
Solid State Communications 149 (2009) 177–180
Contents lists available at ScienceDirect

Solid State Communications

journal homepage: www.elsevier.com/locate/ssc

Real-space pseudopotential method for noncollinear magnetism within density
functional theory
Doron Naveh, Leeor Kronik ∗
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel

a r t i c l e i n f o

Article history:
Received 26 August 2008
Accepted 12 September 2008
by J.R. Chelikowsky
Available online 5 November 2008

PACS:
71.15.-m
75.70.Ak
75.75.+a

Keywords:
D. Noncollinear magnetism
E. Real space methods
E. Pseudopotentials

a b s t r a c t

Wepresent a real-space pseudopotentialmethod for first principles calculations of noncollinearmagnetic
phenomena within density functional theory. We demonstrate the validity of the method using the test
cases of the Cr3 cluster and the Cr(

√
3×
√
3)R30◦monolayer. The approach retains all the typical benefits

of the real-space approach, notably massive parallelization. It can be employed with arbitrary boundary
conditions and can be combined with the computation of pseudopotential-based spin-orbit coupling
effects.

© 2008 Elsevier Ltd. All rights reserved.
Noncollinearmagnetism, i.e., the absence of a spin quantization
axis common to the whole system, is manifested in a wide variety
of substances. Often, they arise as consequence of competing
magnetic interactions in the same system (see, e.g., Refs. [1,
2] for an overview). One simple yet notable example is that
of noncollinear magnetism arising from geometrically frustrated
antiferromagnetic interaction. Such frustration is perhaps most
easily visualized on two-dimensional triangular lattices (see,
e.g., Refs. [3,4]), but can also be found in bulk structures [1,2]
and has recently received much attention in the context of small
transition metal clusters (e.g., refs. [5–16]).
There is obvious merit in describing noncollinear magnetic

phenomena from first principles [2,17,18]. Specifically, it is
interesting to employ density functional theory (DFT) [19], which
has become the ‘‘work horse’’ of first principles calculations,
towards studies of noncollinearmagnetic phenomena. In principle,
the generalization of the Hohenberg-Kohn theorem and the
Kohn–Sham equation to spin-polarized systems, given by von
Barth and Hedin [20], is not restricted to collinear magnetism.
However, this aspect was not explored in practice until the work
of Kübler et al. [21]. Early applications of this formalism all
relied on the ‘‘atomic sphere approximation’’, where the spin-
quantization axis at each point within a sphere around each atom
was forced to be the same, but different spheres were allowed to
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possess different axes [17,21]. Nordström and Singh have shown
that this additional approximation is not necessary and have
performed calculations where the magnetization density was a
vector quantity that could vary continuously in direction as well
as magnitude over all space [22].
The above ideas have been incorporated in different approaches

to solving the Kohn–Sham equation. These include planewave-
relatedmethods, e.g., the linearized augmentedplanewave (LAPW)
approach [22–24], the pseudopotential-planewaves approach [5,
25], and the projector augmented wave method, [6,26] as well as
methods including both numerical [9,27] and gaussian [15] atomic
basis sets.
A different effective method for solving the Kohn–Sham

equation is to sample both wave functions and potentials on a
real-space grid. In particular, the finite difference approach, where
the kinetic energy is expressed as a high-order finite difference
expansion [28], is a simple and powerful tool when used in
conjunction with pseudopotentials. Among other advantages, it
can be applied to non-periodic, partially periodic (e.g., surfaces),
and fully periodic structures on equal footing, as it does not depend
on a particular boundary condition [31]. In addition, it is readily
amenable to massive parallelization, making it an attractive tool
for studies of systems with a large number of atoms [30,32]. It is
therefore desirable to account for noncollinear magnetism in real-
space calculations, a task which we undertake here.
Insertion of the noncollinear spin density in the Kohn–Sham

equations is made possible by a two-component spinor represen-
tation of the Kohn–Sham orbitals, φi(Er). The Kohn–Sham equation
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in terms of two components is [17]({
−
1
2
∇
2
+ Vion(Er)+ VH(Er)+ Vxc[n, Em](Er)

}
σ0

+ Ebxc[n, Em](Er) · Eσ
)
φi(Er) = εiφi(Er). (1)

Here, VH(Er) is the Hartree potential, Eσ is a vector of Pauli matrices,
σ0 is the 2× 2 unit matrix, the charge and spin densities are given
by

Em(Er) =
occ∑
i=1

φ
Ď
i (Er)Eσφi(Er) (2)

n(Er) =
occ∑
i=1

φ
Ď
i (Er)φi(Er), (3)

and the exchange correlation potential and magnetic exchange-
correlation vector field are defined as

Vxc[n, Em](Er) =
δExc[n, Em]

