frac{N_A}{n_i}
\]

\[
\phi_T \equiv \frac{kT}{q}
\]
Body Effect

- The appearance of a voltage difference between the source and body \(V_{SB} \) is known as "The Body Effect"
- This can be modeled by the additional charge that needs to be depleted.

\[
Q_{dep} = \sqrt{2qN_A \varepsilon_{si} \left(|-2\Phi_F + V_{SB}| \right)}
\]

\[
V_T = V_{T0} + \gamma \left(\sqrt{-2\Phi_F + V_{SB}} - \sqrt{-2\Phi_F} \right)
\]

\[
V_{T0} \equiv \Phi_{MS} - 2\Phi_F - \frac{Q_{ox}}{C_{ox}} - \frac{Q_{dep0}}{C_{ox}} \quad \gamma = \frac{\sqrt{2q\varepsilon_{si}N_A}}{C_{ox}}
\]
Modern Body Effect

• A different approach is to look at the capacitive voltage divider between the gate and body (C_{GB})

$$Q_{inv} = -C_{oxe} \left(V_{GS} - V_{CS} - V_{T0} \right) + C_{dep} \left(V_{SB} + V_{CS} \right)$$

$$= -C_{oxe} \left(V_{GS} - nV_{CS} - V_{T0} \right)$$

$$n \triangleq 1 + \frac{C_{dep}}{C_{oxe}} = 1 + \frac{3T_{oxe}}{W_{d\max}}$$

$$C_{dep} = \frac{\varepsilon_s}{W_{d\max}}$$
Modern Body Effect

• This can be shown to redefine V_T as:

$$V_T(V_{SB}) = V_{T0} + \frac{C_{dep}}{C_{oxe}} V_{SB}$$

• In modern technologies, C_{dep}/C_{oxe} is a constant, so V_T is **linearly dependent** on V_{SB}!
Poly Depletion and Channel Depth

The threshold voltage is affected by two additional factors that we have disregarded until now:

- **Polysilicon Depletion**
 - Since polysilicon is, itself, a semiconductor, the depletion layer into the poly effectively increases the oxide thickness.

- **Channel Depth**
 - Since the channel is not a 2-dimensional line along the surface, the oxide thickness is essentially increased.

\[
n \triangleq 1 + \frac{C_{dep}}{C_{oxe}} = 1 + \frac{3T_{oxe}}{W_{d_{max}}}
\]
Hot Carrier Effects

- Electrons can get so fast that they can tunnel into the gate oxide and increase the threshold voltage.

- This is a reliability issue as it happens over time.

\[V_{T0} = \Phi_{MS} - 2\Phi_F - \frac{Q_{OX}}{C_{ox}} - \frac{Q_{dep}}{C_{ox}} \]

- Basic Theory
- Classic Body Effect
- Modern Body Effect
- Hot Carriers
- VT Roll-Off
- DIBL
- RSCE
- Measuring VT
V_T Roll Off (Short Channel Effect)

- As channel length is reduced, effective channel length is reduced by depletion regions.
- A trapezoid is created under the gate, dividing the channel into the region controlled by the gates and by the drain.
- In essence, V_T is reduced.

V_T Roll-Off

![Diagram of V_T roll-off](image)

Source/Channel Barrier

Short Channel

Long Channel

$V_{dd} = 1$V

$t_{ox} = 1.2$nm

$V_{dd} = 1$V

65nm Technology

Basic Theory

Classic Body Effect

Modern Body Effect

Hot Carriers

V_T Roll-Off

DIBL

RSCE

Measuring V_T

K. Goto et al., IEDM 2003
DIBL (Drain Induced Barrier Lowering)

• In short channels, the barrier of the channel is essentially lowered, as the drain causes the energy band to drop closer to the source.
• This is exponentially dependent on V_{DS}.

$$V_T = V_{T,\text{long}} - (V_{DS} + 0.4) \cdot \frac{C_d}{C_{\text{oxide}}}$$
Roll Off / DIBL combined

Source: Chris Kim, U. Minn
Reverse Short Channel Effect (RSCE)

- V_T actually *increases* at channel lengths a bit higher than minimum...
How to Measure VT

- There are various ways to measure V_T.
- One classic way takes a small V_{DS} and sweeps V_{GS}.

$$I_d = k \left[(V_{gs} - V_t)V_{ds} - 0.5V_{ds}^2 \right] \propto V_{gs} - V_t$$

- So we can find the V_{GS} at which the linear part crosses $I_{ds}=0$.