δn
, (4)

and

Ebxc[n, Em](Er) =
δExc[n, Em]
δ Em

, (5)

respectively. The general density in a noncollinear system has the
form [7]

ñ =
1
2
(nσ0 + Em · Eσ) =

1
2

(
n+mz mx − imy
mx + imy n−mz

)
, (6)

where the explicit Er-dependence has been omitted for clarity. By
diagonalizing this density at each point in space we obtain a local
analogue of a collinear density

n± =
1
2
(n± ‖Em‖). (7)

In the local spin density approximation (LSDA) [20], the spin
density is parallel with the exchange-correlation magnetic vector
field ( Em ‖ Ebxc) [21]. The spin-dependent exchange-correlation
potential and magnetic vector field can then be easily found from
the functional derivatives in the locally collinear system:

Ebxc =
1
2
(Vxc+ − Vxc−)m̂

Vxc =
1
2
(Vxc+ + Vxc−).

(8)

This procedure is strictly valid only within the LSDA. It can
also be employed with generalized gradient approximation (GGA)
functionals that depend explicitly only on n± and ∇n± [15],
although it may be invalid for more general GGAs [29] and is not
generally valid for an arbitrary functional form [24].
In the real-space approach to DFT, the wave-functions and

potentials are sampled on a grid. The Hamiltonianmatrix is neither
calculated nor stored, but only operates on the trial wave-function
in the process of diagonalization [30]. For evaluating the kinetic
energy term, the Laplacian is expanded by finite differences. For
an orthogonal grid, it is [28]

∇
2ψn =

N∑
m=−N

cm
h2
[ψn(xi +mh, yj, zk)

+ψn(xi, yj +mh, zk)+ ψn(xi, yj, zk +mh)], (9)

where h is the grid spacing and cn are theNth order finite difference
coefficients for the second derivative expansion.
In the pseudopotential approximation, core electrons are sup-
pressed by replacing the true ionic potential with a pseudopo-
tential that accounts for their effect. This facilitates grid-based
calculations as it results in slowly varying potentials and wave
functions. We employ nonlocal norm conserving pseudopotentials
cast in the separable Kleinman–Bylander form [28,33]. In this form,
the pseudopotential due to a single atom, V̂ aion, is expressed as the
sum of a local term and a nonlocal term, such that

V̂ aionψn(Er) = Vloc(|Era|)ψn(Er)+
∑
l,m

Gan,l,mul,m(Era)∆Vl(|Era|), (10)

where Era = Er − ERa, Vloc(|Era|) is the local component of
the pseudopotential, ∆Vl(|Era|) = Vl(|Era|) − Vloc(|Era|), where
Vl(|Era|) is the pseudopotential corresponding to angular mo-
mentum l, ul,m(Era) is the pseudo-wave-function corresponding
to angular momentum lm, and the projection coefficients are
Gan,l,m =

1
〈∆V alm〉

∫
ulm(Era)∆Vl(|Era|)ψn(Er)d3r , where

〈
∆V al,m

〉
=∫

ulm(Era)∆Vl(|Era|)ulm(Era)d3r . The Kleinman–Bylander form is ad-
vantageous in real space because outside the pseudopotential core
cutoff radius, rc , V aloc(Era) = −Zps/|Era|, where Zps is the atomic num-
ber of the pseudoion, and ∆Vl(Era) = 0. This limited nonlocality
means that the real-space matrix is sparse.
Because of the exchange-correlation magnetic vector field, the

dimensions of the Hamiltonian matrix must be doubled with
respect to those used in a collinear spin calculation. Fortunately,
the doubledHamiltonian remains highly sparse because additional
off-diagonal elements are introduced only on the diagonals of the
off-diagonal blocks, namely:

Ĥ =

−12∇2 + V̂eff + bxcz bxcx − ibxcy

bxcx + ibxcy −
1
2
∇
2
+ V̂eff − bxcz

 , (11)

where V̂eff = V̂ion + VH + Vxc . Note that for the collinear
magnetic case bxcx = bxcy = 0, the elements on the off-
diagonal blocks vanish, and one can diagonalize each diagonal
block independently, as customary.
Importantly, the above Hamiltonian can be used with any

type of boundary condition, be it non-periodic, fully periodic, or
partially periodic [31]. Even if the lattice periodicity requires a non-
Cartesian grid, the same formalism can be used with a generalized
high-order finite-difference expression that avoids the numerical
evaluation of mixed derivative terms [31].
The above concepts were implemented in the PARSEC software