$V_{DS}=50mV$
How to Measure VT

• One of the more common ways is to find the V_{GS} at which $I_{DS} = 100 \text{ nA} \times W/L$.

• For $V_{T,\text{lin}}$, set a low V_{DS} ($V_{DS} = 50 \text{ mV}$)

• For $V_{T,\text{sat}}$, set a high V_{DS} ($V_{DS} = V_{DD}$)
The Computer Hall of Fame

- We generally consider the ENIAC to be the first computer, but the official first fully electronic computer was the **ACE**

 - **Atansoff-Berry Computer**
 - Conceived in 1937, operational in 1942

 - Built at Iowa State University by Prof. John Atansoff and his student Clifford Berry.
 - Not programmable nor Turing-complete, but included binary arithmetic and electronic switching elements.
 - A patent dispute over the first electronic computer was settled in 1973, when the patent of the ENIAC was invalidated.

Source: wikipedia
Reminder: Impact of Process Variations

How do we take this into consideration during simulation?

Source: Rabaey, et. al.
Remove the Rust: Probability Basics

• Properties of Random Variables

 • The probability distribution function (PDF) \(f(x) \) specifies the probability that a value of a continuous random variable \(X \) falls in a particular interval:

\[
P[a < X \leq b] = \int_a^b f(x) \, dx
\]

 • The cumulative distribution function (CDF) \(F(x) \) specifies the probability that \(X \) is less than some value \(x \):

\[
F(x) = P[X < x] = \int_{-\infty}^x f(u) \, du
\]

\[
f(x) = \frac{d}{dx} F(x)
\]

 • The mean \((\mu)\) and variance \((\sigma^2)\) are defined as:

\[
\mu(X) = \bar{X} = E[X] = \int_{-\infty}^{\infty} x \cdot f(x) \, dx
\]

\[
\sigma^2(X) = E[(X - \bar{X})^2] = \int_{-\infty}^{\infty} (x - \bar{X})^2 \cdot f(x) \, dx
\]
Remove the Rust: Probability Basics

• Normal Random Variables
 • A normal (Gaussian) random variable, shifted to have a zero mean ($\mu = 0$) and a normalized standard variation ($\sigma^2 = 1$) has:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

$$F(x) = \frac{1}{2} \left[1 + \text{erf} \left(\frac{x}{\sqrt{2}} \right) \right]$$

3σ = 99.8%

6σ = 1 in a billion
Global Variation Modeling: Process Corners

• **Global Variation assumption:**
 - If a certain process step is *skewed*, the entire chip is affected equivalently.
 - We will define “*corner cases*” of fabrication, i.e., 3σ from the mean.
 - We also assume the *voltage* and *temperature* are globally affected.

• **Devices are modeled for** *fast*, *slow* and *nominal* corners.
 - Changes in V_T, W, L, t_{ox}

• **Devices are tested at various temperatures**
 - Temperature affects *mobility* and V_T.
 - Typically 0°C – 85°C or -40°C – 125°C

• **Devices are tested at various supply voltages**
 - Higher voltages cause increased currents
 - Typically $\pm 10\% V_{DD}$
Process Corners

• What are the PVT (=Process, Voltage, Temperature) settings for each simulation corner?

<table>
<thead>
<tr>
<th>Corner</th>
<th>V_T</th>
<th>L_{eff}</th>
<th>t_{ox}</th>
<th>V_{DD}</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Typical</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Slow</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
</tbody>
</table>
What about Local Variation?

- Often there are too many parameters to think about and setting a specific corner case is insufficient.
- For example: Pelgrom’s Law
 - V_T variance is inversely proportional to transistor area
 $$\sigma(V_T) = \frac{K}{\sqrt{W \cdot L}}$$

How do we deal with this?
Monte Carlo Simulation

- The basic approach is to “roll the dice” for each parameter and run a simulation.
 - These are called **Monte Carlo** Statistical Simulations.
- The result is a distribution plot of design constraints, e.g., delay or noise margin
- Both **Global** and **Local Variations** can be taken into consideration.

Source: Stanford, EE380
Simulation tip: OP and MP in Spectre

• How do you know what the parameters of a device are in a given simulation (in light of bias, corner, random variation)?
• For example, how do I know what the V_T of a transistor is?
 • To find V_{T0}, use the “MP” option.
 • To find $V_{T,\text{lin}}$, $V_{T,\text{sat}}$, $V_{T,\text{gm}}$, use the “OP” option.
• Example – plot V_T Roll Off (SCE)
Time to Kahoot!

www.kahoot.com

VLSI Lecture 3b
Leakage in NanoScaled Transistors
Leakage in Nanoscaled Transistors

- Transistors that are supposed to be off actually leak!
Main Types of Leakage

Polysilicon Gate

Source

Oxide

Drain

P-substrate

Diode

subthreshold

Punchthrough

GIDL

\[I_{sub} \propto e^{V_{GS} - V_{T}} \]

\[DIBL \propto e^{V_{DS}} \]

\[I_{gate} \propto V_{GC} \cdot \frac{1}{t_{ox}} \]

\[I_{GIDL} \propto V_{DG} \]
Subthreshold Leakage

- When $V_{GS} < V_T$, there is still a finite carrier concentration at the surface:

$$n_s \propto e^{\frac{\varphi_s}{\varphi_T}} \Rightarrow I_{sub} \propto e^{\frac{V_{GS} - V_T}{n\varphi_T}}$$

- As we saw with the body effect, due to bulk to channel capacitance, the surface voltage isn’t only controlled by the gate:

$$\frac{d\phi_s}{dV_g} = \frac{C_{oxe}}{C_{oxe} + C_{dep}} = \frac{1}{n}$$
Subthreshold Leakage

- Let’s make things easier:
 - Remember that: \(I_{DS}^{\text{(sub)}} = \text{Const} \frac{W}{L} \cdot e^{\frac{V_{GS} - V_T}{n\phi_T}} \)
 - And we now defined the threshold voltage according to current:
 - So the boundary condition requires:
 - And we can now calculate subthreshold current as:

\[
I_{DS}^{\text{(sub)}} = \text{Const} \frac{W}{L} \cdot e^{\frac{0}{n\phi_T}} = \text{Const} \frac{W}{L} = 100nA \frac{W}{L}
\]

\[
I_{sub}[nA] = 100 \frac{W}{L} e^{\frac{V_{GS} - V_T}{n\phi_T}}
\]
Subthreshold Leakage

- An even easier way is to look at the plot of \(\log(I_{DS}) = f(V_{GS}) \):
 - The slope of this curve is called the “Subthreshold Slope”
 - The inverse of this slope is known as the “Subthreshold Swing” \((S)\):

\[
S \equiv \ln(10) \frac{kT}{q} \left(1 + \frac{C_{\text{dep}}}{C_{\text{ox}}} \right) = 2.3 \cdot n \cdot \phi_T
\]

- And \(I_{\text{off}} \), which is defined as the current when \(V_{GS} = 0 \) is:

\[
I_{\text{off}} [nA] = 100 \frac{W}{L} e^{\frac{V_{GS} - V_T}{n\phi_T}} = 100 \frac{W}{L} 10^{\frac{V_{GS} - V_T}{S}}
\]
Subthreshold Leakage

- So subthreshold leakage is:
 - Exponentially dependent on V_{GS}.
 - Exponentially dependent on V_T.