suite [30]. To test our approach, we chose to apply it to a Cr3
cluster and to a free standing monolayer of chromium in a
triangular lattice, both of which are known cases of noncollinear
frustrated antiferromagnets [1–3,6,7,15,23,24,26]. We further
chose to compare our results with those previously obtained with
the Vienna ab initio software package (VASP) by Hobbs et al. [6,
26]. This is a stringent comparison because the description of
non-collinear magnetism in VASP is different than in the present
work. It is plane-wave-based and uses projector-augmentedwaves
rather than pseudopotentials to describe the core electrons.
Our real-space pseudopotential calculations presented below

were performed using the local spin density approximation (LSDA)
for the exchange correlation functional [20]. Because chromium
core states are not strongly bound, a multi-reference norm-
conserving pseudopotential [34], as implemented in the atomic
pseudopotentials engine (APE) software suite [35], was used. A
reference configuration of 3s23p63d54s14p0 and cutoff radii (in
a.u.) of 1.75/1.85/1.20/2.80/3.75, respectively,were chosen,with
the s component being the local one.
A map of the magnetic density vector, Em, of a Cr3 cluster, in

the cluster plane, is shown in Fig. 1. To facilitate comparison with
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previous results [6], we chose an equilateral triangle with a bond
length of 2.1 Å. The intensity of the color indicates the magnitude
of the magnetization density and the arrows indicate its in-plane
local direction. The magnetization density is characterized by
intense ‘‘rings’’ around each atom, as it stems primarily from 3d–4s
hybridized orbitals. The magnetization is close to collinear near
each atom, supporting the usual picture of assigning a net direction
for the magnetization of each atom, but there are significant
regions of noncollinearity between the atoms. The total magnetic
moment, integrated over all space, of the Cr3 cluster is zero,
as expected from symmetry. The magnetic moment per atom,
however, calculated by integration of themagneticmomentwithin
a sphere of 2 Å around each atom, is 2.86 Bohr magnetons (µB).
All qualitative features of Fig. 1, as well as the quantitative value
for the atomic magnetic moment, are in excellent agreement with
previous work [6].
A map of the magnetic density vector, Em, of a free standing

chromium layer in a (
√
3 ×
√
3)R30◦ triangular lattice, in the

layer plane, is shown in Fig. 2. The lattice parameter was fixed to
fit the experimental lattice parameter of a hypothetical Ag(111)
substrate, i.e., a bond length of 2.89 Å was used. Largely collinear
magnetic domains at 120◦ to each other are observed, with
boundaries that are more abrupt than in the Cr3 cluster. The
calculated magnetic moment per atom was 3.84 µB. Once again,
these results are in excellent agreement with previous studies [23,
24,26] and the magnetic moment value is within 0.03 Bohr
magnetons of the value reported by Hobbs et al., despite the use
of LSDA here and GGA in Ref. [26].
Having proven the validity of our approach, we now turn

to discussing its potential advantages. First, while we have
used LSDA here for the sake of demonstration, the approach
is, in principle, compatible with any functional, given a relation
between n, Em and Vxc, Ebxc . In particular, the pseudopotential real-
space approach is well-suited for optimized effective potential
(OEP) calculations within the exact exchange functional [36]
and for orbital-dependent functionals in general [37]. This offers
a natural means for noncollinear magnetism studies within
the OEP approach, a combination which (to the best of our
knowledge) has only been demonstrated once before [24]. Second,
we have previously shown that addition of spin-orbit coupling
via an appropriately constructed pseudopotential results in a
Hamiltonian matrix which is similar in structure to that of
Eq. (11). The only difference is that in the case of spin-orbit
calculations entries in the off diagonal blocks are due to non-local
pseudopotential projectors that contain an S+ or an S− term [38].
Clearly, the Hamiltonian entries due to spin-orbit coupling and due
to the exchange-correlationmagnetic vector field can be combined
seamlessly. This would be important in, e.g., studies of magnetic
anisotropy [39]. Last but not least, we expect that efficient massive
parallelization [30,32] should be as easy to achieve as it is in
standard real-space pseudopotential calculations.
In conclusion, we have presented a real-space pseudopotential

method for first principles calculations of noncollinear magnetic
phenomena within density functional theory. We demonstrated
the validity of the method using the test cases of the Cr3 cluster
and the Cr(

√
3×
√
3)R30◦ layer. The approach retains all the usual

benefits of the real-space approach and is expected to be of benefit
in future studies of noncollinear magnetic phenomena.
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Fig. 1. Magnetic density map for a Cr3 cluster, in the cluster plane. Color indicates
the magnitude of the magnetic density and arrows indicate its local direction.

Fig. 2. Magnetic densitymap for a free standing (
√
3×
√
3)R30◦ Crmonolayer,with

periodic cell corresponding to theAg(111) surface, in the layer plane. Color indicates
the magnitude of the magnetic density and arrows indicate its local direction.
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