- S is the subthreshold swing coefficient.
 - Optimally, $S_{opt} = 60$ mV/dec
 - Realistically $S \approx 100$ mV/dec

$$S = n\phi_T \ln 10 \geq 0.06 \quad n \equiv 1 + \frac{C_{dep}}{C_{oxe}}$$
Subthreshold Leakage

Example:

• We want to design a transistor with:

\[\frac{I_{on}}{I_{off}} \geq 10^4 \quad S = 60 \text{ mV/dec} \]

• What is the minimum \(V_T \)?
Impact of DIBL

- DIBL causes an additional **exponential** increase in subthreshold leakage with V_{DS}.

$$I_{\text{sub}} = I_0 e^{\frac{V_{GS}-V_T}{n\phi_T}} \times (1-e^{-\frac{-V_{DS}}{\phi_T}}) \times e^{\frac{\eta V_{DS}}{n\phi_T}}$$

90nm technology. Gate length: 45nm

Credit: Intel, T. Ghani et al., IEDM 2003
Subthreshold Dependence on Temperature

- This is rather complex, as mobility degrades with temperature and other device values (such as flatband voltage) are temperature dependent.
- Altogether, subthreshold leakage rises exponentially with temperature*.

\[I_{\text{sub}} \propto e^{\frac{V_{GS}-V_T}{\eta \phi_T}} \]

\[\phi_T = \frac{kT}{q} \]

* Without considering temperature inversion
Temperature Inversion

• Classic approach to temperature effect on delay:

\[
I \propto \mu \\
\frac{1}{\mu} \propto T
\]

\[\rightarrow t_{pd} \propto T \]

So speed decreases with temperature

• BUT!

• \(V_T \) decreases by as much as \(-3\text{mV/°C}\)

• The point of \textit{temperature inversion} is the \textit{voltage} at which speed increases with temperature (~\(V_{DD}=1\text{V} \)!)
Gate Leakage

- Two mechanisms:
 - Direct tunneling (dominant)
 - Fowler Nordheim tunneling

- **Exponentially** Dependent on:
 - Gate Voltage (V_G)
 - Oxide Thickness (t_{ox}).

- Non-dependent on temperature.
- Much stronger in nMOS than pMOS (higher barrier for holes)

- Minimum $t_{ox}=1.2\text{nm}!!!$
Gate Induced Drain Leakage

- **GIDL** current flows from the drain to the substrate.
- Caused by high electric field under the gate/drain overlap, causing e-h pair creation.
- Main phenomena is **Band-to-Band Tunneling**
Diode Leakage

- $J_S = 10 - 100 \text{pA/\mu m}^2 @ 25^\circ\text{C}$ for 0.25\text{\mu m CMOS}.
- J_S doubles for every 9\text{\degree C}
- Much smaller than other leakages in deep sub-micron.
 - But a bigger factor in low subthreshold leakage processes, like FinFET.

\[I_{DL} = J_S \times A \]
Punchthrough

- As V_{DS} grows, so does the drain depletion region, and the channel length decreases.
- In severe cases, the source and drain are connected causing non-controllable leakage current.
Leakage Summary

- **Subthreshold Leakage:**
 - $I_{DS}>0$ when $V_{GS}<V_T$ due to weak inversion.
 - Grows with V_{GS}, V_{DS}, lower V_T

- **Gate Leakage:**
 - $I_G>0$ due to direct tunneling through the oxide.
 - Grows with V_{GB}, t_{ox}

- **Gate Induced Drain Leakage (GIDL):**
 - $I_{DB}>0$ due to high electric field in the GD overlap region (V_{GD}).

- **Reverse Biased Diode Leakage**
 - I_{SB}, I_{DB} Due to diffusion and thermal generation.

- **Punchthrough:**
 - I_{DS} due to drain and source depletion layers touching.
Process Corners - Revisited

• Should we now redefine the **PVT** settings?

<table>
<thead>
<tr>
<th>Corner</th>
<th>V_T</th>
<th>L_{eff}</th>
<th>t_{ox}</th>
<th>V_{DD}</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Typical</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Slow</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>Max Leakage</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

But what about **Temperature Inversion**?
Time to Kahoot!

www.kahoot.com

VLSI Lecture 3c
Further Reading

- J. Rabaey, “Digital Integrated Circuits” 2003, Chapters 2.5, 3.3-3.5
- Weste, Harris “CMOS VLSI Design”, Chapter 7
- C. Hu, “Modern Semiconductor Devices for Integrated Circuits”, 2010, Chapters 4-7
- E. Alon, Berkeley EE-141, Lecture 9 (Fall 2009)
- A. B. Bhattacharyya “Compact MOSFET models for VLSI design”, 2009,
- Berkeley “BSIM 4.6.4 User’s Manual”
